搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种低声速沉积层海底参数声学反演方法

李梦竹 李整林 周纪浔 张仁和

引用本文:
Citation:

一种低声速沉积层海底参数声学反演方法

李梦竹, 李整林, 周纪浔, 张仁和

Geoacoustic inversion for acoustic parameters of sediment layer with low sound speed

Li Meng-Zhu, Li Zheng-Lin, Zhou Ji-Xun, Zhang Ren-He
PDF
HTML
导出引用
  • 软泥底环境下沉积层参数的声学反演是国际水声领域的一个研究热点. 浅海中, 当高声速基底和海水之间存在一层低声速(小于海水声速)的沉积层时, 小掠射角情况下不同频率声传播损失会出现周期性增大现象. 基于此现象, 提出一种适用于低声速沉积层的海底参数声学反演方法. 首先, 推导给出小掠射角情况下传播损失周期增大的频率间隔与沉积层声速、厚度及近海底海水声速之间的解析表达式; 其次, 利用一次黄海实验中软泥底环境下的宽带声传播信号, 提取了小掠射角下传播损失增大的频率周期; 再次, 把该解析表达式作为约束条件, 结合Hamilton密度与声速的经验公式, 采用匹配场处理反演给出沉积层的声速、密度、厚度及基底的声速、密度; 然后, 利用声传播损失数据反演得到泥底环境下不同频率的声衰减系数, 通过拟合发现泥底声衰减系数随频率近似呈线性关系; 最后, 给出了双层海底模型和半无限大海底模型等效性的讨论. 反演结果为低声速沉积层海底声传播规律研究与应用提供了海底声学参数.
    Acoustic inversion of sediment parameters in muddy bottom environment has received much attention in the field of underwater acoustics. In shallow water, when there is a low-speed layer of unconsolidated sediment, such as mud in which the sound speed is lower than that of the sea water, on the top of a high-speed bottom, the transmission losses at different frequencies will increase periodically under the condition of small grazing angles. Based on this phenomenon, an acoustic inversion method of seabed parameters for low speed sediments is proposed. Firstly, the analytical expressions between the frequency interval of the transmission loss (TL) periodical increasing and geoacoustic parameters, including the sound speed and the thickness of sediment layer and the sound speed of seawater near the bottom, are derived under the condition of small grazing angles. Secondly, using the broadband sound propagation signals received under the thermocline in the 2002 summer acoustic experiment conducted in the Yellow Sea, the TL at small grazing angles increases periodically with the frequency, and it is determined that the sediment of this sea area is a low-speed sediment. Then, taking the analytical expression as the constraint condition and combining with Hamilton's empirical formula, the sound speed, density, thickness of sediment layer and the sound speed and density of the seabed are inverted by matched field processing. Finally, the bottom attenuation coefficients at different frequencies are inverted by using the long-range TL, and the linear relationship between the attenuation coefficients and the frequencies is obtained. The equivalence between the two different bottom models is discussed in the end. The inversion results can provide seabed parameters for the study and application of the sound propagation law in shallow water with a low-speed sediment.
      通信作者: 李整林, lzhl@mail.ioa.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11434012, 11874061)资助的课题.
      Corresponding author: Li Zheng-Lin, lzhl@mail.ioa.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11434012, 11874061).
    [1]

    Gerstoft P, Gingras D F 1996 J. Acoust. Soc. Am. 99 2839Google Scholar

    [2]

    D’Spain G L, Murray J J, Hodgkiss W S, Booth N O 1995 J. Acoust. Soc. Am. 97 3291

    [3]

    Zhou J X 1985 J. Acoust. Soc. Am. 78 1003Google Scholar

    [4]

    Zhou J X, Zhang X Z, Rogers P H, Simmen J A, Dahl P H, Jin G L, Peng Z H 2004 IEEE J. Ocean. Eng. 29 988Google Scholar

    [5]

    高伟, 王宁, 王好忠 2008 声学学报 33 109Google Scholar

    Gao W, Wang N, Wang H Z 2008 Acta Acustica 33 109Google Scholar

    [6]

    Carbone N M, Deane G B, Buckingham M J 1998 J. Acoust. Soc. Am. 103 801Google Scholar

    [7]

    Li Z L, Zhang R H 2004 Chin. Phys. Lett. 21 1100Google Scholar

    [8]

    李风华, 张仁和 2000 声学学报 25 297Google Scholar

    Li F H, Zhang R H 2000 Acta Acustica 25 297Google Scholar

    [9]

    Wu S L, Li Z L, Qin J X 2015 Chin. Phys. Lett. 32 124301Google Scholar

    [10]

    Li Z L, Zhang R H, Yan J, Li F H, Liu J J 2004 IEEE J. Ocean. Eng. 29 973Google Scholar

    [11]

    Li Z L 2003 Chin. J. Acoust. 22 176

    [12]

    Li Z L, Zhang R H 2007 Chin. Phys. Lett. 24 471Google Scholar

    [13]

    Li Z L, Li F H 2010 Chin. J. Oceanol. Limnol. 28 990Google Scholar

    [14]

    Zhou J X, Zhang X Z 2009 J. Acoust. Soc. Am. 125 2847Google Scholar

    [15]

    Press F, Ewing M. 1948 Geophysics 13 404Google Scholar

    [16]

    Rubano L A 1980 J. Acoust. Soc. Am. 67 1608

    [17]

    Kuperman W A, Jensen F B 1980 Bottom-interacting Ocean Acoustics (New York: Plenum Press) pp135−152

    [18]

    Bonnel J, Lin Y T, Eleftherakis D, Goff J A, Stan D, Ross C, James H M, Gopu R P 2018 J. Acoust. Soc. Am. 143 405Google Scholar

    [19]

    Wan L, Badiey M, Knobles D P, Wilson P S 2018 J. Acoust. Soc. Am. 143 199Google Scholar

    [20]

    Porter M B, Bucker H P 1987 J. Acoust. Soc. Am. 82 1349Google Scholar

    [21]

    Porter M, Reiss E L 1984 J. Acoust. Soc. Am. 76 244Google Scholar

    [22]

    Hamilton E L, Bachman R T 1982 J. Acoust. Soc. Am. 72 1891Google Scholar

    [23]

    Stoffa P L, Sen M K 1991 Geophysics 56 1794Google Scholar

    [24]

    Hamilton E L 1980 J. Acoust. Soc. Am. 68 1313Google Scholar

    [25]

    Gerstoft P, Mecklenbrauker C F 1998 J. Acoust. Soc. Am. 104 808Google Scholar

  • 图 1  低声速沉积层海底模型

    Fig. 1.  Bottom model with a low speed sediment layer.

    图 2  掠射角1°时对应的海底反射损失

    Fig. 2.  Reflection loss for the grazing angle of 1°.

    图 3  小掠射角情况下参数敏感性分析

    Fig. 3.  Sensitivity analyses of the bottom reflection loss to the geoacoustic parameters under the small grazing angle.

    图 4  声传播损失与海底反射损失随频率的变化

    Fig. 4.  Comparison between the transmission loss and reflection loss at different frequencies.

    图 5  低声速沉积层声学参数联合反演流程

    Fig. 5.  Flowchart of geoacoustic inversion for the sediment with lower sound speed.

    图 6  实验期间的水文环境和设备布设 (a) 声速剖面; (b) 设备布设及海深示意图

    Fig. 6.  Water environment and experiment configuration during the experiment: (a) Measured sound speed profile; (b) experimental configuration and water depth.

    图 7  声传播损失随频率的变化 (r = 9.2 km, zs = 50.0 m, zr = 53.5 m)

    Fig. 7.  Transmission losses at the different frequencies ( r = 9.2 km, zs = 50.0 m, zr = 53.5 m).

    图 8  给定频率间隔下沉积层厚度与声速的关系

    Fig. 8.  Relationship between the thickness of sediment and its sound speed at the special frequency step.

    图 9  参数的一维边缘概率密度分布

    Fig. 9.  One-dimensional marginal posterior probability densities of the parameters.

    图 10  声源距离和海深的模糊度表面

    Fig. 10.  Ambiguity surface of source range and water depth.

    图 11  代价函数随沉积层和基底衰减系数的模糊度表面

    Fig. 11.  Ambiguity surface of sediment attenuation and basement attenuation.

    图 12  反演得到的不同频率的衰减系数

    Fig. 12.  Inverted attenuation coefficients at different frequencies

    图 13  利用反演参数计算的不同频率传播损失与实验结果的对比 (a) zr = 22 m; (b) zr = 50 m

    Fig. 13.  Comparison between the numerical TL and experimental TL at different frequencies: (a) zr = 22 m; (b) zr = 50 m.

    图 14  不同海底模型的海底反射损失比较 (a) 半无限大海底模型; (b) 双层海底模型; (c) 掠射角0.1°; (d) 掠射角11.6°

    Fig. 14.  Comparison of reflection losses for different bottom models: (a) Uniform liquid half-space bottom model; (b) two layered bottom model; (c) at grazing angle 0.1°; (d) at grazing angle 11.6°.

    表 1  低声速沉积海底环境参数

    Table 1.  Seabed environmental parameters for low-speed sediment simulation.

    c1/m·s–1ρ1/g·cm–3α1/dB·λ–1c2/m·s–1ρ2/g·cm–3α2/dB·λ–1d/mc3/m·s–1ρ3/g·cm–3α3/dB·λ–1
    14881.00.014601.40.10516201.80.10
    下载: 导出CSV

    表 2  计算得到的不同距离下的有效海底掠射角

    Table 2.  Effective bottom grazing angles at different ranges.

    收发距离/km
    151020
    有效海底掠射角10.41°6.16°2.15°0.52°
    标准差7.84°6.44°3.75°0.70°
    下载: 导出CSV

    表 3  待反演参数搜素范围及反演结果

    Table 3.  Search ranges of the unknown parameters and the inverted results.

    c2/m·s–1ρ2/g·cm–3c3/m·s–1ρ3/g·cm–3d/mr/kmh/m
    搜索范围1418—14871.1—1.61489—18009.0—9.460—65
    最优值1474.011.351580.471.6410.329.2664.63
    平均值1474.121.391581.021.6410.489.2264.65
    标准差2.220.071.520.000.980.100.34
    下载: 导出CSV
  • [1]

    Gerstoft P, Gingras D F 1996 J. Acoust. Soc. Am. 99 2839Google Scholar

    [2]

    D’Spain G L, Murray J J, Hodgkiss W S, Booth N O 1995 J. Acoust. Soc. Am. 97 3291

    [3]

    Zhou J X 1985 J. Acoust. Soc. Am. 78 1003Google Scholar

    [4]

    Zhou J X, Zhang X Z, Rogers P H, Simmen J A, Dahl P H, Jin G L, Peng Z H 2004 IEEE J. Ocean. Eng. 29 988Google Scholar

    [5]

    高伟, 王宁, 王好忠 2008 声学学报 33 109Google Scholar

    Gao W, Wang N, Wang H Z 2008 Acta Acustica 33 109Google Scholar

    [6]

    Carbone N M, Deane G B, Buckingham M J 1998 J. Acoust. Soc. Am. 103 801Google Scholar

    [7]

    Li Z L, Zhang R H 2004 Chin. Phys. Lett. 21 1100Google Scholar

    [8]

    李风华, 张仁和 2000 声学学报 25 297Google Scholar

    Li F H, Zhang R H 2000 Acta Acustica 25 297Google Scholar

    [9]

    Wu S L, Li Z L, Qin J X 2015 Chin. Phys. Lett. 32 124301Google Scholar

    [10]

    Li Z L, Zhang R H, Yan J, Li F H, Liu J J 2004 IEEE J. Ocean. Eng. 29 973Google Scholar

    [11]

    Li Z L 2003 Chin. J. Acoust. 22 176

    [12]

    Li Z L, Zhang R H 2007 Chin. Phys. Lett. 24 471Google Scholar

    [13]

    Li Z L, Li F H 2010 Chin. J. Oceanol. Limnol. 28 990Google Scholar

    [14]

    Zhou J X, Zhang X Z 2009 J. Acoust. Soc. Am. 125 2847Google Scholar

    [15]

    Press F, Ewing M. 1948 Geophysics 13 404Google Scholar

    [16]

    Rubano L A 1980 J. Acoust. Soc. Am. 67 1608

    [17]

    Kuperman W A, Jensen F B 1980 Bottom-interacting Ocean Acoustics (New York: Plenum Press) pp135−152

    [18]

    Bonnel J, Lin Y T, Eleftherakis D, Goff J A, Stan D, Ross C, James H M, Gopu R P 2018 J. Acoust. Soc. Am. 143 405Google Scholar

    [19]

    Wan L, Badiey M, Knobles D P, Wilson P S 2018 J. Acoust. Soc. Am. 143 199Google Scholar

    [20]

    Porter M B, Bucker H P 1987 J. Acoust. Soc. Am. 82 1349Google Scholar

    [21]

    Porter M, Reiss E L 1984 J. Acoust. Soc. Am. 76 244Google Scholar

    [22]

    Hamilton E L, Bachman R T 1982 J. Acoust. Soc. Am. 72 1891Google Scholar

    [23]

    Stoffa P L, Sen M K 1991 Geophysics 56 1794Google Scholar

    [24]

    Hamilton E L 1980 J. Acoust. Soc. Am. 68 1313Google Scholar

    [25]

    Gerstoft P, Mecklenbrauker C F 1998 J. Acoust. Soc. Am. 104 808Google Scholar

  • [1] 康娟, 彭朝晖, 何利, 李晟昊, 于小涛. 基于多层水平变化浅海海底模型的低频反演方法. 物理学报, 2024, 73(5): 054301. doi: 10.7498/aps.73.20231715
    [2] 黎章龙, 胡长青, 赵梅, 秦继兴, 李整林, 杨雪峰. 基于大掠射角海底反射特性的深海地声参数反演. 物理学报, 2022, 71(11): 114302. doi: 10.7498/aps.71.20211915
    [3] 毕思昭, 彭朝晖, 王光旭, 谢志敏, 张灵珊. 西太平洋远距离声传播特性. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120220566
    [4] 毕思昭, 彭朝晖, 王光旭, 谢志敏, 张灵珊. 西太平洋远距离声传播特性. 物理学报, 2022, 71(21): 214302. doi: 10.7498/aps.71.20220566
    [5] 刘代, 李整林, 刘若芸. 浅海周期起伏海底环境下的声传播. 物理学报, 2021, 70(3): 034302. doi: 10.7498/aps.70.20201233
    [6] 李风华, 王翰卓. 利用随机多项式展开的海底声学参数反演方法. 物理学报, 2021, 70(17): 174305. doi: 10.7498/aps.70.20210119
    [7] 朴胜春, 栗子洋, 王笑寒, 张明辉. 深海不完整声道下反转点会聚区研究. 物理学报, 2021, 70(2): 024301. doi: 10.7498/aps.70.20201375
    [8] 周彦玲, 范军, 王斌. 塑料类高分子聚合物材料水中目标声学参数反演. 物理学报, 2019, 68(21): 214301. doi: 10.7498/aps.68.20190991
    [9] 张鹏, 李整林, 吴立新, 张仁和, 秦继兴. 深海海底反射会聚区声传播特性. 物理学报, 2019, 68(1): 014301. doi: 10.7498/aps.68.20181761
    [10] 颜冰, 黄思训, 冯径. 大气边界层模式中随机参数的反演与不确定性分析. 物理学报, 2018, 67(19): 199201. doi: 10.7498/aps.67.20181014
    [11] 何霖, 易仕和, 陆小革. 超声速湍流边界层密度场特性. 物理学报, 2017, 66(2): 024701. doi: 10.7498/aps.66.024701
    [12] 金国梁, 尹剑飞, 温激鸿, 温熙森. 基于等效参数反演的敷设声学覆盖层的水下圆柱壳体声散射研究. 物理学报, 2016, 65(1): 014305. doi: 10.7498/aps.65.014305
    [13] 谢磊, 孙超, 刘雄厚, 蒋光禹. 陆架斜坡海域声场特性对常规波束形成阵增益的影响. 物理学报, 2016, 65(14): 144303. doi: 10.7498/aps.65.144303
    [14] 郭晓乐, 杨坤德, 马远良. 一种基于简正波模态频散的远距离宽带海底参数反演方法. 物理学报, 2015, 64(17): 174302. doi: 10.7498/aps.64.174302
    [15] 钟剑, 费建芳, 黄思训, 黄小刚, 程小平. 多参数背景场误差模型在散射计资料台风风场反演中的应用. 物理学报, 2013, 62(15): 159302. doi: 10.7498/aps.62.159302
    [16] 屈科, 胡长青, 赵梅. 利用时域波形快速反演海底单参数的方法. 物理学报, 2013, 62(22): 224303. doi: 10.7498/aps.62.224303
    [17] 高博, 杨士莪, 朴胜春. 基于信道传播理论的多基地远程海底混响研究. 物理学报, 2012, 61(5): 054305. doi: 10.7498/aps.61.054305
    [18] 黎雪刚, 杨坤德, 张同伟, 邱海宾. 基于拖曳倾斜线列阵的海底反射损失提取方法. 物理学报, 2009, 58(11): 7741-7749. doi: 10.7498/aps.58.7741
    [19] 杨坤德, 马远良. 利用海底反射信号进行地声参数反演的方法. 物理学报, 2009, 58(3): 1798-1805. doi: 10.7498/aps.58.1798
    [20] 倪彬彬, 赵正予, 顾旭东, 汪 枫. 场向传播的内磁层哨声波对辐射带高能电子的共振扩散. 物理学报, 2008, 57(12): 7937-7949. doi: 10.7498/aps.57.7937
计量
  • 文章访问数:  9898
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-01
  • 修回日期:  2019-03-10
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-05

/

返回文章
返回