搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西太平洋远距离声传播特性

毕思昭 彭朝晖 王光旭 谢志敏 张灵珊

引用本文:
Citation:

西太平洋远距离声传播特性

毕思昭, 彭朝晖, 王光旭, 谢志敏, 张灵珊

Characteristics of long-range sound propagation in western Pacific

Bi Si-Zhao, Peng Zhao-Hui, Wang Guang-Xu, Xie Zhi-Min, Zhang Ling-Shan
PDF
HTML
导出引用
  • 声信号在海水中能够传播上千千米, 远距离声传播与近距离声传播的特性不同. 本文利用西太平洋声源与接收最远距离近2000 km的水声实验数据, 对实验海区的海洋环境信息、实验使用的接收垂直阵信息进行处理, 分析大洋完全声道环境下, 远距离声传播能量衰减规律和多途到达结构特性. 在远距离传播能量衰减规律方面, 随着传播距离增大, 海水吸收对声能衰减的作用凸显, 海水吸收系数的选取对声场能量预报的准确性至关重要. 较低频信号海水吸收较小, 中心频率100 Hz的声信号, 传播距离从1000—2000 km, 传播损失仅增大6 dB左右. 深海声道远距离声传播多途到达结构特性方面, 实验海区温跃层声速较高, 使得到达接收点的本征声线数目更多, 多途到达结构更复杂, 海面反射声线形成的到达结构处在整体到达结构的靠前位置, 且能量相对较强; 受西北太平洋副热带模态水的影响, 声速剖面存在双跃层结构, 导致部分声线到达接收点的时间较早, 多途到达结构在时间轴上的长度延长.
    Acoustic signals can travel thousands of kilometers in seawater, and the characteristics of long-range sound propagation are different from short range propagation. This paper is based on a long-range underwater acoustic experimental data obtained from the western Pacific Ocean, where the farthest propagation distance is nearly 2000 km. The ocean environment information and vertical line array information are carefully processed. We analyze the attenuation of long-distance acoustic propagation in seawater and multi-path arrival structure characteristics under the complete acoustic channel environment of the ocean. In terms of the attenuation law of long-distance propagation energy, with the increase of propagation distance, the effect of seawater absorption on the attenuation of sound energy becomes prominent, and the selection of absorption coefficient is very important for the accurate prediction of sound field energy. Absorption in seawater of low frequency signals is small, and the transmission loss of acoustic signal with 100 Hz center frequency increases only by about 6 dB when the propagation distance increases from 1000 km to 2000 km. In terms of multi-path arrival structure characteristics of deep-sea acoustic channel for long-distance sound propagation, the thermocline sound velocity profile in the experimental sea area has a higher sound speed, making the number of eigenrays reaching the receiving point more and the multi-path arrival structure more complex. The arrival structure formed by sea surface reflected eigenrays is at the earlier position of the overall arrival structure and has relatively strong energy. Owing to the influence of subtropical water over the northwest Pacific Ocean on the sound speed profile, the time of some eigenrays arriving at the receiving point is earlier, and the length of multi-way arrival structure on the time axis is prolonged.
      通信作者: 彭朝晖, pzh@mail.ioa.ac.cn ; 王光旭, wgx@mail.ioa.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2021YFF0501200)和国家自然科学基金(批准号: 11774374)资助的课题.
      Corresponding author: Peng Zhao-Hui, pzh@mail.ioa.ac.cn ; Wang Guang-Xu, wgx@mail.ioa.ac.cn
    • Funds: Project supported by the State Kay Research and Development of China (Grant No. 2021YFF0501200) and the National Natural Science Foundation of China (Grant No. 11774374).
    [1]

    Worcester P F, Cornuelle B D, Hildebrand J A, Hodgkiss W, Spindel R C 1994 J. Acoust. Soc. Am. 95 3118Google Scholar

    [2]

    Worcester P F, Cornuelle B D, Dzieciuch M A, et al. 1999 J. Acoust. Soc. Am. 105 3185Google Scholar

    [3]

    Colosi J 2004 J. Acoust. Soc. Am. 116 1538Google Scholar

    [4]

    Vera M, Heaney K D 2005 J. Acoust. Soc. Am. 117 1624Google Scholar

    [5]

    Mercer J A, Colosi J A, Howe B M, Dzieciuch M A, Stephen R 2009 IEEE J. Oceanic. Eng. 34 1Google Scholar

    [6]

    Worcester P F, Dzieciuch M A, Mercer J A, et al. 2013 J. Acoust. Soc. Am. 134 3359Google Scholar

    [7]

    Wu L L, Peng Z H 2015 Chin. Phys. Lett. 32 094302Google Scholar

    [8]

    Guthrie A N 1974 J. Acoust. Soc. Am. 56 58Google Scholar

    [9]

    Beilis A 1983 J. Acoust. Soc. Am. 68 171Google Scholar

    [10]

    Boyles C A 1978 J. Acoust. Soc. Am. 64 S74Google Scholar

    [11]

    张仁和, 何怡 1994 自然科学进展: 国家重点实验室通讯 6 32

    Zhang R H, He Y 1994 Prog. Nat. Sci. 6 32

    [12]

    秦继兴, 张仁和, 骆文于, 吴立新, 江磊, 张波 2014 声学学报 39 145Google Scholar

    Qin J X, Zhang R H, Luo W Y, Wu L X, Jiang L, Zhang B 2014 Acta Acust. 39 145Google Scholar

    [13]

    Colosi J A, Scheer E K, Flatté S, et al. 1999 J. Acoust. Soc. Am. 105 3202Google Scholar

    [14]

    Van Uffelen L, Worcester P F, Dzieciuch M A, Rudnick D L 2009 J. Acoust. Soc. Am. 125 3569Google Scholar

    [15]

    Van Uffelen L, Worcester P F, Dzieciuch M A, Rudnick D L, Colosi J A 2010 J. Acoust. Soc. Am. 127 2169Google Scholar

    [16]

    Kim H J 2009 Ph. D. Dissertation (Boston: Massachusetts Institute of Technolog)

    [17]

    韩梅, 陆娟娟 2009 计算机仿真 26 11Google Scholar

    Han M, Lu J J 2009 Comp. Simulat. 26 11Google Scholar

    [18]

    吴丽丽 2017 博士学位论文 (北京: 中国科学院声学研究所)

    Wu L L 2017 Ph. D. Dissertation (Beijing: The Institute of Acoustics of the Chinese Academy of Sciences) (in Chinese)

    [19]

    张燕 2017 硕士学位论文 (北京: 中国科学院声学研究所)

    Zhang Y 2017 M. S. Thesis (Beijing: The Institute of Acoustics of the Chinese Academy of Sciences) (in Chinese)

    [20]

    侯温良, 龚敏, 陈东荣 1989 声学技术 8 3

    Hou W L, Gong M, Chen D R 1989 Tech. Acoust. 8 3

    [21]

    Locarnini R A, Mishonov A V, Baranova O K, et al. 2018 World Ocean Atlas (Volume 1: Temperature) 81 52

    [22]

    Zweng M M, Reagan J R, Seidov D, et al. 2018 World Ocean Atlas (Volume 2: Salinity) 82 50

    [23]

    Gandin L S 1963 Objective Analysis of Meteorological Fields (translated from the Russian) p184

    [24]

    毕思昭, 彭朝晖 2021 物理学报 70 114303Google Scholar

    Bi S Z, Peng Z H, 2021 Acta Phys. Sin. 70 114303Google Scholar

    [25]

    Amante C, Eakins B W 2009 Psychologist 16 3Google Scholar

    [26]

    Susanne B, Martin W 1976 Deck41 Surficial Seafloor Sediment Description Database (NOAA National Centers for Environmental Information)

    [27]

    Straume E O, Gaina C, Medvedev S, Hochmuth K, Gohl K, Whittaker J M, Abdul Fattah R, Doornenbal J C, Hopper J R 2019 Geochem. Geophy. Geosy. 20 4Google Scholar

    [28]

    Collins M 1998 J. Acoust. Soc. Am. 93 1736Google Scholar

    [29]

    李整林, 董凡辰, 胡治国, 吴双林 2019 物理学报 68 134305Google Scholar

    Li Z L, Dong F C, Hu Z G, Wu S L 2019 Acta Phys. Sin. 68 134305Google Scholar

    [30]

    Jensen F, Kuperman W, Porter M, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (New York: Springer-Verlag)

    [31]

    Fisher, H. F 1977 J. Acoust. Soc. Am 62 13Google Scholar

    [32]

    Lovett, Jack R 1980 J. Acoust. Soc. Am 67 338Google Scholar

    [33]

    刘伯胜, 雷家煜 2010 水声学原理 (北京: 科学出版社) 第141页

    Liu B S, Lei J Y 2009 Principles of Undewater Acoustics (Beijing: Science Press) p141 (in Chinese)

    [34]

    Munk W H 1974 J. Acoust. Soc. Am. 55 220Google Scholar

  • 图 1  海上实验示意图

    Fig. 1.  Schematic diagram of sea experiment.

    图 2  实验海区WOA数据点和实验测量点分布图

    Fig. 2.  Distribution diagram of WOA data and experimental measurement in the experimental sea area.

    图 3  500 km站位声传播路径上的声速剖面变化

    Fig. 3.  Change of sound speed profile along sound propagation path of 500 km station.

    图 4  500 km站位声传播路径上的海深变化

    Fig. 4.  Change of ocean depth along sound propagation path of 500 km station.

    图 5  实验期间各个水听器深度随时间变化情况

    Fig. 5.  Variation of the depth of hydrophones during the experiment.

    图 6  阵型估计示意图

    Fig. 6.  Schematic diagram of array geometry estimation.

    图 7  阵型

    Fig. 7.  Array geometry.

    图 8  爆炸声源与接收垂直阵三维示意图

    Fig. 8.  3D schematic diagram of explosion sound source and receiver array.

    图 9  爆炸声源与接收垂直阵水平面投影示意图

    Fig. 9.  Schematic diagram of the horizontal plane projection of the explosion sound source and receiving array.

    图 10  实验接收信号的时域波形 (a)实测接收到的时域波形; (b)取包络后波形; (c)置零处理后波形

    Fig. 10.  Time domain waveform received in the experimental: (a) Time domain waveform by the experiment; (b) the waveform after the envelope; (c) the waveform after zero processing.

    图 11  匹配处理结果 (a)记录距离481.5 km; (b)记录距离496.5 km; (c)记录距离513.7 km

    Fig. 11.  Matching processing results: (a) Recording distance of 481.5 km; (b) recording distance of 496.5 km; (c) recording distance of 513.7 km.

    图 12  垂直阵接收到的多途到达结构 (a)修正前; (b)修正后

    Fig. 12.  Arrival structure received by the vertical line array: (a) Before correction; (b) after correction.

    图 13  不同吸收损失计算公式下传播损失实验结果与仿真结果比较, 中心频率分别为(a) 100 Hz; (b) 300 Hz; (c) 500 Hz

    Fig. 13.  Comparison of experimental data and simulation results of TLs calculation under different absorption loss calculation formulas, the center frequencies are (a) 100 Hz, (b) 300 Hz, (c) 500 Hz, respectively.

    图 14  不同频率下传播损失实验数据与仿真计算比较, 传播距离分别为(a) 500 km, (b) 1000 km, (c) 1500 km, (d) 2000 km

    Fig. 14.  Comparison of experimental data and simulation results of TL calculations at different frequencies, the propagation distances are (a) 500 km, (b) 1000 km, (c) 1500 km, (d) 2000 km, respectively.

    图 15  500 km站位声传播路径上的平均声速剖面和声速起伏情况

    Fig. 15.  Average sound velocity profile and sound velocity fluctuation on the sound propagation path at 500 km station.

    图 16  仿真多途到达结构比较 (a)沿传播路径更新声速剖面; (b) 平均声速剖面

    Fig. 16.  Comparison of simulation arrival structure: (a) Updated sound velocity profile along the propagation path; (b) average sound velocity profile.

    图 17  垂直阵接收到的多途到达结构

    Fig. 17.  Arrival structure received by the vertical array.

    图 18  3种不同的声速剖面

    Fig. 18.  Three different sound speed profiles.

    图 19  仿真多途到达结构 (a)冬季声速剖面; (b)类Munk剖面

    Fig. 19.  Simulation arrival structure: (a) Sound speed profile in winter; (b) similar Munk sound speed profile.

    图 20  实验声速剖面环境下1495 m接收深度上本征声线和多途到达结构 (a)本征声线; (b)五种类型的本征声线; (c)仿真多途到达结构

    Fig. 20.  Eigenrays and multipath arrival structures at 1495 m reception depth in experimental sound speed profile environment: (a) Eigenrays; (b) five types of eigenrays; (c) simulation of multipath access structure.

    图 21  冬季声速剖面环境下1495 m接收深度上本征声线和多途到达结构 (a)本征声线; (b)三种类型的本征声线; (c)仿真多途到达结构

    Fig. 21.  Eigenrays and multipath arrival structures at 1495 m reception depth in winter sound speed profile environment: (a) Eigenrays; (b) three types of eigenrays; (c) simulation of multipath access structure.

    图 22  类Munk剖面环境下1495 m接收深度上本征声线和多途到达结构 (a)本征声线; (b)三种类型的本征声线; (c)仿真多途到达结构

    Fig. 22.  Eigenrays and multipath arrival structures at 1495 m reception depth in similar Munk sound speed profile environment: (a) Eigenrays; (b) three types of eigenrays; (c) simulation of multipath access structure.

    图 23  垂直阵接收到的到达结构

    Fig. 23.  Arrival structure received by the vertical line array.

  • [1]

    Worcester P F, Cornuelle B D, Hildebrand J A, Hodgkiss W, Spindel R C 1994 J. Acoust. Soc. Am. 95 3118Google Scholar

    [2]

    Worcester P F, Cornuelle B D, Dzieciuch M A, et al. 1999 J. Acoust. Soc. Am. 105 3185Google Scholar

    [3]

    Colosi J 2004 J. Acoust. Soc. Am. 116 1538Google Scholar

    [4]

    Vera M, Heaney K D 2005 J. Acoust. Soc. Am. 117 1624Google Scholar

    [5]

    Mercer J A, Colosi J A, Howe B M, Dzieciuch M A, Stephen R 2009 IEEE J. Oceanic. Eng. 34 1Google Scholar

    [6]

    Worcester P F, Dzieciuch M A, Mercer J A, et al. 2013 J. Acoust. Soc. Am. 134 3359Google Scholar

    [7]

    Wu L L, Peng Z H 2015 Chin. Phys. Lett. 32 094302Google Scholar

    [8]

    Guthrie A N 1974 J. Acoust. Soc. Am. 56 58Google Scholar

    [9]

    Beilis A 1983 J. Acoust. Soc. Am. 68 171Google Scholar

    [10]

    Boyles C A 1978 J. Acoust. Soc. Am. 64 S74Google Scholar

    [11]

    张仁和, 何怡 1994 自然科学进展: 国家重点实验室通讯 6 32

    Zhang R H, He Y 1994 Prog. Nat. Sci. 6 32

    [12]

    秦继兴, 张仁和, 骆文于, 吴立新, 江磊, 张波 2014 声学学报 39 145Google Scholar

    Qin J X, Zhang R H, Luo W Y, Wu L X, Jiang L, Zhang B 2014 Acta Acust. 39 145Google Scholar

    [13]

    Colosi J A, Scheer E K, Flatté S, et al. 1999 J. Acoust. Soc. Am. 105 3202Google Scholar

    [14]

    Van Uffelen L, Worcester P F, Dzieciuch M A, Rudnick D L 2009 J. Acoust. Soc. Am. 125 3569Google Scholar

    [15]

    Van Uffelen L, Worcester P F, Dzieciuch M A, Rudnick D L, Colosi J A 2010 J. Acoust. Soc. Am. 127 2169Google Scholar

    [16]

    Kim H J 2009 Ph. D. Dissertation (Boston: Massachusetts Institute of Technolog)

    [17]

    韩梅, 陆娟娟 2009 计算机仿真 26 11Google Scholar

    Han M, Lu J J 2009 Comp. Simulat. 26 11Google Scholar

    [18]

    吴丽丽 2017 博士学位论文 (北京: 中国科学院声学研究所)

    Wu L L 2017 Ph. D. Dissertation (Beijing: The Institute of Acoustics of the Chinese Academy of Sciences) (in Chinese)

    [19]

    张燕 2017 硕士学位论文 (北京: 中国科学院声学研究所)

    Zhang Y 2017 M. S. Thesis (Beijing: The Institute of Acoustics of the Chinese Academy of Sciences) (in Chinese)

    [20]

    侯温良, 龚敏, 陈东荣 1989 声学技术 8 3

    Hou W L, Gong M, Chen D R 1989 Tech. Acoust. 8 3

    [21]

    Locarnini R A, Mishonov A V, Baranova O K, et al. 2018 World Ocean Atlas (Volume 1: Temperature) 81 52

    [22]

    Zweng M M, Reagan J R, Seidov D, et al. 2018 World Ocean Atlas (Volume 2: Salinity) 82 50

    [23]

    Gandin L S 1963 Objective Analysis of Meteorological Fields (translated from the Russian) p184

    [24]

    毕思昭, 彭朝晖 2021 物理学报 70 114303Google Scholar

    Bi S Z, Peng Z H, 2021 Acta Phys. Sin. 70 114303Google Scholar

    [25]

    Amante C, Eakins B W 2009 Psychologist 16 3Google Scholar

    [26]

    Susanne B, Martin W 1976 Deck41 Surficial Seafloor Sediment Description Database (NOAA National Centers for Environmental Information)

    [27]

    Straume E O, Gaina C, Medvedev S, Hochmuth K, Gohl K, Whittaker J M, Abdul Fattah R, Doornenbal J C, Hopper J R 2019 Geochem. Geophy. Geosy. 20 4Google Scholar

    [28]

    Collins M 1998 J. Acoust. Soc. Am. 93 1736Google Scholar

    [29]

    李整林, 董凡辰, 胡治国, 吴双林 2019 物理学报 68 134305Google Scholar

    Li Z L, Dong F C, Hu Z G, Wu S L 2019 Acta Phys. Sin. 68 134305Google Scholar

    [30]

    Jensen F, Kuperman W, Porter M, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (New York: Springer-Verlag)

    [31]

    Fisher, H. F 1977 J. Acoust. Soc. Am 62 13Google Scholar

    [32]

    Lovett, Jack R 1980 J. Acoust. Soc. Am 67 338Google Scholar

    [33]

    刘伯胜, 雷家煜 2010 水声学原理 (北京: 科学出版社) 第141页

    Liu B S, Lei J Y 2009 Principles of Undewater Acoustics (Beijing: Science Press) p141 (in Chinese)

    [34]

    Munk W H 1974 J. Acoust. Soc. Am. 55 220Google Scholar

  • [1] 康娟, 彭朝晖, 何利, 李晟昊, 于小涛. 基于多层水平变化浅海海底模型的低频反演方法. 物理学报, 2024, 73(5): 054301. doi: 10.7498/aps.73.20231715
    [2] 马树青, 郭肖晋, 张理论, 蓝强, 黄创霞. 水声射线传播的黎曼几何建模·应用 —深海远程声传播会聚区黎曼几何模型. 物理学报, 2023, 72(4): 044301. doi: 10.7498/aps.72.20221495
    [3] 毕思昭, 彭朝晖, 王光旭, 谢志敏, 张灵珊. 西太平洋远距离声传播特性. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120220566
    [4] 刘代, 李整林, 刘若芸. 浅海周期起伏海底环境下的声传播. 物理学报, 2021, 70(3): 034302. doi: 10.7498/aps.70.20201233
    [5] 刘今, 彭朝晖, 张灵珊, 刘若芸, 李整林. 浅海涌浪对表面声道声传播的影响. 物理学报, 2021, 70(5): 054302. doi: 10.7498/aps.70.20201549
    [6] 朴胜春, 栗子洋, 王笑寒, 张明辉. 深海不完整声道下反转点会聚区研究. 物理学报, 2021, 70(2): 024301. doi: 10.7498/aps.70.20201375
    [7] 毕思昭, 彭朝晖. 地球曲率对远距离声传播的影响. 物理学报, 2021, 70(11): 114303. doi: 10.7498/aps.70.20201858
    [8] 姚美娟, 鹿力成, 孙炳文, 郭圣明, 马力. 浅海起伏海面下气泡层对声传播的影响. 物理学报, 2020, 69(2): 024303. doi: 10.7498/aps.69.20191208
    [9] 乔厚, 何锃, 张恒堃, 彭伟才, 江雯. 二维含多孔介质周期复合结构声传播分析. 物理学报, 2019, 68(12): 128101. doi: 10.7498/aps.68.20190164
    [10] 李梦竹, 李整林, 周纪浔, 张仁和. 一种低声速沉积层海底参数声学反演方法. 物理学报, 2019, 68(9): 094301. doi: 10.7498/aps.68.20190183
    [11] 张鹏, 李整林, 吴立新, 张仁和, 秦继兴. 深海海底反射会聚区声传播特性. 物理学报, 2019, 68(1): 014301. doi: 10.7498/aps.68.20181761
    [12] 范雨喆, 陈宝伟, 李海森, 徐超. 丛聚的含气泡水对线性声传播的影响. 物理学报, 2018, 67(17): 174301. doi: 10.7498/aps.67.20180728
    [13] 张春玲, 刘文武. 基于绝热捷径快速实现远距离的四维纠缠态的制备. 物理学报, 2018, 67(16): 160302. doi: 10.7498/aps.67.20180315
    [14] 胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利. 深海海底斜坡环境下的声传播. 物理学报, 2016, 65(1): 014303. doi: 10.7498/aps.65.014303
    [15] 张莉, 郑海洋, 王颖萍, 丁蕾, 方黎. 远距离探测拉曼光谱特性. 物理学报, 2016, 65(5): 054206. doi: 10.7498/aps.65.054206
    [16] 谢磊, 孙超, 刘雄厚, 蒋光禹. 陆架斜坡海域声场特性对常规波束形成阵增益的影响. 物理学报, 2016, 65(14): 144303. doi: 10.7498/aps.65.144303
    [17] 郭晓乐, 杨坤德, 马远良. 一种基于简正波模态频散的远距离宽带海底参数反演方法. 物理学报, 2015, 64(17): 174302. doi: 10.7498/aps.64.174302
    [18] 王勇, 林书玉, 张小丽. 含气泡液体中的非线性声传播. 物理学报, 2014, 63(3): 034301. doi: 10.7498/aps.63.034301
    [19] 周振凯, 韦利明, 丰杰. ZnO/Diamond/Si结构中声表面波传播特性分析. 物理学报, 2013, 62(10): 104601. doi: 10.7498/aps.62.104601
    [20] 印娟, 钱勇, 李晓强, 包小辉, 彭承志, 杨涛, 潘阁生. 远距离量子通信实验中的高维纠缠源. 物理学报, 2011, 60(6): 060308. doi: 10.7498/aps.60.060308
计量
  • 文章访问数:  4368
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-28
  • 修回日期:  2022-07-05
  • 上网日期:  2022-10-17
  • 刊出日期:  2022-11-05

/

返回文章
返回