搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

声衍射相移对深海会聚区焦散结构的影响

张海刚 马志康 龚李佳 张明辉 周建波

引用本文:
Citation:

声衍射相移对深海会聚区焦散结构的影响

张海刚, 马志康, 龚李佳, 张明辉, 周建波

Effect of acoustic diffraction phase shift on caustic structure in deep sea convergence zone

Zhang Hai-Gang, Ma Zhi-Kang, Gong Li-Jia, Zhang Ming-Hui, Zhou Jian-Bo
PDF
HTML
导出引用
  • 本文从射线-简正波理论出发, 推导了计及衍射相移时声线跨距、传播时延与群速度的表达式, 在此基础上给出了一种包含衍射相移影响的深海会聚区焦散结构计算模型. 对典型深海声道中第一个上会聚区的仿真研究表明: 高频条件下纯折射(refracted-refracted, RR)型会聚区有3条焦散线, 海面反射(refracted surface-reflected, RSR)型会聚区有4条焦散线. 通过与高频结果对比, 低频条件下计及衍射相移后发现, 界面反射相移引起的水平位移使RR型焦散线向靠近声源的方向水平偏移, 使RSR型声线额外多产生数条焦散线, 而声波以非均匀波形式传播时产生的位移使RR型焦散线向远离声源的方向水平偏移. 频率升高后, 声衍射效应减小, 焦散结构趋于经典射线理论的计算结果. 本文给出的模型物理意义清晰, 计算简便准确, 弥补了经典射线理论在低频条件下适用性不强的缺陷.
    The constant phase shift $- {{\text{π}}}/{2}$ generated by a turning point is an ideal approximation under high frequency conditions. In fact, when sound waves pass through a turning point, it will travel horizontally for a certain distance in the form of inhomogeneous plane wave and then be refracted back. At this time, a functional phase shift should also be included at the turning point. In addition, a refracted ray will bring about reflection phase shift when the turning point is close to the waveguide edge. These two kinds of phase shifts which are associated with the diffraction phenomenon are called diffraction phase shifts in this paper and are more notable when the frequency goes down. In order to accurately obtain the caustic structure at low frequency, the diffraction phase shift is used to correct the classical ray theory in calculating ray skip distance, traveling time, and group velocity in this work. On this basis, a simple and explicit analytical model is proposed which is suitable for calculating the low frequency deep water caustics. The numerical study of the first upper convergence zone in the complete deep water sound channel shows that there are three caustic lines in the refracted-refracted (RR) convergence zone and four caustic lines in the refracted surface-reflected (RSR) convergence zone under the condition of high frequency hypothesis. When the diffraction phase shifts at low frequency are included, and compares with high frequency results, it is found that the horizontal beam displacement caused by the reflection phase shift will make the RR caustics horizontally move towards the source and also lead the RSR rays to generate several new caustics, while the beam displacement caused by sound propagating in the form of inhomogeneous plan wave will make the RR caustics horizontally move away from the sound source. Accompanied with the increased frequency, the diffraction effect will decrease, and the caustic structure gradually tends to the classical ray theory results. The reliability of the correction results is verified by the normal mode theory. The model proposed in this work makes up for the deficiency of classical ray theory.
      通信作者: 龚李佳, lijia.gong@hrbeu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12174078, 11974286)和哈尔滨工程大学博士研究生科研创新基金(批准号: XK2050021016)资助的课题
      Corresponding author: Gong Li-Jia, lijia.gong@hrbeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174078, 11974286) and the Doctoral Research and Innovation Foundation of Harbin Engineering University, China (Grant No. XK2050021016).
    [1]

    Munk W H 1974 J. Acoust. Soc. Am. 55 220Google Scholar

    [2]

    Hale F E 1961 J. Acoust. Soc. Am. 33 456Google Scholar

    [3]

    Brekhovskih L M 1980 Waves in Layered Media (2nd Ed.) (New York: Academic Press) p377

    [4]

    Urick R J 1965 J. Acoust. Soc. Am. 38 348Google Scholar

    [5]

    张仁和 1980 声学学报 1 28Google Scholar

    Zhang R H 1980 Acta Acust. 1 28Google Scholar

    [6]

    张仁和 1982 声学学报 7 75Google Scholar

    Zhang R H 1982 Acta Acust. 7 75Google Scholar

    [7]

    张仁和 1988 声学学报 13 101Google Scholar

    Zhang R H 1988 Acta Acust. 13 101Google Scholar

    [8]

    Bongiovanni K P, Siegmann W L 1996 J. Acoust. Soc. Am. 100 3033Google Scholar

    [9]

    徐传秀 2017 博士学位论文 (哈尔滨: 哈尔滨工程大学)

    Xu C X 2017 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese)

    [10]

    朴胜春, 栗子洋, 王笑寒, 张明辉 2021 物理学报 70 024301Google Scholar

    Piao S C, Li Z Y, Wang X H, Zhang M H 2021 Acta Phys. Sin. 70 024301Google Scholar

    [11]

    张青青, 李整林, 秦继兴, 李文, 吴双林 2020 声学学报 45 458Google Scholar

    Zhang Q Q, Li Z L, Qin J X, Li W, Wu S L 2020 Acta Acust. 45 458Google Scholar

    [12]

    张鹏, 李整林, 吴立新, 张仁和, 秦继兴 2019 物理学报 68 014301Google Scholar

    Zhang P, Li Z L, Wu L X, Zhang R H, Qin J X 2019 Acta Phys. Sin. 68 014301Google Scholar

    [13]

    杨帆, 王华, 高文典, 孟小嵩, 刘云龙 2021 海洋预报 38 103Google Scholar

    Yang F, Wang H, Gao W D, Meng X S, Liu Y L 2021 Marine Forecasts. 38 103Google Scholar

    [14]

    Henrick R F, Burkom H S 1983 J. Acoust. Soc. Am. 73 173Google Scholar

    [15]

    Lawrence M W 1983 J. Acoust. Soc. Am. 73 474Google Scholar

    [16]

    Baer R N 1981 J. Acoust. Soc. Am. 69 70Google Scholar

    [17]

    毕思昭, 彭朝晖 2021 物理学报 70 114303Google Scholar

    Bi S Z, Peng Z H 2021 Acta Phys. Sin. 70 114303Google Scholar

    [18]

    Guthrie A N, Fitzgerald R M, Nutile D A, Shaffer J D 1974 J. Acoust. Soc. Am. 56 58Google Scholar

    [19]

    张海刚, 马志康, 付金山, 朴胜春 2021 声学学报 46 1093Google Scholar

    Zhang H G, Ma Z K, Fu J S, Piao S C 2021 Acta Acust. 46 1093Google Scholar

    [20]

    Davis J A 1975 J. Acoust. Soc. Am. 57 276Google Scholar

    [21]

    Tindle C T, Guthrie K M 1974 J. Sound Vibration. 34 291Google Scholar

    [22]

    Guthrie K M 1974 J. Sound Vibration. 32 289Google Scholar

    [23]

    Gordon D F 1980 J. Acoust. Soc. Am. 67 106Google Scholar

    [24]

    Tindle C T, Weston D E 1980 J. Acoust. Soc. Am. 67 1614Google Scholar

    [25]

    Tindle C T, Bold G E J 1981 J. Acoust. Soc. Am. 70 813Google Scholar

    [26]

    张仁和, 李风华 1999 中国科学 A辑 29 241

    Zhang R H, Li F H 1999 Sci. China A 29 241 (in Chinese)

    [27]

    Murphy E L, Davis J A 1974 J. Acoust. Soc. Am. 56 1747Google Scholar

    [28]

    Davis J A 1974 Modified Ray Theory for Discontinuous Media (Massachusetts: Woods Hole Institution) p18

    [29]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (NewYork: Springer-Verlag) pp86, 219, 340

    [30]

    张揽月, 张明辉 2016 振动与声基础 (哈尔滨: 哈尔滨工程大学出版社) 第95页

    Zhang L Y, Zhang M H 2016 Foundation of Vibration and Sound (Harbin: Harbin Engineering University Press) p95 (in Chinese)

    [31]

    Chapman D M F, Ellis D D 1983 J. Acoust. Soc. Am. 74 973Google Scholar

    [32]

    Ferla M C, Jensen F B, Kuperman W A 1982 J. Acoust. Soc. Am. 72 505Google Scholar

    [33]

    Tindle C T 2002 J. Acoust. Soc. Am. 112 464Google Scholar

    [34]

    White D W, Pedersen M A 1981 J. Acoust. Soc. Am. 69 1029Google Scholar

    [35]

    Grigorieva N S, Fridman G M, Mercer J A, et al. 2009 J. Acoust. Soc. Am. 125 1919Google Scholar

  • 图 1  Munk声速剖面

    Fig. 1.  Munk sound speed profile.

    图 2  不同频率下的本征函数与声线轨迹示意图 (a) 30 Hz时的RR型模态; (b) 100 Hz时的RR型模态; (c) 与本征函数对应的声线轨迹

    Fig. 2.  Eigenfunctions at different frequencies and schematic diagram of a sound ray trace: (a) RR mode at 30 Hz; (b) RR mode at 100 Hz; (c) a ray corresponding to the eigenfunction.

    图 3  不同频率下经典射线理论与简正波理论的计算结果以及经典射线理论的计算误差 (a) 声线跨距; (b) 距离误差; (c) 传播时延; (d) 传播时延误差; (e) 群速度; (f) 群速度误差

    Fig. 3.  Calculation results of classical ray theory and normal mode theory at different frequencies and the calculation errors of classical ray theory: (a) Ray skip distance; (b) distance error; (c) traveling time; (d) traveling time error; (e) group velocity; (f) group velocity error.

    图 4  不同频率下声衍射对距离与时延的贡献 (a)${\phi _a}$${\phi _b}$对传播距离的贡献; (b)${\phi _a}$${\phi _b}$对传播时延的贡献; (c)${\phi _{{\text{pr}}}}$${\phi _{{\text{bot}}}}$对传播距离的贡献; (d)${\phi _{{\text{pr}}}}$${\phi _{{\text{bot}}}}$对传播时延的贡献; (e) $\Delta r$; (f) $\Delta t$

    Fig. 4.  Contribution of sound diffraction to propagation distance and traveling time at different frequencies: (a) Contribution of ${\phi _a}$ and ${\phi _b}$ to propagation distance; (b) contribution of ${\phi _a}$ and ${\phi _b}$to traveling time; (c) contribution of ${\phi _{{\text{pr}}}}$ and ${\phi _{{\text{bot}}}}$ to propagation distance; (d) contribution of ${\phi _{{\text{pr}}}}$ and ${\phi _{{\text{bot}}}}$ to traveling time; (e) $\Delta r$; (f) $\Delta t$.

    图 5  不同频率下利用衍射相移对声场参数的修正结果 (a) 30 Hz时的声线跨距; (b) 100 Hz时的声线跨距; (c) 30 Hz时的传播时延; (d) 100 Hz时的传播时延; (e) 30 Hz时的群速度; (f) 100 Hz时的群速度

    Fig. 5.  Correction results of sound field parameters by diffraction phase shift at different frequencies: (a) Ray skip distance at 30 Hz; (b) ray skip distance at 100 Hz; (c) traveling time at 30 Hz; (d) traveling time at 100 Hz; (e) group velocity at 30 Hz; (f) group velocity at 100 Hz.

    图 6  声源深度500 m, 接收深度1000 m时的四类折射声线示意图 (a) r1; (b) r2; (c) r3; (d) r4

    Fig. 6.  Schematic diagram of four types of refracted rays where source depth is 500 m and receiver depth is 1000 m: (a) r1; (b) r2; (c) r3; (d) r4.

    图 7  声源深度500 m, 接收深度800 m时不同频率下RR型声线在不同出射掠射角下的水平距离 (a) r1; (b) r2; (c) r3; (d) r4

    Fig. 7.  The horizontal distance of RR rays under different initial grazing angles at different frequencies when sound source depth is 500 m and the receiver depth is 800 m: (a) r1; (b) r2; (c) r3; (d) r4

    图 8  声源深度500 m (a)不同频率下RR型会聚区的焦散线; (b) 3 kHz时的传播损失; (c) 100 Hz时的传播损失; (d) 30 Hz时的传播损失

    Fig. 8.  Source depth is 500 m: (a) RR caustics at different frequencies; (b) transmission loss at 3 kHz; (c) transmission loss at 100 Hz; (d) transmission loss at 30 Hz.

    图 9  声源深度500 m时不同频率下RR型会聚区的传播损失 (a) 接收深度100 m; (b)接收深度800 m

    Fig. 9.  Transmission loss curves of RR convergence zones at different frequencies when source depth is 500 m: (a) Receiver depth is 100 m; (b) receiver depth is 800 m.

    图 10  声源深度500 m, 接收深度800 m时不同频率下RSR型声线在不同出射掠射角下的水平距离 (a) r1; (b) r2; (c) r3; (d) r4

    Fig. 10.  The horizontal distance of RSR rays under different initial grazing angles at different frequencies when sound source depth is 500 m and the receiver depth is 800 m: (a) r1; (b) r2; (c) r3; (d) r4.

    图 11  声源深度500 m (a)不同频率下RSR型会聚区的焦散线; (b) 3 kHz时的传播损失; (c) 100 Hz时的传播损失; (d) 30 Hz时的传播损失

    Fig. 11.  At the source depth of 500 m: (a) RSR caustics at different frequencies; (b) transmission loss at 3 kHz; (c) transmission loss at 100 Hz; (d) transmission loss at 30 Hz.

    图 12  声源深度500 m, 接收深度800 m时不同频率下RSR型会聚区的传播损失

    Fig. 12.  Transmission loss curves of RSR convergence zones at different frequencies when source depth is 500 m and receiver depth is 800 m.

    表 1  不同频率下, 不同相速度区间内${r_a}$, ${r_b}$, ${r_{{\text{pr}}}}$, ${r_{{\text{bot}}}}$$\Delta r$的取值符号

    Table 1.  Values of ${r_a}$, ${r_b}$, ${r_{{\text{pr}}}}$, ${r_{{\text{bot}}}}$ and $\Delta r$ in different phase velocity range at different frequencies.

    相速度区间/(m·s–1)${r_a}$${r_b}$${r_{{\text{pr}}}}$${r_{{\text{bot}}}}$$\Delta r$
    30 Hz100 Hz
    1500—15191500—1530> 0> 000< 0
    1519—15271530—1533> 0> 0> 00< 0
    1527.0—1538.61533.0—1538.6> 0> 0> 00> 0
    1538.6—1544.01538.6—1543.00> 0> 00> 0
    1543—15500> 0> 00< 0
    1550—15510> 0> 0> 0< 0
    1544.0—1553.61551.0—1553.60> 0> 0> 0> 0
    1553.6—1556.01553.6—1555.000> 0> 0> 0
    1556—15681555—155600> 00> 0
    1568—17001556—170000000
    下载: 导出CSV
  • [1]

    Munk W H 1974 J. Acoust. Soc. Am. 55 220Google Scholar

    [2]

    Hale F E 1961 J. Acoust. Soc. Am. 33 456Google Scholar

    [3]

    Brekhovskih L M 1980 Waves in Layered Media (2nd Ed.) (New York: Academic Press) p377

    [4]

    Urick R J 1965 J. Acoust. Soc. Am. 38 348Google Scholar

    [5]

    张仁和 1980 声学学报 1 28Google Scholar

    Zhang R H 1980 Acta Acust. 1 28Google Scholar

    [6]

    张仁和 1982 声学学报 7 75Google Scholar

    Zhang R H 1982 Acta Acust. 7 75Google Scholar

    [7]

    张仁和 1988 声学学报 13 101Google Scholar

    Zhang R H 1988 Acta Acust. 13 101Google Scholar

    [8]

    Bongiovanni K P, Siegmann W L 1996 J. Acoust. Soc. Am. 100 3033Google Scholar

    [9]

    徐传秀 2017 博士学位论文 (哈尔滨: 哈尔滨工程大学)

    Xu C X 2017 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese)

    [10]

    朴胜春, 栗子洋, 王笑寒, 张明辉 2021 物理学报 70 024301Google Scholar

    Piao S C, Li Z Y, Wang X H, Zhang M H 2021 Acta Phys. Sin. 70 024301Google Scholar

    [11]

    张青青, 李整林, 秦继兴, 李文, 吴双林 2020 声学学报 45 458Google Scholar

    Zhang Q Q, Li Z L, Qin J X, Li W, Wu S L 2020 Acta Acust. 45 458Google Scholar

    [12]

    张鹏, 李整林, 吴立新, 张仁和, 秦继兴 2019 物理学报 68 014301Google Scholar

    Zhang P, Li Z L, Wu L X, Zhang R H, Qin J X 2019 Acta Phys. Sin. 68 014301Google Scholar

    [13]

    杨帆, 王华, 高文典, 孟小嵩, 刘云龙 2021 海洋预报 38 103Google Scholar

    Yang F, Wang H, Gao W D, Meng X S, Liu Y L 2021 Marine Forecasts. 38 103Google Scholar

    [14]

    Henrick R F, Burkom H S 1983 J. Acoust. Soc. Am. 73 173Google Scholar

    [15]

    Lawrence M W 1983 J. Acoust. Soc. Am. 73 474Google Scholar

    [16]

    Baer R N 1981 J. Acoust. Soc. Am. 69 70Google Scholar

    [17]

    毕思昭, 彭朝晖 2021 物理学报 70 114303Google Scholar

    Bi S Z, Peng Z H 2021 Acta Phys. Sin. 70 114303Google Scholar

    [18]

    Guthrie A N, Fitzgerald R M, Nutile D A, Shaffer J D 1974 J. Acoust. Soc. Am. 56 58Google Scholar

    [19]

    张海刚, 马志康, 付金山, 朴胜春 2021 声学学报 46 1093Google Scholar

    Zhang H G, Ma Z K, Fu J S, Piao S C 2021 Acta Acust. 46 1093Google Scholar

    [20]

    Davis J A 1975 J. Acoust. Soc. Am. 57 276Google Scholar

    [21]

    Tindle C T, Guthrie K M 1974 J. Sound Vibration. 34 291Google Scholar

    [22]

    Guthrie K M 1974 J. Sound Vibration. 32 289Google Scholar

    [23]

    Gordon D F 1980 J. Acoust. Soc. Am. 67 106Google Scholar

    [24]

    Tindle C T, Weston D E 1980 J. Acoust. Soc. Am. 67 1614Google Scholar

    [25]

    Tindle C T, Bold G E J 1981 J. Acoust. Soc. Am. 70 813Google Scholar

    [26]

    张仁和, 李风华 1999 中国科学 A辑 29 241

    Zhang R H, Li F H 1999 Sci. China A 29 241 (in Chinese)

    [27]

    Murphy E L, Davis J A 1974 J. Acoust. Soc. Am. 56 1747Google Scholar

    [28]

    Davis J A 1974 Modified Ray Theory for Discontinuous Media (Massachusetts: Woods Hole Institution) p18

    [29]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (NewYork: Springer-Verlag) pp86, 219, 340

    [30]

    张揽月, 张明辉 2016 振动与声基础 (哈尔滨: 哈尔滨工程大学出版社) 第95页

    Zhang L Y, Zhang M H 2016 Foundation of Vibration and Sound (Harbin: Harbin Engineering University Press) p95 (in Chinese)

    [31]

    Chapman D M F, Ellis D D 1983 J. Acoust. Soc. Am. 74 973Google Scholar

    [32]

    Ferla M C, Jensen F B, Kuperman W A 1982 J. Acoust. Soc. Am. 72 505Google Scholar

    [33]

    Tindle C T 2002 J. Acoust. Soc. Am. 112 464Google Scholar

    [34]

    White D W, Pedersen M A 1981 J. Acoust. Soc. Am. 69 1029Google Scholar

    [35]

    Grigorieva N S, Fridman G M, Mercer J A, et al. 2009 J. Acoust. Soc. Am. 125 1919Google Scholar

  • [1] 郝望, 段睿, 杨坤德. 联合简正波水波和底波频散特性的贝叶斯地声参数反演. 物理学报, 2023, 72(5): 054303. doi: 10.7498/aps.72.20221717
    [2] 马树青, 郭肖晋, 张理论, 蓝强, 黄创霞. 水声射线传播的黎曼几何建模·应用 —深海远程声传播会聚区黎曼几何模型. 物理学报, 2023, 72(4): 044301. doi: 10.7498/aps.72.20221495
    [3] 黎章龙, 胡长青, 赵梅, 秦继兴, 李整林, 杨雪峰. 基于大掠射角海底反射特性的深海地声参数反演. 物理学报, 2022, 71(11): 114302. doi: 10.7498/aps.71.20211915
    [4] 韩志斌, 彭朝晖, 刘雄厚. 深海海底反射区声场角谱域分布结构分析及在声纳波束俯仰上的应用. 物理学报, 2020, 69(11): 114301. doi: 10.7498/aps.69.20201652
    [5] 孟瑞洁, 周士弘, 李风华, 戚聿波. 浅海波导中低频声场干涉简正模态的判别. 物理学报, 2019, 68(13): 134304. doi: 10.7498/aps.68.20190221
    [6] 孔德智, 孙超, 李明杨, 卓颉, 刘雄厚. 深海波导中基于采样简正波模态降维处理的广义似然比检测. 物理学报, 2019, 68(17): 174301. doi: 10.7498/aps.68.20190700
    [7] 张鹏, 李整林, 吴立新, 张仁和, 秦继兴. 深海海底反射会聚区声传播特性. 物理学报, 2019, 68(1): 014301. doi: 10.7498/aps.68.20181761
    [8] 王龙昊, 秦继兴, 傅德龙, 李整林, 刘建军, 翁晋宝. 深海大接收深度海底混响研究. 物理学报, 2019, 68(13): 134303. doi: 10.7498/aps.68.20181883
    [9] 李晟昊, 李整林, 李文, 秦继兴. 深海海底山环境下声传播水平折射效应研究. 物理学报, 2018, 67(22): 224302. doi: 10.7498/aps.67.20181480
    [10] 孙梅, 周士弘. 大深度接收时深海直达波区的复声强及声线到达角估计. 物理学报, 2016, 65(16): 164302. doi: 10.7498/aps.65.164302
    [11] 孙梅, 周士弘, 李整林. 基于矢量水听器的深海直达波区域声传播特性及其应用. 物理学报, 2016, 65(9): 094302. doi: 10.7498/aps.65.094302
    [12] 胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利. 深海海底斜坡环境下的声传播. 物理学报, 2016, 65(1): 014303. doi: 10.7498/aps.65.014303
    [13] 周振凯, 韦利明, 丰杰. ZnO/Diamond/Si结构中声表面波传播特性分析. 物理学报, 2013, 62(10): 104601. doi: 10.7498/aps.62.104601
    [14] 杨春梅, 骆文于, 张仁和, 秦继兴. 一种水平变化可穿透波导中声传播问题的耦合简正波方法. 物理学报, 2013, 62(9): 094302. doi: 10.7498/aps.62.094302
    [15] 王晶, 马瑞玲, 王龙, 孟俊敏. 采用混合模型数值模拟从深海到浅海内波的传播. 物理学报, 2012, 61(6): 064701. doi: 10.7498/aps.61.064701
    [16] 宋诗艳, 王晶, 孟俊敏, 王建步, 扈培信. 深海内波非线性薛定谔方程的研究. 物理学报, 2010, 59(2): 1123-1129. doi: 10.7498/aps.59.1123
    [17] 宋诗艳, 王晶, 王建步, 宋莎莎, 孟俊敏. 应用非线性薛定谔方程模拟深海内波的传播. 物理学报, 2010, 59(9): 6339-6344. doi: 10.7498/aps.59.6339
    [18] 余 赟, 惠俊英, 赵安邦, 孙国仓, 滕 超. Pekeris波导中简正波的复声强及其应用. 物理学报, 2008, 57(9): 5742-5748. doi: 10.7498/aps.57.5742
    [19] 张仁和, 朱柏贤. 指向性辐射器的简正波声场. 物理学报, 1983, 32(4): 490-496. doi: 10.7498/aps.32.490
    [20] 张仁和. 浅海表面声道中的简正波声场. 物理学报, 1975, 24(3): 200-209. doi: 10.7498/aps.24.200
计量
  • 文章访问数:  4144
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-20
  • 修回日期:  2022-06-21
  • 上网日期:  2022-10-05
  • 刊出日期:  2022-10-20

/

返回文章
返回