搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东印度洋热带偶极子对声会聚区影响分析

吴双林 李整林 秦继兴 王梦圆 董凡辰

引用本文:
Citation:

东印度洋热带偶极子对声会聚区影响分析

吴双林, 李整林, 秦继兴, 王梦圆, 董凡辰

Influence of tropical dipole in the East Indian Ocean on acoustic convergence region

Wu Shuang-Lin, Li Zheng-Lin, Qin Ji-Xing, Wang Meng-Yuan, Dong Fan-Chen
PDF
HTML
导出引用
  • 大洋中的物理海洋现象影响着水体的变化, 从而对其中的声波传播产生重要的影响. 首次在东印度洋海域进行的声学调查实验, 发现了印度洋热带偶极子物理海洋现象对声传播的影响, 利用穿越热带偶极子的声传播实验数据, 分析了声源深度和水体起伏对深海会聚区的影响, 并对实验中的声传播现象形成机理进行了理论解释. 结果表明: 东印度洋深海非完全声道环境下, 受热带偶极子形成暖水团和声源深度起伏的影响, 第2会聚区没有形成, 声源深度变深时, 更容易形成深海会聚区; 印度洋热带偶极子影响下第2会聚区位置处的水体跃层起伏会对下一个会聚区的形成及位置产生重要影响, 使得第3会聚区提前形成, 会聚区位置向声源方向偏移2—3 km. 研究结果对探测及通信声纳在深海复杂环境下应用具有重要指导意义.
    The physical ocean phenomena in the ocean affect the changes of water body, which has an important influence on the sound propagation. A hyperbolic frequency modulation (HFM) signal sound propagation experiment of towed sound source in the East Indian Ocean (EIO) was conducted in summer 2019. The center frequency of the towed sound source is 300 Hz, and the hydrophone receives the data from 4130 m far. This is the first time that we have conducted the underwater acoustic survey in the Indian Ocean. The influence of the physical ocean phenomenon—Indian Ocean Dipole (IOD) on sound propagation is observed. The experimental data of sound propagation from the IOD are processed and analyzed, the effects of sound source depth and water fluctuation on the deep-sea convergence zone (CZ) are analyzed, and the formation mechanism of sound propagation phenomenon in the experiment is explained theoretically. The results show that the second CZ is not formed under the influence of the warm water mass formed by the IOD and the depth of the sound source in the incomplete deep channel environment of the EIO. Owing to the fluctuation of the sound source depth, the deep-sea CZ disappears at the distance where it should have appeared. When the depth of the sound source becomes deeper, it is easier to form the deep-sea CZ. Under the influence of the IOD, the thermocline fluctuation at the location of the second CZ has an important influence on the formation and location of the third CZ. It is found that the location of the third CZ shifts 2–3 km toward the sound source in the experiment. The research results have important significance in guiding the applications in detection and communication sonar in deep-sea complex environment.
      通信作者: 李整林, lzhlin@mail.sysu.edu.cn ; 秦继兴, qjx@mail.ioa.ac.cn
    • 基金项目: 国家重点研发计划项目(2018YFC0308600),国家自然科学基金(批准号: 11874061, 11774374)和中国科学院青年创新促进会资助的课题.
      Corresponding author: Li Zheng-Lin, lzhlin@mail.sysu.edu.cn ; Qin Ji-Xing, qjx@mail.ioa.ac.cn
    • Funds: Project supported by the National key research and development program (Grant Nos. 2018YFC0308600), the National Natural Science Foundation of China (Grant Nos. 11874061, 11774374) and the Youth Innovation Promotion Association CAS
    [1]

    Brekhovskikh L M, Lysanov Yu P 2003 Fundamentals of Ocean Acoustics (3rd Ed.) (New York: Springer-Verlag Press) pp135–145

    [2]

    S. M. 弗拉泰 等 著 (高天赋 等 译) 1985 起伏海洋中的声传播 (北京: 海洋出版社) 第115—156页

    Flatté S M et al. (translated by Gao T F et al. ) 1985 Sound propagation in undulating Ocean (Beijing: Ocean Press) pp115–156 (in Chinese)

    [3]

    胡涛, 宋文华 2014 物理 43 667Google Scholar

    Hu T, Song W H 2014 Physics 43 667Google Scholar

    [4]

    Zhou J X, Zhang X Z, Rogers P H. 1991 J. Acoust. Soc. Am. 90 2042Google Scholar

    [5]

    秦继兴, Katsnelson B, 李整林, 张仁和, 骆文于 2016 声学学报 41 145

    Qin J X, Katsnelson B, Li Z L, Zhang R H, Luo W Y 2016 Acta Acust. 41 145

    [6]

    Yang T C 2006 J. Acoust. Soc. Am. 120 2595Google Scholar

    [7]

    季桂花, 李整林, 戴琼兴 2008 声学学报 33 419Google Scholar

    Ji G H, Li Z L, Dai Q X 2008 Acta Acust. 33 419Google Scholar

    [8]

    Xiao Y, Li Z L, Li J, Liu J Q et al. 2019 Chin. Phys. B 28 054301Google Scholar

    [9]

    John A C, Daniel L R 2020 J. Acoust. Soc. Am. 148 2040Google Scholar

    [10]

    Cheng C 2016 Chin. Ocean Acoust. Sym. (Harbin: China)

    [11]

    刘华锋 章向明 唐佑民 陈大可 2014 海洋科学进展 32 405Google Scholar

    Liu H F, Zhang X M, Tang Y M, Chen D K. 2014 Advan. Marine Sci. 32 405Google Scholar

    [12]

    Weinberg N et al. 1977 J. Acoust. Soc. Am. 62 888Google Scholar

    [13]

    Mellberg L E, Robinson A R, Botseas G J et al. 1990 J. Acoust. Soc. Am. 87 1044Google Scholar

    [14]

    Heaney K D, Campbell R L 2016 J. Acoust. Soc. Am. 139 918Google Scholar

    [15]

    Georges A D, Kevin B S, Mohsen B et al. 2019 J. Acoust. Soc. Am. 146 1875Google Scholar

    [16]

    Eckart C, Carhart R R 1950 Fluctuation of Sound in the Sea (Committee on Undersea Warfare: National Research Council) pp63–122

    [17]

    Colosi J A 2016 Sound Propagation Through the Stochastic Ocean (New York: Cambridge University Press) pp7–17

    [18]

    Dyson F 1976 J. Acoust. Soc. Am. 59 1121Google Scholar

    [19]

    张青青, 李整林, 秦继兴 2020 应用声学 39 821Google Scholar

    Zhang Q Q, Li Z L, Qin J X 2020 Applied Acoust. 39 821Google Scholar

    [20]

    季桂花, 何利, 张振洲, 甘维明 2021 声学学报 46 1132

    Ji G H, He L, Zhang Z Z, Gan W M 2021 Acta Acust. 46 1132

    [21]

    刘清宇 2006博士学位论文(哈尔滨: 哈尔滨工程大学)

    Liu Q Y 2006 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese)

    [22]

    Cheng C, Yan F G, Jin T, Zhou Z Q 2020 Applied Acoust. 169 107478Google Scholar

    [23]

    肖瑶 2019 博士学位论文 (北京: 中国科学院声学研究所)

    Xiao Y 2019 Ph. D. Dissertation (Beijing: The Institute of Acoustics of the Chinese Academy of Science) (in Chinese)

    [24]

    胡治国, 李整林, 张仁和, 任云 2016 物理学报 65 014303Google Scholar

    Hu Z G, Li Z L, Zhang R H, Ren Y 2016 Acta Phys. Sin. 65 014303Google Scholar

    [25]

    Victor A A, Alexander A S, Lubov K B et al. 2015 Proc. Mtgs. Acoust. 24 070028

    [26]

    胡治国, 李整林, 张仁和, 任云, 李鋆 2016 声学学报 41 758

    Hu Z G, Li Z L, Zhang R H, Ren Y, Li Y 2016 Acta Acust. 41 758

    [27]

    王梦圆, 李整林, 吴双林, 秦继兴, 余炎欣 2016 声学学报 44 905

    Wang M Y, Li Z L, Wu S L, Qin J X, Yu Y X 2016 Acta Acust. 44 905

    [28]

    李国富, 张爽, 齐占峰, 魏永星, 周莹, 于金花, 常哲, 秦玉峰 2020 海洋技术学报 39 58

    Li G F, Zhang S, Qi Z F et al, Wei Y X, Zhou Y, Yu J H, Chang Z, Qin Y F. 2020 J. Ocean. Tec. 39 58

    [29]

    董凡辰, 李整林, 胡治国, 吴双林 2019 物理学报 68 134305Google Scholar

    Dong F C, Li Z L, Hu Z G, Wu S L 2019 Acta Phys. Sin. 68 134305Google Scholar

    [30]

    吴丽丽, 彭朝晖 2016 中国科学: 物理学 力学 天文学 46 8

    Wu L L, Peng Z H 2016 SCI. China Phys. Mech. 46 8

    [31]

    Collins M D. 1993 J. Acoust. Soc. Am. 93 1736Google Scholar

    [32]

    肖鹏 2017 博士学位论文 (西安: 西北工业大学)

    Xiao P 2017 Ph. D. Dissertation (Xi'an: Northwestern Polytechnical University) (in Chinese)

    [33]

    朴胜春, 栗子洋, 王笑寒, 张明辉 2021 物理学报 70 024301Google Scholar

    Piao S C, Li Z Y, Wang X H, Zhang M H 2021 Acta Phys. Sin. 70 024301Google Scholar

    [34]

    刘伯胜, 雷家煜 2010 水声学原理(第二版)(哈尔滨: 哈尔滨工程大学出版社)

    Liu B S, Lei J Y 2010 Principles of Underwater Sound (2nd Ed.) (Harbin: Harbin Engineering University Press) (in Chinese)

    [35]

    姜继兰, 刘屹岷, 李建平, 张人禾 2021 地球科学进展 36 579Google Scholar

    Jiang J L, Liu Y M, Li J P, Zhang R H 2021 Advan. Earth Sci. 36 579Google Scholar

    [36]

    Porter M B, Bucher H P 1987 J. Acoust. Soc. Am. 82 1349Google Scholar

  • 图 1  实验设备布放示意图

    Fig. 1.  The configuration of the experiment.

    图 2  拖曳换能器发射信号间隔示意图

    Fig. 2.  The cycle of the source signals from a towed transducer.

    图 3  声传播测线上的海底地形和潜标垂直阵处海水声速剖面

    Fig. 3.  The bathymetry along the propagation track and sound speed profile (SSP) at the VLA.

    图 4  中心频率300 Hz的声传播损失实验结果

    Fig. 4.  Experimental TLs along the sound propagation track at the central frequency of 300 Hz.

    图 5  声源深度120 m时模型计算的传播损失与实验结果比较 (a)接收深度201 m; (b)接收深度1606 m

    Fig. 5.  Comparison of the experimental and the numerical TLs where the source depth is 120 m at the two different receiver depths: (a) 201 m; (b) 1606 m.

    图 6  拖曳声源上温深传感器记录的声源深度及其所在深度海水温度随距离变化

    Fig. 6.  The measured sound depth and temperature by TD on towed transducer along the track during the experiment.

    图 7  声源深度分段变化条件下模型计算的传播损失与实验结果比较 (a)接收深度201 m; (b) 接收深度1606 m

    Fig. 7.  Comparison of the experimental and the numerical TLs where the source depth is segmented at the two different receiver depths: (a) 201 m; (b) 1606 m.

    图 8  实验期间测量的海水声速剖面随距离深度变化 (a) 全海深范围; (b)深度范围50—180 m

    Fig. 8.  The measured sound speed profile along the track during the experiment: (a) For almost total depth; (b) 50–180 m

    图 9  实验期间调查海区测线温度及海面波高数据 (a) 实验海区夏季月平均海表温度数据; (b) 实验海区声传播测线实验当天的平均海表温度数据; (c) XBT实测数据与平均值声速差; (d)实验海区声传播实验当天的海表高度遥感数据

    Fig. 9.  The sea surface temperature (SST) and sea surface wave height during the experiment: (a) Monthly SST data in summer; (b) SST data during the experiment; (c) the difference of sound velocity between XBT measured and average value; (d) sea surface wave height during the experiment from remote sensing in CMEMS database.

    图 10  模型计算的水平变化声速环境下的声传播损失, 中心频率300 Hz

    Fig. 10.  Numerical TLs from RAM-PE model in the range-dependent environment at the central frequency of 300 Hz.

    图 11  水平变化环境下模型计算传播损失与实验结果比较 (a) 接收深度201 m; (b) 接收深度1606 m

    Fig. 11.  Comparison of the experimental and the numerical TLs in segmented source depth and range-dependent environment at the two different receiver depths: (a) 201 m; (b) 1606 m.

    图 12  声源深度201 m时的二维声传播损失 (a) 全海深范围; (b) 深度范围50—200 m

    Fig. 12.  Numerical TLs results from RAM-PE model at the source depth of 201 m: (a) For almost total depth; (b) 50–200 m.

    图 13  声源深度201 m发射声线到达深度接收120 m时的声线角度散点图

    Fig. 13.  The incidence angle scatter plot of sound rays at the 201 m source depth and 120 m receiver depth

    图 14  海水声速剖面对部分出射角度声线轨迹影响比较图 (a)全海深声线图; (b)局部深度放大图

    Fig. 14.  Comparison of the effects in range-dependent and range-independent environment for the rays traces at small grazing angle: (a) For almost total depth; (b) partial enlarged view.

    图 15  声速剖面水平不变和水平变化环境下第3会聚区声线图

    Fig. 15.  Comparison of the range-dependent and range-independent environment for the rays traces in the third convergence zone.

    图 16  声能量分布概率随距离分布图 (a)水平变化声速剖面环境;(b)水平不变声速剖面环境.

    Fig. 16.  The distribution of sound energy in the third convergence zone: (a) The range-dependent environment; (b) the range-independent environment.

    图 17  第3会聚区距离175.88 km处本征声线时间到达结构 (a)水平变化环境; (b)水平不变环境

    Fig. 17.  Comparison of the sound ray arrivals at the range of 175.88 km in the third convergence zone: (a) The range-dependent environment; (b) the range-independent environment.

    表 1  两种环境下不同距离上的到达声线的最大幅度统计表

    Table 1.  Maximum amplitude of sound ray arrivals at different distances in two environments.

    环境距离/km
    171.86172.86173.87174.87175.88176.88177.89178.89179.90180.9181.9
    水平变化环境6.24.711.642.229.336.051.231.327.425.413.6
    水平不变环境9.15.55.68.35.44.619.645.619.228.112.4
    下载: 导出CSV
  • [1]

    Brekhovskikh L M, Lysanov Yu P 2003 Fundamentals of Ocean Acoustics (3rd Ed.) (New York: Springer-Verlag Press) pp135–145

    [2]

    S. M. 弗拉泰 等 著 (高天赋 等 译) 1985 起伏海洋中的声传播 (北京: 海洋出版社) 第115—156页

    Flatté S M et al. (translated by Gao T F et al. ) 1985 Sound propagation in undulating Ocean (Beijing: Ocean Press) pp115–156 (in Chinese)

    [3]

    胡涛, 宋文华 2014 物理 43 667Google Scholar

    Hu T, Song W H 2014 Physics 43 667Google Scholar

    [4]

    Zhou J X, Zhang X Z, Rogers P H. 1991 J. Acoust. Soc. Am. 90 2042Google Scholar

    [5]

    秦继兴, Katsnelson B, 李整林, 张仁和, 骆文于 2016 声学学报 41 145

    Qin J X, Katsnelson B, Li Z L, Zhang R H, Luo W Y 2016 Acta Acust. 41 145

    [6]

    Yang T C 2006 J. Acoust. Soc. Am. 120 2595Google Scholar

    [7]

    季桂花, 李整林, 戴琼兴 2008 声学学报 33 419Google Scholar

    Ji G H, Li Z L, Dai Q X 2008 Acta Acust. 33 419Google Scholar

    [8]

    Xiao Y, Li Z L, Li J, Liu J Q et al. 2019 Chin. Phys. B 28 054301Google Scholar

    [9]

    John A C, Daniel L R 2020 J. Acoust. Soc. Am. 148 2040Google Scholar

    [10]

    Cheng C 2016 Chin. Ocean Acoust. Sym. (Harbin: China)

    [11]

    刘华锋 章向明 唐佑民 陈大可 2014 海洋科学进展 32 405Google Scholar

    Liu H F, Zhang X M, Tang Y M, Chen D K. 2014 Advan. Marine Sci. 32 405Google Scholar

    [12]

    Weinberg N et al. 1977 J. Acoust. Soc. Am. 62 888Google Scholar

    [13]

    Mellberg L E, Robinson A R, Botseas G J et al. 1990 J. Acoust. Soc. Am. 87 1044Google Scholar

    [14]

    Heaney K D, Campbell R L 2016 J. Acoust. Soc. Am. 139 918Google Scholar

    [15]

    Georges A D, Kevin B S, Mohsen B et al. 2019 J. Acoust. Soc. Am. 146 1875Google Scholar

    [16]

    Eckart C, Carhart R R 1950 Fluctuation of Sound in the Sea (Committee on Undersea Warfare: National Research Council) pp63–122

    [17]

    Colosi J A 2016 Sound Propagation Through the Stochastic Ocean (New York: Cambridge University Press) pp7–17

    [18]

    Dyson F 1976 J. Acoust. Soc. Am. 59 1121Google Scholar

    [19]

    张青青, 李整林, 秦继兴 2020 应用声学 39 821Google Scholar

    Zhang Q Q, Li Z L, Qin J X 2020 Applied Acoust. 39 821Google Scholar

    [20]

    季桂花, 何利, 张振洲, 甘维明 2021 声学学报 46 1132

    Ji G H, He L, Zhang Z Z, Gan W M 2021 Acta Acust. 46 1132

    [21]

    刘清宇 2006博士学位论文(哈尔滨: 哈尔滨工程大学)

    Liu Q Y 2006 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese)

    [22]

    Cheng C, Yan F G, Jin T, Zhou Z Q 2020 Applied Acoust. 169 107478Google Scholar

    [23]

    肖瑶 2019 博士学位论文 (北京: 中国科学院声学研究所)

    Xiao Y 2019 Ph. D. Dissertation (Beijing: The Institute of Acoustics of the Chinese Academy of Science) (in Chinese)

    [24]

    胡治国, 李整林, 张仁和, 任云 2016 物理学报 65 014303Google Scholar

    Hu Z G, Li Z L, Zhang R H, Ren Y 2016 Acta Phys. Sin. 65 014303Google Scholar

    [25]

    Victor A A, Alexander A S, Lubov K B et al. 2015 Proc. Mtgs. Acoust. 24 070028

    [26]

    胡治国, 李整林, 张仁和, 任云, 李鋆 2016 声学学报 41 758

    Hu Z G, Li Z L, Zhang R H, Ren Y, Li Y 2016 Acta Acust. 41 758

    [27]

    王梦圆, 李整林, 吴双林, 秦继兴, 余炎欣 2016 声学学报 44 905

    Wang M Y, Li Z L, Wu S L, Qin J X, Yu Y X 2016 Acta Acust. 44 905

    [28]

    李国富, 张爽, 齐占峰, 魏永星, 周莹, 于金花, 常哲, 秦玉峰 2020 海洋技术学报 39 58

    Li G F, Zhang S, Qi Z F et al, Wei Y X, Zhou Y, Yu J H, Chang Z, Qin Y F. 2020 J. Ocean. Tec. 39 58

    [29]

    董凡辰, 李整林, 胡治国, 吴双林 2019 物理学报 68 134305Google Scholar

    Dong F C, Li Z L, Hu Z G, Wu S L 2019 Acta Phys. Sin. 68 134305Google Scholar

    [30]

    吴丽丽, 彭朝晖 2016 中国科学: 物理学 力学 天文学 46 8

    Wu L L, Peng Z H 2016 SCI. China Phys. Mech. 46 8

    [31]

    Collins M D. 1993 J. Acoust. Soc. Am. 93 1736Google Scholar

    [32]

    肖鹏 2017 博士学位论文 (西安: 西北工业大学)

    Xiao P 2017 Ph. D. Dissertation (Xi'an: Northwestern Polytechnical University) (in Chinese)

    [33]

    朴胜春, 栗子洋, 王笑寒, 张明辉 2021 物理学报 70 024301Google Scholar

    Piao S C, Li Z Y, Wang X H, Zhang M H 2021 Acta Phys. Sin. 70 024301Google Scholar

    [34]

    刘伯胜, 雷家煜 2010 水声学原理(第二版)(哈尔滨: 哈尔滨工程大学出版社)

    Liu B S, Lei J Y 2010 Principles of Underwater Sound (2nd Ed.) (Harbin: Harbin Engineering University Press) (in Chinese)

    [35]

    姜继兰, 刘屹岷, 李建平, 张人禾 2021 地球科学进展 36 579Google Scholar

    Jiang J L, Liu Y M, Li J P, Zhang R H 2021 Advan. Earth Sci. 36 579Google Scholar

    [36]

    Porter M B, Bucher H P 1987 J. Acoust. Soc. Am. 82 1349Google Scholar

  • [1] 马树青, 郭肖晋, 张理论, 蓝强, 黄创霞. 水声射线传播的黎曼几何建模·应用 —深海远程声传播会聚区黎曼几何模型. 物理学报, 2023, 72(4): 044301. doi: 10.7498/aps.72.20221495
    [2] 柳云峰, 李整林, 秦继兴, 吴双林, 王梦圆, 周江涛. 东印度洋海域风和降雨对环境噪声的影响. 物理学报, 2022, 71(20): 204303. doi: 10.7498/aps.71.20220615
    [3] 高飞, 徐芳华, 李整林, 秦继兴. 大陆坡内波环境中声传播模态耦合及强度起伏特征. 物理学报, 2022, 71(20): 204301. doi: 10.7498/aps.71.20220634
    [4] 张海刚, 马志康, 龚李佳, 张明辉, 周建波. 声衍射相移对深海会聚区焦散结构的影响. 物理学报, 2022, 71(20): 204302. doi: 10.7498/aps.71.20220763
    [5] 毕思昭, 彭朝晖, 王光旭, 谢志敏, 张灵珊. 西太平洋远距离声传播特性. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120220566
    [6] 毕思昭, 彭朝晖, 王光旭, 谢志敏, 张灵珊. 西太平洋远距离声传播特性. 物理学报, 2022, 71(21): 214302. doi: 10.7498/aps.71.20220566
    [7] 李沁然, 孙超, 谢磊. 浅海内孤立波动态传播过程中声波模态强度起伏规律. 物理学报, 2022, 71(2): 024302. doi: 10.7498/aps.71.20211132
    [8] 程巍, 滕鹏晓, 吕君, 姬培锋, 戴翊靖. 基于大气声传播理论的爆炸声源能量估计. 物理学报, 2021, 70(24): 244203. doi: 10.7498/aps.70.20210562
    [9] 刘代, 李整林, 刘若芸. 浅海周期起伏海底环境下的声传播. 物理学报, 2021, 70(3): 034302. doi: 10.7498/aps.70.20201233
    [10] 毕思昭, 彭朝晖. 地球曲率对远距离声传播的影响. 物理学报, 2021, 70(11): 114303. doi: 10.7498/aps.70.20201858
    [11] 刘今, 彭朝晖, 张灵珊, 刘若芸, 李整林. 浅海涌浪对表面声道声传播的影响. 物理学报, 2021, 70(5): 054302. doi: 10.7498/aps.70.20201549
    [12] 李沁然, 孙超, 谢磊. 浅海内孤立波动态传播过程中声波模态强度起伏规律研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211132
    [13] 姚美娟, 鹿力成, 孙炳文, 郭圣明, 马力. 浅海起伏海面下气泡层对声传播的影响. 物理学报, 2020, 69(2): 024303. doi: 10.7498/aps.69.20191208
    [14] 张鹏, 李整林, 吴立新, 张仁和, 秦继兴. 深海海底反射会聚区声传播特性. 物理学报, 2019, 68(1): 014301. doi: 10.7498/aps.68.20181761
    [15] 乔厚, 何锃, 张恒堃, 彭伟才, 江雯. 二维含多孔介质周期复合结构声传播分析. 物理学报, 2019, 68(12): 128101. doi: 10.7498/aps.68.20190164
    [16] 范雨喆, 陈宝伟, 李海森, 徐超. 丛聚的含气泡水对线性声传播的影响. 物理学报, 2018, 67(17): 174301. doi: 10.7498/aps.67.20180728
    [17] 胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利. 深海海底斜坡环境下的声传播. 物理学报, 2016, 65(1): 014303. doi: 10.7498/aps.65.014303
    [18] 王勇, 林书玉, 张小丽. 含气泡液体中的非线性声传播. 物理学报, 2014, 63(3): 034301. doi: 10.7498/aps.63.034301
    [19] 李佳, 杨坤德, 雷波, 何正耀. 印度洋中北部声速剖面结构的时空变化及其物理机理研究. 物理学报, 2012, 61(8): 084301. doi: 10.7498/aps.61.084301
    [20] 张民, 吴振森, 张延冬, 杨廷高. 脉冲波在强起伏湍流介质中的传播特征分析. 物理学报, 2001, 50(6): 1052-1057. doi: 10.7498/aps.50.1052
计量
  • 文章访问数:  3905
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-21
  • 修回日期:  2022-03-08
  • 上网日期:  2022-06-29
  • 刊出日期:  2022-07-05

/

返回文章
返回