搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深海海底斜坡环境下的声传播

胡治国 李整林 张仁和 任云 秦继兴 何利

引用本文:
Citation:

深海海底斜坡环境下的声传播

胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利

Sound propagation in deep water with a sloping bottom

Hu Zhi-Guo, Li Zheng-Lin, Zhang Ren-He, Ren Yun, Qin Ji-Xing, He Li
PDF
导出引用
  • 海底地形变化对声传播具有很大影响, 在南海深海区域海底斜坡环境下进行了一次声传播实验, 实验显示倾斜海底环境下声传播损失出现了一些不同于平坦海底环境下的现象, 分析并解释了海底地形变化对产生声传播差异的原因. 结果表明, 海底斜坡对声波的反射增强作用可使斜坡上方的声传播损失减少约5 dB. 当声波第一次入射到达的海底位置有较小幅度的山丘(凸起高度小于1/10海深)时, 海底小山丘即可对声波有反射遮挡作用, 导致在其反射区特定传播距离和深度上出现倒三角声影区, 比平坦海底环境下相同影区位置处的传播损失增大约8 dB, 影响深度可达海面以下1500 m. 而海底斜坡对声波的反射阻挡作用使得从海面反射及水体向下折射的会聚区结构消失, 只剩下从水体向上折射的会聚结构. 因此, 海底地形对深海声传播影响较大, 在水下目标探测和性能评估等应用中应予以重视.
    Variation of bathymetry has a large effect on the sound propagation in deep water. An acoustic propagation experiment is carried out in the South China Sea. Some different propagation phenomena are observed for two different tracks in the flat bottom and the sloping bottom environments. Numerical analysis based on the parabolic equation model RAM (range-dependent acoustic model) is performed to explain the causes of the differences. The experimental and numerical results show that the transmission losses (TLs) decrease down to about 5 dB above the slope due to the reflection of the bottom, with a high-intensity region appearing below the sea surface. When a sea hill with a height of 320 m, which is less than 1/10 of water depth, exists in the incident range of sound beams on bottom first time, the sound beams are blocked due to the reflection of the sea hill. Then their propagating directions are changed, which makes an inverted-triangle shadow zone appearing in the reflection area of the sea hill. Compared with the TL results in the flat bottom environment, TLs increase up to about 8 dB in the corresponding area of the first shadow zone, and the abnormal TL effects can reach a maximal depth of 1500 m. Consequently, the shadow amplification effect caused by a small variation of bathymetry in deep water for long-range/large-depth sound propagation should receive enough attention. Furthermore, the convergence-zone structure in the sloping environment is different from that in deep water with flat bottom. The first convergence zone caused by refractions from the water above the axis of sound channel disappears. There are only the sound beams refracted back from water below the axis of sound channel. The numerical simulations show that the reflection-blockage of sound beams caused by the sloping bottom is significant. When the source is located somewhere above the slope, sound beams with large grazing angles can be reflected by the sloping bottom, and only some sound beams with small grazing angles can be refracted in the water without touching the slope and then come into the depth range of the vertical line array (VLA), forming the first part of the convergence zone refracted back from water. As the source moves farther from the VLA, the reflection-blockage of the sloping bottom becomes stronger. Sound beams are all reflected by the slope at a depth of about 3000 m, and they go through below the VLA, which leads to the absence of the first convergence zone caused by refractions from the water above the axis of sound channel. Therefore, the accuracy of bathymetry is meaningful for the sound propagation and target detection in deep water.
      通信作者: 李整林, lzhl@mail.ioa.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11434012, 41561144006, 11174312, 11404366)资助的课题.
      Corresponding author: Li Zheng-Lin, lzhl@mail.ioa.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11434012, 41561144006, 11174312, 11404366).
    [1]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (New York: Springer) p33

    [2]

    Collis J M, Siegmann W L, Jensen F B Zampolli M, Ksel E T, Collins M D 2008 J. Acoust. Soc. Am. 123 51

    [3]

    Evans R B 1983 J. Acoust. Soc. Am. 74 188

    [4]

    Zhang R H, Liu H, He Y, Akulichev V A 1994 Acta Acust. 19 408 (in Chinese) [张仁和, 刘红, 何怡, Akulichev V A 1994 声学学报 19 408]

    [5]

    Zhang R H, He Y, Liu H, Akulichev V A 1995 J. Sound Vib. 184 439

    [6]

    Li Q Q, Li Z L, Zhang R H 2011 Chin. Phys. Lett. 28 034303

    [7]

    Porter M B, Bucker H P 1987 J. Acoust. Soc. Am. 82 1349

    [8]

    Li Z L, Zhang R H, Yan J, Peng Z H, Li F H 2003 Acta Acust. 28 425 (in Chinese) [李整林, 张仁和, 鄢锦, 彭朝晖, 李风华 2003 声学学报 28 425]

    [9]

    Peng Z H, Zhang R H 2005 Acta Acust. 30 97 (in Chinese) [彭朝晖, 张仁和 2005 声学学报 30 97]

    [10]

    Zhang Z M, Li Z L, Dai Q X Tech. Acoust. 26 998 (in Chinese) [张镇迈, 李整林, 戴琼兴 2007 声学技术 26 998]

    [11]

    Qin J X, Zhang R H, Luo W Y, Wu L X, Jiang L, Zhang B 2014 Acta Acust. 39 145 (in Chinese) [秦继兴, 张仁和, 骆文于, 吴立新, 江磊, 张波 2014 声学学报 39 145]

    [12]

    Northrop J, Lougbrid M S, Werner E W 1968 J. Geophys. Res. 73 3905

    [13]

    Dosso S E, Chapman N R 1987 J. Acoust. Soc. Am. 81 258

    [14]

    Tappert F D, Spiesberger J L, Wolfson M A 2002 J. Acoust. Soc. Am. 111 757

    [15]

    Duda T F, Lin Y T, Newhall A E, Zhang W G, Lynch J F 2010 OCEANS 2010, MTS/IEEE SeattleA Global Responsibility: the Global Ocean is an Uncommon Resource Demanding Common Responsibility Seattle, USA, September 20-23, 2010 p1

    [16]

    Qin J X, Zhang R H, Luo W Y, Peng Z H, Liu J H, Wang D J 2014 Sci. China: Phys. Mech. Astron. 57 1031

    [17]

    Northrop J 1970 J. Acoust. Soc. Am. 48 417

    [18]

    Nutile D A, Guthrie A N 1979 J. Acoust. Soc. Am. 66 1813

    [19]

    Chapman N R, Ebbeson G R 1983 J. Acoust. Soc. Am. 73 1979

    [20]

    Kim H J 2009 Ph. D. Dissertation (Boston: Massachusetts Institute of Technology)

    [21]

    Li W, Li Z L, Zhang R H, Qin J X, Li J, Nan M X 2015 Chin. Phys. Lett. 32 064302

    [22]

    Collins M D, Westwood E K 1991 J. Acoust. Soc. Am. 89 1068

    [23]

    Collins M D 1993 J. Acoust. Soc. Am. 93 1736

    [24]

    Li Z L, Li F H 2010 Chin. J. Oceanol. Limnol. 28 990

  • [1]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (New York: Springer) p33

    [2]

    Collis J M, Siegmann W L, Jensen F B Zampolli M, Ksel E T, Collins M D 2008 J. Acoust. Soc. Am. 123 51

    [3]

    Evans R B 1983 J. Acoust. Soc. Am. 74 188

    [4]

    Zhang R H, Liu H, He Y, Akulichev V A 1994 Acta Acust. 19 408 (in Chinese) [张仁和, 刘红, 何怡, Akulichev V A 1994 声学学报 19 408]

    [5]

    Zhang R H, He Y, Liu H, Akulichev V A 1995 J. Sound Vib. 184 439

    [6]

    Li Q Q, Li Z L, Zhang R H 2011 Chin. Phys. Lett. 28 034303

    [7]

    Porter M B, Bucker H P 1987 J. Acoust. Soc. Am. 82 1349

    [8]

    Li Z L, Zhang R H, Yan J, Peng Z H, Li F H 2003 Acta Acust. 28 425 (in Chinese) [李整林, 张仁和, 鄢锦, 彭朝晖, 李风华 2003 声学学报 28 425]

    [9]

    Peng Z H, Zhang R H 2005 Acta Acust. 30 97 (in Chinese) [彭朝晖, 张仁和 2005 声学学报 30 97]

    [10]

    Zhang Z M, Li Z L, Dai Q X Tech. Acoust. 26 998 (in Chinese) [张镇迈, 李整林, 戴琼兴 2007 声学技术 26 998]

    [11]

    Qin J X, Zhang R H, Luo W Y, Wu L X, Jiang L, Zhang B 2014 Acta Acust. 39 145 (in Chinese) [秦继兴, 张仁和, 骆文于, 吴立新, 江磊, 张波 2014 声学学报 39 145]

    [12]

    Northrop J, Lougbrid M S, Werner E W 1968 J. Geophys. Res. 73 3905

    [13]

    Dosso S E, Chapman N R 1987 J. Acoust. Soc. Am. 81 258

    [14]

    Tappert F D, Spiesberger J L, Wolfson M A 2002 J. Acoust. Soc. Am. 111 757

    [15]

    Duda T F, Lin Y T, Newhall A E, Zhang W G, Lynch J F 2010 OCEANS 2010, MTS/IEEE SeattleA Global Responsibility: the Global Ocean is an Uncommon Resource Demanding Common Responsibility Seattle, USA, September 20-23, 2010 p1

    [16]

    Qin J X, Zhang R H, Luo W Y, Peng Z H, Liu J H, Wang D J 2014 Sci. China: Phys. Mech. Astron. 57 1031

    [17]

    Northrop J 1970 J. Acoust. Soc. Am. 48 417

    [18]

    Nutile D A, Guthrie A N 1979 J. Acoust. Soc. Am. 66 1813

    [19]

    Chapman N R, Ebbeson G R 1983 J. Acoust. Soc. Am. 73 1979

    [20]

    Kim H J 2009 Ph. D. Dissertation (Boston: Massachusetts Institute of Technology)

    [21]

    Li W, Li Z L, Zhang R H, Qin J X, Li J, Nan M X 2015 Chin. Phys. Lett. 32 064302

    [22]

    Collins M D, Westwood E K 1991 J. Acoust. Soc. Am. 89 1068

    [23]

    Collins M D 1993 J. Acoust. Soc. Am. 93 1736

    [24]

    Li Z L, Li F H 2010 Chin. J. Oceanol. Limnol. 28 990

  • [1] 马树青, 郭肖晋, 张理论, 蓝强, 黄创霞. 水声射线传播的黎曼几何建模·应用 —深海远程声传播会聚区黎曼几何模型. 物理学报, 2023, 72(4): 044301. doi: 10.7498/aps.72.20221495
    [2] 黎章龙, 胡长青, 赵梅, 秦继兴, 李整林, 杨雪峰. 基于大掠射角海底反射特性的深海地声参数反演. 物理学报, 2022, 71(11): 114302. doi: 10.7498/aps.71.20211915
    [3] 李沁然, 孙超, 谢磊. 浅海内孤立波动态传播过程中声波模态强度起伏规律. 物理学报, 2022, 71(2): 024302. doi: 10.7498/aps.71.20211132
    [4] 吴双林, 李整林, 秦继兴, 王梦圆, 董凡辰. 东印度洋热带偶极子对声会聚区影响分析. 物理学报, 2022, 71(13): 134301. doi: 10.7498/aps.71.20212355
    [5] 张海刚, 马志康, 龚李佳, 张明辉, 周建波. 声衍射相移对深海会聚区焦散结构的影响. 物理学报, 2022, 71(20): 204302. doi: 10.7498/aps.71.20220763
    [6] 刘代, 李整林, 刘若芸. 浅海周期起伏海底环境下的声传播. 物理学报, 2021, 70(3): 034302. doi: 10.7498/aps.70.20201233
    [7] 朴胜春, 栗子洋, 王笑寒, 张明辉. 深海不完整声道下反转点会聚区研究. 物理学报, 2021, 70(2): 024301. doi: 10.7498/aps.70.20201375
    [8] 李沁然, 孙超, 谢磊. 浅海内孤立波动态传播过程中声波模态强度起伏规律研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211132
    [9] 刘今, 彭朝晖, 张灵珊, 刘若芸, 李整林. 浅海涌浪对表面声道声传播的影响. 物理学报, 2021, 70(5): 054302. doi: 10.7498/aps.70.20201549
    [10] 毕思昭, 彭朝晖. 地球曲率对远距离声传播的影响. 物理学报, 2021, 70(11): 114303. doi: 10.7498/aps.70.20201858
    [11] 韩志斌, 彭朝晖, 刘雄厚. 深海海底反射区声场角谱域分布结构分析及在声纳波束俯仰上的应用研究. 物理学报, 2020, (): 004300. doi: 10.7498/aps.69.20191652
    [12] 韩志斌, 彭朝晖, 刘雄厚. 深海海底反射区声场角谱域分布结构分析及在声纳波束俯仰上的应用. 物理学报, 2020, 69(11): 114301. doi: 10.7498/aps.69.20201652
    [13] 姚美娟, 鹿力成, 孙炳文, 郭圣明, 马力. 浅海起伏海面下气泡层对声传播的影响. 物理学报, 2020, 69(2): 024303. doi: 10.7498/aps.69.20191208
    [14] 乔厚, 何锃, 张恒堃, 彭伟才, 江雯. 二维含多孔介质周期复合结构声传播分析. 物理学报, 2019, 68(12): 128101. doi: 10.7498/aps.68.20190164
    [15] 王龙昊, 秦继兴, 傅德龙, 李整林, 刘建军, 翁晋宝. 深海大接收深度海底混响研究. 物理学报, 2019, 68(13): 134303. doi: 10.7498/aps.68.20181883
    [16] 张鹏, 李整林, 吴立新, 张仁和, 秦继兴. 深海海底反射会聚区声传播特性. 物理学报, 2019, 68(1): 014301. doi: 10.7498/aps.68.20181761
    [17] 范雨喆, 陈宝伟, 李海森, 徐超. 丛聚的含气泡水对线性声传播的影响. 物理学报, 2018, 67(17): 174301. doi: 10.7498/aps.67.20180728
    [18] 李晟昊, 李整林, 李文, 秦继兴. 深海海底山环境下声传播水平折射效应研究. 物理学报, 2018, 67(22): 224302. doi: 10.7498/aps.67.20181480
    [19] 孙梅, 周士弘, 李整林. 基于矢量水听器的深海直达波区域声传播特性及其应用. 物理学报, 2016, 65(9): 094302. doi: 10.7498/aps.65.094302
    [20] 王勇, 林书玉, 张小丽. 含气泡液体中的非线性声传播. 物理学报, 2014, 63(3): 034301. doi: 10.7498/aps.63.034301
计量
  • 文章访问数:  8086
  • PDF下载量:  381
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-09
  • 修回日期:  2015-08-18
  • 刊出日期:  2016-01-05

/

返回文章
返回