搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浅海涌浪对表面声道声传播的影响

刘今 彭朝晖 张灵珊 刘若芸 李整林

引用本文:
Citation:

浅海涌浪对表面声道声传播的影响

刘今, 彭朝晖, 张灵珊, 刘若芸, 李整林

Effects of swells on sound propagation in surface duct environment in shallow water

Liu Jin, Peng Zhao-Hui, Zhang Ling-Shan, Liu Ruo-Yun, Li Zheng-Lin
PDF
HTML
导出引用
  • 受海面强风和海-气相互作用影响, 表面声道普遍存在于冬季海洋环境中, 是一种天然有利于声传播的波导. 但是海面波浪使得海表形成粗糙界面, 会严重破坏这种优良性能. 本文利用南海北部海区的一次冬季声传播实验数据, 研究表面声道声传播特性. 研究表明, 海底底质对表面声道内声传播的影响较弱, 当海面风较小时, 涌浪造成的影响为主要原因. 实验数据显示, 考虑涌浪后的粗糙海面给$70\;{\rm{km}}$远处带来了$10\; {\rm{dB}}$的传播损失增长. 因此在考察南海北部海区冬季声场特性时, 不仅要考虑海面风浪的影响, 更需要考虑周围海域传来的涌浪的影响. 研究涌浪存在时的声传播特性对提升声纳设备在海况较差时的使用性能具有重要意义.
    Surface duct is a common duct due to strong sea winds and sea-atmosphere interactions in winter and it is an excellent waveguide in which energy may propagate a long distance. However, the rough interface formed by sea surface waves will seriously damage this excellent performance. In this study, the experimental data of sound propagation over the continental slope in the South China Sea are used to analyze the characteristics of sound propagation in a surface duct. Modeling analyses based on the parabolic equation model RAM and ray trace theory BELLHOP are used to examine these characteristics. The parameters of sea bottom, source depth, wind-driven sea surface, and swell-containing sea surface are taken into consideration in the model. The results show that when the source is located in the surface duct, the parameters of the sea bottom have little influence on sound propagation, while the change of source depth exerts some effects on the sound propagation. By combining the Pierson Moscowitz (PM) spectrum with Monte Carlo method, the rough sea surface is investigated. Since the PM spectrum is related only to wind speed, the wind-driven sea surface is generated by using the actual wind speed measured by the shipborne anemometer. The swell-containing sea surface is defined as a superposition of a sinusoidal pressure-release surface and the wind-driven sea surface. By comparing the effects of two sea surfaces on sound propagation, it is found that when the wind speed is small, swells play an important role in the surface-duct propagation. Experimental data show that for the acoustic signal with a center frequency of $1000\;{\rm{Hz}}$, the swell-containing sea surface brings around $10 \;{\rm{dB}}$ loss to a distance of $70 \;{\rm{km}}$. For the two kinds of rough sea surfaces, rays at launch angles of $\pm 1^{\circ}, 0^{\circ}$ are plotted to examine their effects on sound propagation. The results indicate that the swell-containing sea surface which has greater roughness makes rays go toward the sea bottom, thus resulting in larger loss. Therefore, in order to investigate the characteristics of the sound field in the northern South China Sea in winter, especially with high frequency sound signals, the influences of not only winds and waves, but also the swells from the surrounding sea should be taken into consideration. It is important to study the characteristics of sound propagation with swells for improving the performance of sonar equipment in poor sea conditions.
      通信作者: 彭朝晖, pzh@mail.ioa.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11674349, 11974017, 11874061)资助的课题
      Corresponding author: Peng Zhao-Hui, pzh@mail.ioa.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674349, 11974017, 11874061)
    [1]

    张灵珊 2016 博士学位论文 (北京: 中国科学院大学)

    Zhang L S 2016 Ph. D. Dissertation (Beijing: The University of Chinese Academy of Sciences) (in Chinese)

    [2]

    尹爽 2018 硕士学位论文 (哈尔滨: 哈尔滨工程大学)

    Yin S 2018 M. S. Thesis (Harbin: The Harbin Engineering University) (in Chinese)

    [3]

    李整林 2002 博士学位论文 (北京: 中国科学院研究生院)

    Li Z L 2002 Ph. D. Dissertation (Beijing: Graduate University of Chinese Academy of Sciences) (in Chinese)

    [4]

    王先华, 彭朝晖, 李整林 2007 声学技术 26 551Google Scholar

    Wang X H, Peng Z H, Li Z L 2007 Technical Acoustics 26 551Google Scholar

    [5]

    Thorsos E I, Broschat S L 1995 J. Acoust. Soc. Am. 97 2082Google Scholar

    [6]

    Broschat S L, Thorsos E I 1997 J. Acoust. Soc. Am. 101 2615Google Scholar

    [7]

    Collins M D 1989 J. Acoust. Soc. Am. 86 1097Google Scholar

    [8]

    Collins M D, Coury R A, Siegmann W L 1995 J. Acoust. Soc. Am. 97 2767Google Scholar

    [9]

    Liu R Y, Li Z L 2019 Chin. Phys. B 28 014302Google Scholar

    [10]

    Zou Z G, Badiey M 2018 IEEE J. Oceanic Eng. 43 1187Google Scholar

    [11]

    Weston D E, Ching P A 1989 J. Acoust. Soc. Am. 86 1530Google Scholar

    [12]

    王先华 2007 博士学位论文 (北京: 中国科学院大学)

    Wang X H 2007 Ph. D. Dissertation (Beijing: The University of Chinese Academy of Sciences) (in Chinese)

    [13]

    姚美娟, 鹿力成, 郭圣明, 马力 2019 哈尔滨工程大学学报 40 781Google Scholar

    Yao M J, Lu L C, Guo S M, Ma L 2019 Journal of Harbin Engineering University 40 781Google Scholar

    [14]

    Karjadi E A, Badiey M, Kirby J T, Bayindir C 2012 IEEE J. Oceanic Eng. 37 112Google Scholar

    [15]

    Tindle C T, Deane G B 2005 J. Acoust. Soc. Am. 117 2783Google Scholar

    [16]

    Siderius M, Porter M B 2008 J. Acoust. Soc. Am. 124 137Google Scholar

    [17]

    Badiey M, Mu Y K, Simmen J A, Forsythe S E 2000 IEEE J. Oceanic Eng. 25 492Google Scholar

    [18]

    Dahl P H 1996 J. Acoust. Soc. Am. 100 748Google Scholar

    [19]

    Mackenzie K V 1981 J. Acoust. Soc. Am. 70 807Google Scholar

    [20]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (New York: Springer) pp1−794

    [21]

    段睿 2016 博士学位论文 (西安: 西北工业大学)

    Duan R 2016 Ph. D. Dissertation (Xi’an: Northwestern Polytechnical University) (in Chinese)

    [22]

    刘今, 彭朝晖 2019 中国声学学会水声学分会2019年学术会议论文集 南京 2019 第198页

    Liu J, Peng Z H 2019 Proceedings of the Academic Conference of Underwater Acoustic Branch of Acoustics Society of China in 2019, Underwater Acoustic Branch Nanjing, China, May 25, 2019 p198 (in Chinese)

    [23]

    吴庚坤 2015 博士学位论文 (青岛: 中国海洋大学)

    Wu G K 2015 Ph. D. Dissertation (Qingdao: Ocean University of China) (in Chinese)

    [24]

    欧家明 2011 硕士学位论文 (广州: 广东工业大学)

    Ou J M 2011 M. S. Thesis (Guangzhou: School of information Engineering Guangdong University of Technology) (in Chinese)

    [25]

    林风 2007 硕士学位论文 (西安: 西安电子科技大学)

    Lin F 2007 M. S. Thesis (Xi’an: Xidian University) (in Chinese)

    [26]

    Japan Meteorological Agency, https://www.data.jma.go.jp/gmd/kaiyou/data/db/wave/chart/daily/pdf/pn/17/12/17121100 pn.pdf [2020-7-28]

    [27]

    Japan Meteorological Agency, https://www.data.jma.go.jp/gmd/kaiyou/data/db/wave/chart/daily/pdf/pn/17/12/17121112 pn.pdf [2020-7-28]

    [28]

    Vadov R A 2006 Acoust. Phys. 52 6Google Scholar

    [29]

    廖菲, 邓华, 曾琳, Chan Pak-wai 2018 海洋学报 40 37Google Scholar

    Liao F, Deng H, Zeng L, Chan P W 2018 Haiyang Xuebao 40 37Google Scholar

    [30]

    郭佩芳, 施平, 王华, 王正林 1997 青岛海洋大学学报 27 131Google Scholar

    Guo P F, Shi P, Wang H, Wang Z L 1997 Journal of Ocean University of Qingdao 27 131Google Scholar

    [31]

    李波 2010 博士学位论文 (武汉: 华中科技大学)

    Li B 2010 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [32]

    Richards E L, Song H C, Hodgkiss W S 2018 J. Acoust. Soc. Am. 144 1296Google Scholar

  • 图 1  实验设备布放示意图

    Fig. 1.  The configuration of the experiment.

    图 2  实测海底地形

    Fig. 2.  The measured bathymetry.

    图 3  测线上声速剖面

    Fig. 3.  Measured sound speed profiles along the track.

    图 4  实测的第1个和第11个水听器的深度变化 (a) 第1个水听器; (b) 第11个水听器

    Fig. 4.  Depths of the first and eleventh hydrophone measured in the experiment: (a) The first hydrophone; (b) the eleventh hydrophone.

    图 5  两种海底条件下第1个水听器的传播损失

    Fig. 5.  The transmission loss of the first hydrophone under two kinds of seabed.

    图 6  两种海底条件下的声线 (a)硬海底; (b)软海底

    Fig. 6.  Ray traces under two kinds of seabed: (a) Hard bottom; (b) soft bottom.

    图 7  声源深度ds为两个水听器在深度波动的两个端点时的仿真传播损失与实验结果的比对 (a) 第1个水听器; (b) 第11个水听器

    Fig. 7.  Comparisons of modeled and measured transmission loss of two hydrophones at their respective depth endpoints: (a) The first hydrophone; (b) the eleventh hydrophone.

    图 8  船载风速仪实测的风速

    Fig. 8.  Wind speeds measured by shipboard anemometer.

    图 9  两种粗糙海面 (a) 风浪海面; (b) 涌浪海面

    Fig. 9.  Two rough sea surfaces: (a) wind-driven sea surface; (b) swell sea surface.

    图 10  三种海面条件下的传播损失的仿真结果与实验结果比对

    Fig. 10.  Modal/data comparisons of transmission loss under three sea surfaces.

    图 11  涌浪海面应用于不同频率和不同水听器的传播损失检验 (a) $400\; {\rm{Hz}}$, 第1个水听器; (b) $400\; {\rm{Hz}}$, 第11个水听器; (c) $1000\; {\rm{Hz}}$, 第11个水听器

    Fig. 11.  Examinations of transmission loss of two hydrophones with the swell surface under different frequencies: (a) $400\; {\rm{Hz}}$, the first hydrophone; (b) $400\; {\rm{Hz}}$, the eleventh hydrophone; (c) $1000\; {\rm{Hz}}$, the eleventh hydrophone.

    图 12  不同海面条件下的声线分布情况 (a) 平整海面; (b) 风浪海面; (c) 涌浪海面

    Fig. 12.  Ray traces under different sea surfaces: (a) Flat sea surface; (b) wind-driven sea surface; (c) swell sea surface.

  • [1]

    张灵珊 2016 博士学位论文 (北京: 中国科学院大学)

    Zhang L S 2016 Ph. D. Dissertation (Beijing: The University of Chinese Academy of Sciences) (in Chinese)

    [2]

    尹爽 2018 硕士学位论文 (哈尔滨: 哈尔滨工程大学)

    Yin S 2018 M. S. Thesis (Harbin: The Harbin Engineering University) (in Chinese)

    [3]

    李整林 2002 博士学位论文 (北京: 中国科学院研究生院)

    Li Z L 2002 Ph. D. Dissertation (Beijing: Graduate University of Chinese Academy of Sciences) (in Chinese)

    [4]

    王先华, 彭朝晖, 李整林 2007 声学技术 26 551Google Scholar

    Wang X H, Peng Z H, Li Z L 2007 Technical Acoustics 26 551Google Scholar

    [5]

    Thorsos E I, Broschat S L 1995 J. Acoust. Soc. Am. 97 2082Google Scholar

    [6]

    Broschat S L, Thorsos E I 1997 J. Acoust. Soc. Am. 101 2615Google Scholar

    [7]

    Collins M D 1989 J. Acoust. Soc. Am. 86 1097Google Scholar

    [8]

    Collins M D, Coury R A, Siegmann W L 1995 J. Acoust. Soc. Am. 97 2767Google Scholar

    [9]

    Liu R Y, Li Z L 2019 Chin. Phys. B 28 014302Google Scholar

    [10]

    Zou Z G, Badiey M 2018 IEEE J. Oceanic Eng. 43 1187Google Scholar

    [11]

    Weston D E, Ching P A 1989 J. Acoust. Soc. Am. 86 1530Google Scholar

    [12]

    王先华 2007 博士学位论文 (北京: 中国科学院大学)

    Wang X H 2007 Ph. D. Dissertation (Beijing: The University of Chinese Academy of Sciences) (in Chinese)

    [13]

    姚美娟, 鹿力成, 郭圣明, 马力 2019 哈尔滨工程大学学报 40 781Google Scholar

    Yao M J, Lu L C, Guo S M, Ma L 2019 Journal of Harbin Engineering University 40 781Google Scholar

    [14]

    Karjadi E A, Badiey M, Kirby J T, Bayindir C 2012 IEEE J. Oceanic Eng. 37 112Google Scholar

    [15]

    Tindle C T, Deane G B 2005 J. Acoust. Soc. Am. 117 2783Google Scholar

    [16]

    Siderius M, Porter M B 2008 J. Acoust. Soc. Am. 124 137Google Scholar

    [17]

    Badiey M, Mu Y K, Simmen J A, Forsythe S E 2000 IEEE J. Oceanic Eng. 25 492Google Scholar

    [18]

    Dahl P H 1996 J. Acoust. Soc. Am. 100 748Google Scholar

    [19]

    Mackenzie K V 1981 J. Acoust. Soc. Am. 70 807Google Scholar

    [20]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (New York: Springer) pp1−794

    [21]

    段睿 2016 博士学位论文 (西安: 西北工业大学)

    Duan R 2016 Ph. D. Dissertation (Xi’an: Northwestern Polytechnical University) (in Chinese)

    [22]

    刘今, 彭朝晖 2019 中国声学学会水声学分会2019年学术会议论文集 南京 2019 第198页

    Liu J, Peng Z H 2019 Proceedings of the Academic Conference of Underwater Acoustic Branch of Acoustics Society of China in 2019, Underwater Acoustic Branch Nanjing, China, May 25, 2019 p198 (in Chinese)

    [23]

    吴庚坤 2015 博士学位论文 (青岛: 中国海洋大学)

    Wu G K 2015 Ph. D. Dissertation (Qingdao: Ocean University of China) (in Chinese)

    [24]

    欧家明 2011 硕士学位论文 (广州: 广东工业大学)

    Ou J M 2011 M. S. Thesis (Guangzhou: School of information Engineering Guangdong University of Technology) (in Chinese)

    [25]

    林风 2007 硕士学位论文 (西安: 西安电子科技大学)

    Lin F 2007 M. S. Thesis (Xi’an: Xidian University) (in Chinese)

    [26]

    Japan Meteorological Agency, https://www.data.jma.go.jp/gmd/kaiyou/data/db/wave/chart/daily/pdf/pn/17/12/17121100 pn.pdf [2020-7-28]

    [27]

    Japan Meteorological Agency, https://www.data.jma.go.jp/gmd/kaiyou/data/db/wave/chart/daily/pdf/pn/17/12/17121112 pn.pdf [2020-7-28]

    [28]

    Vadov R A 2006 Acoust. Phys. 52 6Google Scholar

    [29]

    廖菲, 邓华, 曾琳, Chan Pak-wai 2018 海洋学报 40 37Google Scholar

    Liao F, Deng H, Zeng L, Chan P W 2018 Haiyang Xuebao 40 37Google Scholar

    [30]

    郭佩芳, 施平, 王华, 王正林 1997 青岛海洋大学学报 27 131Google Scholar

    Guo P F, Shi P, Wang H, Wang Z L 1997 Journal of Ocean University of Qingdao 27 131Google Scholar

    [31]

    李波 2010 博士学位论文 (武汉: 华中科技大学)

    Li B 2010 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [32]

    Richards E L, Song H C, Hodgkiss W S 2018 J. Acoust. Soc. Am. 144 1296Google Scholar

  • [1] 吴双林, 李整林, 秦继兴, 王梦圆, 董凡辰. 东印度洋热带偶极子对声会聚区影响分析. 物理学报, 2022, 71(13): 134301. doi: 10.7498/aps.71.20212355
    [2] 李沁然, 孙超, 谢磊. 浅海内孤立波动态传播过程中声波模态强度起伏规律. 物理学报, 2022, 71(2): 024302. doi: 10.7498/aps.71.20211132
    [3] 李沁然, 孙超, 谢磊. 浅海内孤立波动态传播过程中声波模态强度起伏规律研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211132
    [4] 毕思昭, 彭朝晖. 地球曲率对远距离声传播的影响. 物理学报, 2021, 70(11): 114303. doi: 10.7498/aps.70.20201858
    [5] 姚美娟, 鹿力成, 孙炳文, 郭圣明, 马力. 浅海起伏海面下气泡层对声传播的影响. 物理学报, 2020, 69(2): 024303. doi: 10.7498/aps.69.20191208
    [6] 乔厚, 何锃, 张恒堃, 彭伟才, 江雯. 二维含多孔介质周期复合结构声传播分析. 物理学报, 2019, 68(12): 128101. doi: 10.7498/aps.68.20190164
    [7] 蒋光禹, 孙超, 谢磊, 刘雄厚. 表面声道对深海风成噪声垂直空间特性的影响规律. 物理学报, 2019, 68(2): 024302. doi: 10.7498/aps.68.20181794
    [8] 范雨喆, 陈宝伟, 李海森, 徐超. 丛聚的含气泡水对线性声传播的影响. 物理学报, 2018, 67(17): 174301. doi: 10.7498/aps.67.20180728
    [9] 王强, 郭立新. 时域混合算法在一维海面与舰船目标复合电磁散射中的应用. 物理学报, 2017, 66(18): 180301. doi: 10.7498/aps.66.180301
    [10] 李冰, 马萌晨, 雷明珠. 粗糙海面与其上方多目标复合散射的混合算法. 物理学报, 2017, 66(5): 050301. doi: 10.7498/aps.66.050301
    [11] 胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利. 深海海底斜坡环境下的声传播. 物理学报, 2016, 65(1): 014303. doi: 10.7498/aps.65.014303
    [12] 田炜, 任新成, 郭立新. 海面与其上方双矩形截面柱复合散射的混合算法研究. 物理学报, 2015, 64(17): 174101. doi: 10.7498/aps.64.174101
    [13] 王勇, 林书玉, 张小丽. 含气泡液体中的非线性声传播. 物理学报, 2014, 63(3): 034301. doi: 10.7498/aps.63.034301
    [14] 周振凯, 韦利明, 丰杰. ZnO/Diamond/Si结构中声表面波传播特性分析. 物理学报, 2013, 62(10): 104601. doi: 10.7498/aps.62.104601
    [15] 徐润汶, 郭立新, 范天奇. 有限元/边界积分方法在海面及其上方弹体目标电磁散射中的应用. 物理学报, 2013, 62(17): 170301. doi: 10.7498/aps.62.170301
    [16] 袁玲, 孙凯华, 崔一平, 沈中华, 倪晓武. 由于表面粗糙引起的激光声表面波色散的实验和理论研究. 物理学报, 2012, 61(1): 014210. doi: 10.7498/aps.61.014210
    [17] 郭立新, 王 蕊, 王运华, 吴振森. 二维粗糙海面散射回波多普勒谱频移及展宽特征. 物理学报, 2008, 57(6): 3464-3472. doi: 10.7498/aps.57.3464
    [18] 王 蕊, 郭立新, 秦三团, 吴振森. 粗糙海面及其上方导体目标复合电磁散射的混合算法研究. 物理学报, 2008, 57(6): 3473-3480. doi: 10.7498/aps.57.3473
    [19] 王运华, 郭立新, 吴振森. 改进的二维分形模型在海面电磁散射中的应用. 物理学报, 2006, 55(10): 5191-5199. doi: 10.7498/aps.55.5191
    [20] 张仁和. 浅海表面声道中的简正波声场. 物理学报, 1975, 24(3): 200-209. doi: 10.7498/aps.24.200
计量
  • 文章访问数:  4763
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-17
  • 修回日期:  2020-10-24
  • 上网日期:  2021-02-25
  • 刊出日期:  2021-03-05

/

返回文章
返回