搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浅海负跃层中利用互相关输出峰值迁移曲线的声源深度判别

李晓彬 孙超 刘雄厚

引用本文:
Citation:

浅海负跃层中利用互相关输出峰值迁移曲线的声源深度判别

李晓彬, 孙超, 刘雄厚

Source depth discrimination using peak migration line of cross-correlation output in shallow water having negative thermocline

Li Xiao-Bin, Sun Chao, Liu Xiong-Hou
PDF
HTML
导出引用
  • 针对浅海负跃层波导中的声源深度判别问题, 通过研究不同深度声源信号到达接收阵的简正波结构特征, 提出了一种利用互相关输出峰值迁移曲线的声源深度判别方法. 该方法利用浅海负跃层中主导简正波类型由声源深度决定这一先验信息, 根据峰值迁移曲线中互相关时延在0时刻的位置进行声源深度判别. 首先, 利用垂直线列阵波束输出与单阵元接收信号做互相关处理, 得到互相关时延—俯仰角输出二维图. 然后, 在图中提取不同时延上角度维峰值, 根据时延小于等于0、大于0的情况对所提取的峰值点进行分段线性拟合, 得到互相关输出峰值迁移曲线. 最后, 以曲线位于互相关时延为0时的位置进行声源深度判断. 理论分析表明, 曲线受波导中声速随深度变化的影响较小, 互相关时延0时刻位置的判别阈值由低阶简正波决定, 区分声源深度的区间由跃层的位置和厚度决定, 且跃层上下声速差越大越有利于声源深度判别. 仿真实验和海试数据分析结果表明, 该方法可有效进行声源深度判别, 并且无需模态分离、声源相对接收阵移动、精确声速剖面测量等前提条件.
    In this paper, the peak migration line of cross-correlation output is utilized to discriminate the depth of an underwater acoustic source in shallow water environment with a negative thermocline through studying the modal arrival structure of the source at different depths. The discrimination can be done according to the position of the migration line when the cross-correlation delay is zero since the type of dominant normal mode is determined by the depth of the source. Firstly, using the beam output of a vertical linear array and the received signal of a single array element to do cross-correlation processing, a two-dimensional intensity image of cross-correlation delay versus elevation angle is obtained. Then, the peaks in the angle domain at different delays can be extracted from the image. The cross-correlation peak migration line can be achieved by piecewise linear fitting which is divided into two parts corresponding to the delay being less than or equal to zero and the delay being more than zero, respectively. Finally, the source depth is determined by the position of the curve where the cross-correlation time delay is zero. Theoretical analysis shows that the migration line is little influenced by the sound velocity profile (SVP) varying with depth, the discrimination threshold is determined by the lower-order normal modes, the identification region is determined by the thickness and depth of the thermocline and the higher strength of the thermocline is instrumental in distinguishing. The numerical results and the experimental results prove the method's effectiveness which can be implemented without SVP details or mode separation, or source movement.
      通信作者: 孙超, csun@nwpu.edu.cn
      Corresponding author: Sun Chao, csun@nwpu.edu.cn
    [1]

    Touzé G L, Nicolas B, Lacoume J L, Mars J, Fattaccioli D 2005 IEEE OCEANS Brest, France, June 20–23, 2005 p725

    [2]

    Nicolas B, Mars J, Lacoume J-L 2006 EURASIP J. Adv. Signal Process. 2006 1Google Scholar

    [3]

    Courtois F L, Bonnel J 2015 J. Acoust. Soc. Am. 138 575Google Scholar

    [4]

    Lopatka M, Touzé G L, Nicolas B, Cristol X, Mars J, Fattaccioli D 2010 EURASIP J. Adv. Signal Process. 2010 1Google Scholar

    [5]

    Shang E C 1985 J. Acoust. Soc. Am. 77 1413Google Scholar

    [6]

    Neilsen T B, Westwood E K 2002 J. Acoust. Soc. Am. 111 748Google Scholar

    [7]

    Reeder B D 2014 J. Acoust. Soc. Am. 135 EL1Google Scholar

    [8]

    Yang T C 2015 J. Acoust. Soc. Am. 138 1678Google Scholar

    [9]

    Turgut A, Fialkowski L T, Schindall J A 2016 J. Acoust. Soc. Am. 139 EL184Google Scholar

    [10]

    刘志韬, 郭良浩, 闫超 2019 声学学报 5 925Google Scholar

    Liu Z T, Guo L H, Yan C 2019 Acta Acust. 5 925Google Scholar

    [11]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (New York: Springer) pp739– 740

    [12]

    Lee S, Makris N C 2006 J. Acoust. Soc. Am. 119 336Google Scholar

    [13]

    Gong Z, Ratilal P, Makris N C 2015 J. Acoust. Soc. Am. 138 2649Google Scholar

    [14]

    Ewing W M, Jardetzky W S, Press F 1957 Elastic Waves in Layered Media (McGraw-Hill: New York) pp341–367

    [15]

    Premus V E, Helfrick M N 2013 J. Acoust. Soc. Am. 133 4019Google Scholar

    [16]

    Urick R J 1983 Principles of Underwater Sound (Vol. 3) (McGraw-Hill: New York) pp120–121

    [17]

    张仁和 1979 声学学报 2 102Google Scholar

    Zhang R H 1979 Acta Acust. 2 102Google Scholar

    [18]

    高大治 2012 博士学位论文(青岛: 中国海洋大学)

    Gao D Z 2012 Ph. D. Dissertation (Qingdao: Ocean University of China) (in Chinese)

    [19]

    Weston D E. 1960 J. Acoust. Soc. Am. 32 647Google Scholar

    [20]

    Marine Physical Lab http://swellex96.ucsd.edu/index.htm [2021-10-19]

  • 图 1  VLA、声源位置和负跃层声速剖面示意图

    Fig. 1.  VLA, the position of the source and SVP in shallow water with a negative thermocline.

    图 2  互相关输出示意图

    Fig. 2.  The cross-correlation output.

    图 3  TM和NTM在不同接收深度上的俯仰角示意图

    Fig. 3.  The elevation angles of TM and NTM at different depths.

    图 4  互相关输出峰值迁移曲线示意图

    Fig. 4.  The peak migration line of the cross-correlation output.

    图 5  判别算法流程图

    Fig. 5.  The flow diagrams of the source depth discrimination.

    图 6  负跃层波导环境及其相关参数

    Fig. 6.  The shallow water waveguide with a negative thermocline and its environmental parameters.

    图 7  各阶模态函数

    Fig. 7.  The mode functions.

    图 8  不同声源深度的${I_{{\text{ae}}}}(s, \tau )$, ${\tilde s_{\max }}(\tau )$${s_{\max }}(\tau )$ (a)声源深度10 m, 白色虚线圈标注了峰裂分现象; (b)声源深度50 m

    Fig. 8.  ${I_{{\text{ae}}}}(s, \tau )$, ${\tilde s_{\max }}(\tau )$ and ${s_{\max }}(\tau )$ of sources at different depths: (a) Source at a depth of 10 m, with the peak splitting indicated by white dashed circle; (b) source at a depth of 50 m.

    图 9  不同声速差时的各阶模态函数 (a) $\Delta c$ = 0 m/s; (b) $\Delta c$ = 40 m/s

    Fig. 9.  The mode functions with different $\Delta c$: (a) $\Delta c$ = 0 m/s; (b) $\Delta c$ = 40 m/s.

    图 10  不同声速差时不同声源深度的${I_{{\text{ae}}}}(s, \tau )$, ${\tilde s_{\max }}(\tau )$${s_{\max }}(\tau )$ (a) $\Delta c$ = 0 m/s, 声源深度10 m; (b) $\Delta c$ = 0 m/s, 声源深度50 m; (c) $\Delta c$ = 40 m/s, 声源深度10 m; (d) $\Delta c$ = 40 m/s, 声源深度50 m

    Fig. 10.  ${I_{{\text{ae}}}}(s, \tau )$, ${\tilde s_{\max }}(\tau )$ and ${s_{\max }}(\tau )$ of sources at different depths with different $\Delta c$: (a) $\Delta c$ = 0 m/s, source at a depth of 10 m; (b) $\Delta c$ = 0 m/s, source at a depth of 50 m; (c) $\Delta c$ = 40 m/s, source at a depth of 10 m; (d) $\Delta c$ = 40 m/s, source at a depth of 50 m.

    图 11  不同SNR条件下, 不同声源深度的$ {I_{{\text{ae}}}}\left( {s, \tau } \right) $, ${\tilde s_{\max }}(\tau )$${s_{\max }}(\tau )$ (a) SNR = –10 dB, 声源深度10 m; (b) SNR = –10 dB, 声源深度50 m; (c) SNR = –20 dB, 声源深度10 m; (d) SNR = –20 dB, 声源深度50 m; (e) SNR = –25 dB, 声源深度10 m; (f) SNR = –25 dB, 声源深度50 m

    Fig. 11.  $ {I_{{\text{ae}}}}\left( {s, \tau } \right) $, ${\tilde s_{\max }}(\tau )$ and ${s_{\max }}(\tau )$ of sources at different depths with different SNR: (a) SNR = –10 dB, source at a depth of 10 m; (b) SNR = –10 dB, source at a depth of 50 m; (c) SNR = –20 dB, source at a depth of 10 m; (d) SNR = –20 dB, source at a depth of 50 m; (e) SNR = –25 dB, source at a depth of 10 m; (f) SNR = –25 dB, source at a depth of 50 m.

    图 12  S5试验情况 (a) 试验场环境与发射船轨迹; (b) 声速剖面

    Fig. 12.  Event S5: (a) The environment and the track of the source ship; (b) SVP.

    图 13  S5试验波导下频率135 Hz的各阶模态函数

    Fig. 13.  The mode functions in S5 waveguide with f = 135 Hz.

    图 14  J-13和J-15声源的${I_{{\text{ae}}}}(s, \tau )$, ${\tilde s_{\max }}(\tau )$${s_{\max }}(\tau )$ (a)J-13, 9 m; (b)J-15, 54 m

    Fig. 14.  $ {I_{{\text{ae}}}}(s, \tau ) $, ${\tilde s_{\max }}(\tau )$ and ${s_{\max }}(\tau )$ of different sources: (a) J-13, 9 m; (b) J-15, 54 m.

    表 1  不同声源的频率

    Table 1.  Frequencies transmitted by different sources.

    声源类型频率/Hz
    J-13(9 m)109 127 145 163 198 232 280 335 385
    J-15(54 m)49 64 79 94 112 130 148 166 201 235 283 338 388
    下载: 导出CSV
  • [1]

    Touzé G L, Nicolas B, Lacoume J L, Mars J, Fattaccioli D 2005 IEEE OCEANS Brest, France, June 20–23, 2005 p725

    [2]

    Nicolas B, Mars J, Lacoume J-L 2006 EURASIP J. Adv. Signal Process. 2006 1Google Scholar

    [3]

    Courtois F L, Bonnel J 2015 J. Acoust. Soc. Am. 138 575Google Scholar

    [4]

    Lopatka M, Touzé G L, Nicolas B, Cristol X, Mars J, Fattaccioli D 2010 EURASIP J. Adv. Signal Process. 2010 1Google Scholar

    [5]

    Shang E C 1985 J. Acoust. Soc. Am. 77 1413Google Scholar

    [6]

    Neilsen T B, Westwood E K 2002 J. Acoust. Soc. Am. 111 748Google Scholar

    [7]

    Reeder B D 2014 J. Acoust. Soc. Am. 135 EL1Google Scholar

    [8]

    Yang T C 2015 J. Acoust. Soc. Am. 138 1678Google Scholar

    [9]

    Turgut A, Fialkowski L T, Schindall J A 2016 J. Acoust. Soc. Am. 139 EL184Google Scholar

    [10]

    刘志韬, 郭良浩, 闫超 2019 声学学报 5 925Google Scholar

    Liu Z T, Guo L H, Yan C 2019 Acta Acust. 5 925Google Scholar

    [11]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (New York: Springer) pp739– 740

    [12]

    Lee S, Makris N C 2006 J. Acoust. Soc. Am. 119 336Google Scholar

    [13]

    Gong Z, Ratilal P, Makris N C 2015 J. Acoust. Soc. Am. 138 2649Google Scholar

    [14]

    Ewing W M, Jardetzky W S, Press F 1957 Elastic Waves in Layered Media (McGraw-Hill: New York) pp341–367

    [15]

    Premus V E, Helfrick M N 2013 J. Acoust. Soc. Am. 133 4019Google Scholar

    [16]

    Urick R J 1983 Principles of Underwater Sound (Vol. 3) (McGraw-Hill: New York) pp120–121

    [17]

    张仁和 1979 声学学报 2 102Google Scholar

    Zhang R H 1979 Acta Acust. 2 102Google Scholar

    [18]

    高大治 2012 博士学位论文(青岛: 中国海洋大学)

    Gao D Z 2012 Ph. D. Dissertation (Qingdao: Ocean University of China) (in Chinese)

    [19]

    Weston D E. 1960 J. Acoust. Soc. Am. 32 647Google Scholar

    [20]

    Marine Physical Lab http://swellex96.ucsd.edu/index.htm [2021-10-19]

  • [1] 汪磊, 黄益旺, 郭霖, 任超. 浅海粗糙海底声散射建模及声场特性. 物理学报, 2024, 73(3): 034301. doi: 10.7498/aps.73.20231472
    [2] 邓玉鑫, 刘雄厚, 杨益新. 浅海环境中用于目标深度属性判别的线谱起伏特征量分析. 物理学报, 2024, 73(13): 134301. doi: 10.7498/aps.73.20231911
    [3] 郝望, 段睿, 杨坤德. 联合简正波水波和底波频散特性的贝叶斯地声参数反演. 物理学报, 2023, 72(5): 054303. doi: 10.7498/aps.72.20221717
    [4] 张士钊, 朴胜春. 倾斜弹性海底条件下浅海声场的简正波相干耦合特性分析. 物理学报, 2021, 70(21): 214304. doi: 10.7498/aps.70.20211013
    [5] 刘代, 李整林, 刘若芸. 浅海周期起伏海底环境下的声传播. 物理学报, 2021, 70(3): 034302. doi: 10.7498/aps.70.20201233
    [6] 孟瑞洁, 周士弘, 李风华, 戚聿波. 浅海波导中低频声场干涉简正模态的判别. 物理学报, 2019, 68(13): 134304. doi: 10.7498/aps.68.20190221
    [7] 蒋光禹, 孙超, 谢磊, 刘雄厚. 表面声道对深海风成噪声垂直空间特性的影响规律. 物理学报, 2019, 68(2): 024302. doi: 10.7498/aps.68.20181794
    [8] 李鹏, 章新华, 付留芳, 曾祥旭. 一种基于模态域波束形成的水平阵被动目标深度估计. 物理学报, 2017, 66(8): 084301. doi: 10.7498/aps.66.084301
    [9] 秦继兴, Katsnelson Boris, 彭朝晖, 李整林, 张仁和, 骆文于. 三维绝热简正波-抛物方程理论及应用. 物理学报, 2016, 65(3): 034301. doi: 10.7498/aps.65.034301
    [10] 郭晓乐, 杨坤德, 马远良, 杨秋龙. 一种基于简正波模态消频散变换的声源距离深度估计方法. 物理学报, 2016, 65(21): 214302. doi: 10.7498/aps.65.214302
    [11] 戚聿波, 周士弘, 张仁和. 浅海波导中折射类简正波的warping变换. 物理学报, 2016, 65(13): 134301. doi: 10.7498/aps.65.134301
    [12] 苏林, 马力, 宋文华, 郭圣明, 鹿力成. 声速剖面对不同深度声源定位的影响. 物理学报, 2015, 64(2): 024302. doi: 10.7498/aps.64.024302
    [13] 莫亚枭, 朴胜春, 张海刚, 李丽. 水平变化波导中的简正波耦合与能量转移. 物理学报, 2014, 63(21): 214302. doi: 10.7498/aps.63.214302
    [14] 杨春梅, 骆文于, 张仁和, 秦继兴. 一种水平变化可穿透波导中声传播问题的耦合简正波方法. 物理学报, 2013, 62(9): 094302. doi: 10.7498/aps.62.094302
    [15] 余赟, 惠俊英, 陈阳, 孙国仓, 滕超. 浅海低频声场中目标深度分类方法研究. 物理学报, 2009, 58(9): 6335-6343. doi: 10.7498/aps.58.6335
    [16] 余 赟, 惠俊英, 赵安邦, 孙国仓, 滕 超. Pekeris波导中简正波的复声强及其应用. 物理学报, 2008, 57(9): 5742-5748. doi: 10.7498/aps.57.5742
    [17] 贺凯芬, 胡岗. 负能模式在驱动漂移波非线性不稳定性中的作用(Ⅰ)——向正能模式的转变和双稳态. 物理学报, 1993, 42(7): 1035-1041. doi: 10.7498/aps.42.1035
    [18] 张仁和, 朱柏贤. 指向性辐射器的简正波声场. 物理学报, 1983, 32(4): 490-496. doi: 10.7498/aps.32.490
    [19] 唐应吾. 具有随机起伏表面的正声速梯度浅海中的简正波声场. 物理学报, 1976, 25(6): 481-486. doi: 10.7498/aps.25.481
    [20] 张仁和. 浅海表面声道中的简正波声场. 物理学报, 1975, 24(3): 200-209. doi: 10.7498/aps.24.200
计量
  • 文章访问数:  4473
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-26
  • 修回日期:  2022-03-09
  • 上网日期:  2022-06-19
  • 刊出日期:  2022-07-05

/

返回文章
返回