搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于波束-波数域非相干匹配的浅海运动声源深度估计方法

周玉媛 孙超 谢磊 刘宗伟

引用本文:
Citation:

基于波束-波数域非相干匹配的浅海运动声源深度估计方法

周玉媛, 孙超, 谢磊, 刘宗伟

A method of estimating depth of moving sound source in shallow sea based on incoherently matched beam-wavenumber

Zhou Yu-Yuan, Sun Chao, Xie Lei, Liu Zong-Wei
PDF
HTML
导出引用
  • 浅海波导运动声源定位研究中, 在声源距离未知时估计声源深度一直是个具有挑战性的问题. 现有深度估计方法对声源未知初始距离敏感, 且要求声源运动形成的水平合成孔径长度远大于模态干涉长度. 针对这两个问题, 本文提出一种基于波束-波数域非相干匹配的浅海运动声源深度估计方法, 首先将垂直阵接收声压数据在深度和水平合成孔径方向分别进行波束形成变换到波束-波数域, 波束-波数平面的峰值幅度仅包含与声源深度有关的模态激励, 峰值位置与模态传播角和水平波数相对应; 然后, 在波束-波数平面内提取各峰值幅度, 并与拷贝计算的模态深度函数进行非相干匹配, 实现声源深度估计. 所提方法在波束-波数二维平面内进行模态分离, 消除了声源距离相关项, 提高了模态分辨能力, 可在声源初始距离未知和水平合成孔径长度小于模态干涉长度的情况下实现声源深度估计. 仿真和SWellEx-96实验数据处理结果验证了所提方法的优越性能.
    Estimating the depth of a moving source with unknown source range is always a challenging problem in shallow water waveguides. The method of estimating the current motion source depth is sensitive to the unknown initial range and requires the horizontal synthetic aperture length formed by the motion of the source to be much longer than the modal interference period. Presented in this work is a method to estimate the depth of moving source based on the incoherently matched beam-wavenumber. In the beam-wavenumber domain, each peak amplitude only contains the modal excitation related to source depth, and each peak position corresponds to the mode propagation angle and the horizontal wavenumber. In this method, the received data are first used to perform beam-formed transformation in the vertical depth and horizontal synthetic aperture direction, and transformed into the beam-wavenumber domain. Then beam-wavenumber peak amplitudes are extracted and incoherently matched with the modal depth function to estimate the source depth. The proposed method is used to eliminate the unknown distance dependent term and improves the mode resolution by performing mode separation in the beam-wavenumber two-dimensional domain. The prominent feature of this method lies in realizing the source depth estimation at the unknown initial range and the horizontal synthetic aperture length which is smaller than the mode interference period. The simulation and SWellEx-96 experimental data processing results validate the superior performance of the proposed method.
      通信作者: 孙超, csun@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11904342, 12274348, 11534009)资助的课题.
      Corresponding author: Sun Chao, csun@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11904342, 12274348, 11534009).
    [1]

    Premus V E 1998 J. Acoust. Soc. Am. 104 1837

    [2]

    Premus V E, Helfrick M N 2013 J. Acoust. Soc. Am. 133 4019Google Scholar

    [3]

    Conan E, Bonnel J, Chaonavel T 2016 J. Acoust. Soc. Am. 140 434Google Scholar

    [4]

    Conan E, Bonnel J, Nicolas B 2017 J. Acoust. Soc. Am. 142 2776Google Scholar

    [5]

    曹怀刚, 赵振东, 郭圣明, 马力 2020 声学学报 6 802

    Cao H G, Zhao Z D, Ma L 2020 Acta. Acustica. 6 802

    [6]

    刘志韬, 郭良浩, 闫超 2019 声学学报 44 28

    Liu Z T, Guo L H, Yan C 2019 Acta. Acustica. 44 28

    [7]

    Bucker H P 1976 J. Acoust. Soc. Am. 59 368Google Scholar

    [8]

    Yang T C 1990 J. Acoust. Soc. Am. 87 2072Google Scholar

    [9]

    Shang E C 1985 J. Acoust. Soc. Am. 77 1413Google Scholar

    [10]

    Yang T C 1987 J. Acoust. Soc. Am. 82 1736Google Scholar

    [11]

    Yang T C, Bogart C W 1994 J. Acoust. Soc. Am. 96 1677Google Scholar

    [12]

    Lopatka M, Touzé G L, Nicolas B, Cristol L 2006 Eurasip J. Adv. Sig. Pr. 65901

    [13]

    李焜, 方世良, 安良 2013 物理学报 62 094303Google Scholar

    Li K, Fang S L, An L 2013 Acta. Phys. Sin. 62 094303Google Scholar

    [14]

    Reeder B D 2014 J. Acoust. Soc. Am. 136 2120

    [15]

    Yang T C 2015 J. Acoust. Soc. Am. 137 2986Google Scholar

    [16]

    Yang T C, Xu W 2016 J. Acoust. Soc. Am. 140 EL302Google Scholar

    [17]

    Zhang J G, Yang T C, Zheng G Y 2021 J. Acoust. Soc. Am. 1 EL 026002

    [18]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (New York: Springer) pp629–630, 355, 359

    [19]

    Katsnelson B, Petnikov V, Lynch J 2012 Fundamentals of Shallow Water Acoustics (Boston: Springer) p86

    [20]

    Murray J, Ensberg D The SWellEx-96 Experiment http://swellex96.ucsd.edu/ (Last viewed December 2022)

    [21]

    Porter M B 1992 The KRAKEN Normal Mode Program (Washington DC: Naval Research Laboratory)

  • 图 1  垂直阵和水平运动声源位置示意图

    Fig. 1.  Vertical array and the position of the horizontal moving source.

    图 2  仿真环境

    Fig. 2.  Simulation environment.

    图 3  前50阶模态的变化规律 (a) 9 m和54 m声源的模态激励; (b) 模态水平波数和模态传播角; (c) 模态深度函数幅值

    Fig. 3.  The change regulation of the first 50 propagating modes: (a) Mode excitations of 9 m and 54 m sources; (b) mode horizontal wavenumber and propagation angle; (c) the depth-dependent mode function.

    图 4  9, 54和70 m声源深度下的仿真结果 (a) 10—11 km的波束输出; (b) 波束-波数输出; (c) 归一化的波束幅度和波束-波数幅度对比; (d) IMBWP和IMBP方法的归一化深度模糊函数对比

    Fig. 4.  Simulation results at 9, 54 and 70 m source depths: (a) Beam output from 10 km to 11 km; (c) beam-wavenumber output; (c) normalized beam amplitude and beam-to-wavenumber amplitude comparison; (d) normalized ambiguity functions comparison between IMBWP and IMBP methods.

    图 5  不同水平合成孔径长度下IMBWP方法对54 m声源的仿真结果对比(a), (b) 0.25 km和2.5 km水平合成孔径长度下的波束-波数输出; (c) 归一化深度模糊函数

    Fig. 5.  Comparison of simulated data by IMBWP method at different synthetic aperture lengths: (a), (b) Beam-wavenumber outputs at 0.25 km and 2.5 km synthetic aperture lengths, respectively; (c) normalized depth ambiguity function.

    图 6  不同水平合成孔径长度下IMBWP和IMBP方法的深度估计绝对误差仿真结果对比(a)—(c) 9, 54和70 m声源; (d) IMBWP估计10—90 m声源所需最小水平合成孔径长度

    Fig. 6.  Comparison of depth estimation absolute error for simulated data by IMBWP and IMBP methods at different synthetic aperture length: (a)–(c) 9, 54 and 70 m source; (d) IMBWP method estimates the minimum synthetic aperture length required for 10–90 m sources.

    图 7  不同初始距离下IMBWP和IMBP方法的深度估计绝对误差仿真结果对比(a)—(c) 9, 54和70 m声源; (d) 10—90 m声源在500个随机初始距离处的深度估计绝对误差均值和标准差

    Fig. 7.  Comparison of depth estimation absolute error for simulated data by IMBWP and IMBP methods at different initial ranges: (a)–(c) 9, 54 and 70 m source; (d) mean and standard deviation of depth estimation absolute errors for 10–90 m sources at 500 random initial ranges.

    图 8  SWellEx-96测线S5实验声源船轨迹 (a) 发射船轨迹和垂直阵位置; (b) 声源距离随时间变化

    Fig. 8.  The SWellEx-96 Event S5 launch ship track: (a) The path of a ship towed two sources and the vertical line array location; (b) source range varies with time.

    图 9  不同水平合成孔径长度下, IMBWP和IMBP方法对9 m浅源的深度估计绝对误差

    Fig. 9.  Depth estimation absolute error of experimental data for the 9 m source by IMBWP and IMBP methods at different synthetic aperture length.

    图 10  不同水平合成孔径长度下IMBWP和IMBP方法对54 m声源实验数据的深度估计结果 (a)—(c) D1, D2D3数据段; (d) D1D3数据段深度估计的平均绝对误差

    Fig. 10.  Depth estimation of experimental data for the 54 m source by IMBWP and IMBP methods at different synthetic aperture length: (a)–(c) D1, D2 and D3 data segment; (d) depth estimation average absolute errors of D1 D3 data segments.

    图 11  不同初始距离下9 m和54 m声源实验数据的深度估计结果 (a) IMBWP和IMBP方法的深度估计绝对误差对比; (b) IMBWP方法的归一化深度模糊函数伪彩图

    Fig. 11.  Depth estimation of experimental data for 9 m and 54 m sources at different initial ranges: (a) Comparison of depth estimation absolute errors between IMBWP and IMBP method; (b) normalized depth ambiguity surface of IMBWP method.

    表 1  D1D3数据段对应时间和距离

    Table 1.  The time and range of D1D3 data segments.

    数据段时间/min距离/km
    D11.7—18.28.4—6.2
    D222.4—36.45.3—3.3
    D339.7—57.43.2—1.5
    下载: 导出CSV
  • [1]

    Premus V E 1998 J. Acoust. Soc. Am. 104 1837

    [2]

    Premus V E, Helfrick M N 2013 J. Acoust. Soc. Am. 133 4019Google Scholar

    [3]

    Conan E, Bonnel J, Chaonavel T 2016 J. Acoust. Soc. Am. 140 434Google Scholar

    [4]

    Conan E, Bonnel J, Nicolas B 2017 J. Acoust. Soc. Am. 142 2776Google Scholar

    [5]

    曹怀刚, 赵振东, 郭圣明, 马力 2020 声学学报 6 802

    Cao H G, Zhao Z D, Ma L 2020 Acta. Acustica. 6 802

    [6]

    刘志韬, 郭良浩, 闫超 2019 声学学报 44 28

    Liu Z T, Guo L H, Yan C 2019 Acta. Acustica. 44 28

    [7]

    Bucker H P 1976 J. Acoust. Soc. Am. 59 368Google Scholar

    [8]

    Yang T C 1990 J. Acoust. Soc. Am. 87 2072Google Scholar

    [9]

    Shang E C 1985 J. Acoust. Soc. Am. 77 1413Google Scholar

    [10]

    Yang T C 1987 J. Acoust. Soc. Am. 82 1736Google Scholar

    [11]

    Yang T C, Bogart C W 1994 J. Acoust. Soc. Am. 96 1677Google Scholar

    [12]

    Lopatka M, Touzé G L, Nicolas B, Cristol L 2006 Eurasip J. Adv. Sig. Pr. 65901

    [13]

    李焜, 方世良, 安良 2013 物理学报 62 094303Google Scholar

    Li K, Fang S L, An L 2013 Acta. Phys. Sin. 62 094303Google Scholar

    [14]

    Reeder B D 2014 J. Acoust. Soc. Am. 136 2120

    [15]

    Yang T C 2015 J. Acoust. Soc. Am. 137 2986Google Scholar

    [16]

    Yang T C, Xu W 2016 J. Acoust. Soc. Am. 140 EL302Google Scholar

    [17]

    Zhang J G, Yang T C, Zheng G Y 2021 J. Acoust. Soc. Am. 1 EL 026002

    [18]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (New York: Springer) pp629–630, 355, 359

    [19]

    Katsnelson B, Petnikov V, Lynch J 2012 Fundamentals of Shallow Water Acoustics (Boston: Springer) p86

    [20]

    Murray J, Ensberg D The SWellEx-96 Experiment http://swellex96.ucsd.edu/ (Last viewed December 2022)

    [21]

    Porter M B 1992 The KRAKEN Normal Mode Program (Washington DC: Naval Research Laboratory)

  • [1] 周玉媛, 孙超, 谢磊. 基于轨迹泊松多伯努利混合滤波器的浅海匹配场连续跟踪方法. 物理学报, 2023, 72(18): 184301. doi: 10.7498/aps.72.20230124
    [2] 李晓彬, 孙超, 刘雄厚. 浅海负跃层中利用互相关输出峰值迁移曲线的声源深度判别. 物理学报, 2022, 71(13): 134302. doi: 10.7498/aps.71.20211987
    [3] 朱启轩, 孙超, 刘雄厚. 利用海底弹射区角度-距离干涉结构特征实现声源深度估计. 物理学报, 2022, 71(18): 184301. doi: 10.7498/aps.71.20220746
    [4] 王宣, 孙超, 李明杨, 张少东. 不确定浅海环境中水平阵角度域子空间检测. 物理学报, 2022, 71(8): 084304. doi: 10.7498/aps.71.20211742
    [5] 程巍, 滕鹏晓, 吕君, 姬培锋, 戴翊靖. 基于大气声传播理论的爆炸声源能量估计. 物理学报, 2021, 70(24): 244203. doi: 10.7498/aps.70.20210562
    [6] 张少东, 孙超, 谢磊, 刘雄厚, 王宣. 浅海波导环境不确定性对声源功率估计的影响. 物理学报, 2021, 70(24): 244301. doi: 10.7498/aps.70.20210852
    [7] 钱治文, 商德江, 孙启航, 何元安, 翟京生. 三维浅海下弹性结构声辐射预报的有限元-抛物方程法. 物理学报, 2019, 68(2): 024301. doi: 10.7498/aps.68.20181452
    [8] 孟瑞洁, 周士弘, 李风华, 戚聿波. 浅海波导中低频声场干涉简正模态的判别. 物理学报, 2019, 68(13): 134304. doi: 10.7498/aps.68.20190221
    [9] 李鹏, 章新华, 付留芳, 曾祥旭. 一种基于模态域波束形成的水平阵被动目标深度估计. 物理学报, 2017, 66(8): 084301. doi: 10.7498/aps.66.084301
    [10] 李晓曼, 张明辉, 张海刚, 朴胜春, 刘亚琴, 周建波. 一种基于模态匹配的浅海波导中宽带脉冲声源的被动测距方法. 物理学报, 2017, 66(9): 094302. doi: 10.7498/aps.66.094302
    [11] 戚聿波, 周士弘, 张仁和. 浅海波导中折射类简正波的warping变换. 物理学报, 2016, 65(13): 134301. doi: 10.7498/aps.65.134301
    [12] 郭晓乐, 杨坤德, 马远良, 杨秋龙. 一种基于简正波模态消频散变换的声源距离深度估计方法. 物理学报, 2016, 65(21): 214302. doi: 10.7498/aps.65.214302
    [13] 李倩倩, 阳凡林, 张凯, 郑炳祥. 不确定海洋环境中基于贝叶斯理论的声源运动参数估计方法. 物理学报, 2016, 65(16): 164304. doi: 10.7498/aps.65.164304
    [14] 苏林, 马力, 宋文华, 郭圣明, 鹿力成. 声速剖面对不同深度声源定位的影响. 物理学报, 2015, 64(2): 024302. doi: 10.7498/aps.64.024302
    [15] 徐灵基, 杨益新, 杨龙. 水下线谱噪声源识别的波束域时频分析方法研究. 物理学报, 2015, 64(17): 174304. doi: 10.7498/aps.64.174304
    [16] 戚聿波, 周士弘, 张仁和, 张波, 任云. 水平变化浅海声波导中模态特征频率与声源距离被动估计. 物理学报, 2014, 63(4): 044303. doi: 10.7498/aps.63.044303
    [17] 颜扬治, 丁志华, 王玲, 沈毅. 联合谱域与深度域光谱相位显微方法. 物理学报, 2013, 62(16): 164204. doi: 10.7498/aps.62.164204
    [18] 杨殿阁, 李兵, 王子腾, 连小珉. 运动声源识别的动态波叠加方法研究. 物理学报, 2012, 61(5): 054306. doi: 10.7498/aps.61.054306
    [19] 杨殿阁, 罗禹贡, 李兵, 李克强, 连小珉. 基于时域多普勒修正的运动声全息识别方法. 物理学报, 2010, 59(7): 4738-4747. doi: 10.7498/aps.59.4738
    [20] 余赟, 惠俊英, 陈阳, 孙国仓, 滕超. 浅海低频声场中目标深度分类方法研究. 物理学报, 2009, 58(9): 6335-6343. doi: 10.7498/aps.58.6335
计量
  • 文章访问数:  3875
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-12
  • 修回日期:  2023-02-17
  • 上网日期:  2023-02-23
  • 刊出日期:  2023-04-20

/

返回文章
返回