搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于warping变换的浅海脉冲声源被动测距方法

王冬 郭良浩 刘建军 戚聿波

引用本文:
Citation:

一种基于warping变换的浅海脉冲声源被动测距方法

王冬, 郭良浩, 刘建军, 戚聿波

Passive impulsive source range estimation based on warping operator in shallow water

Wang Dong, Guo Liang-Hao, Liu Jian-Jun, Qi Yu-Bo
PDF
导出引用
  • 针对浅海波导中脉冲声源被动测距问题, 提出了一种利用接收信号的能量密度函数进行warping变换的声源被动测距方法. 对于浅海波导, 接收信号的能量密度函数中不同号简正波相干部分, 经warping变换后输出结果的频谱中包含与声源和接收器位置无关的不变性频率特征. 这些特征频率在数值上等于理想波导中相干的两号简正波的截止频率差, 与海底参数无关, 因此仅需已知海水中的平均声速和海水深度便可计算出特征频率值. 当声源距离未知时, 利用特征频率的提取值与真实特征频率之间的关系可以实现快速测距, 极大地提高了计算速度. 为了验证方法的有效性, 对2011年11月黄海海域水声实验的接收脉冲数据进行了处理, 测距结果与实测距离符合良好, 平均测距误差在8%以内.
    An approach to passive impulsive source range estimation in shallow water is proposed. The approach is based on warping transformation of the energy density function of the received signal. Because of the influence of the sea bottom, it is difficult to find a warping operator adapted to the dispersion characteristics of modes in shallow water. Even though the modes can be separated from each other by using the warping operator adapted to the ideal waveguide, it is impossible to obtain the analytic solutions of the characteristic frequencies, while the energy density function of the received signal is not affected by the sea bottom. Like the received signal and the autocorrelation function of the signal, the frequency spectrum of the warped energy density function of the received signal also owns invariable frequency features. These characteristic frequencies equal the difference in the cut-off frequency between two modes in ideal waveguide, which are easy to calculate with the knowledge of the depth and the average sound speed of the water. What is more, the warping operator transforms mode pairs in energy density function with the same mode number difference into one monotone, which means one characteristic frequency is not unique for one mode pair. In shallow water, the acoustic field is typically composed of a group of modes with close mode numbers. Therefore, the smaller the mode number difference, the more the mode pairs, and the higher the spectral peak of the corresponding monotone is. When the source range is unknown, the approximate relation formula between the extracted characteristic frequency in a supposed source range and the real characteristic frequency is derived, based on which a fast passive source range estimation method is proposed. The proposed method successfully avoids using the guide source and the calculation of replica field, which is necessary in existing passive range estimation algorithms. And applying warping operator to the energy density function of the received signal makes it easy to obtain the analytic solutions of the characteristic frequencies, which is impossible in previous researches. The method is successfully applied to the Yellow Sea impulsive signal data collected by a single hydrophone in November 2011. The mean relative error of range estimation is less than 8%.
      通信作者: 郭良浩, glh2002@mail.ioa.ac.cn
    • 基金项目: 国家自然科学基金(批准号:61571436)资助的课题.
      Corresponding author: Guo Liang-Hao, glh2002@mail.ioa.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61571436).
    [1]

    Mao W N 2001 Journal of Southeast University 3 1 (in Chinese) [毛卫宁 2001 东南大学学报 3 1]

    [2]

    Song X J, Hui J Y, Yin D M, Li Y M 2005 Appl. Acoust. 24 133 (in Chinese) [宋新见, 惠俊英, 殷冬梅, 李艳梅 2005 应用声学 24 133]

    [3]

    Bucker H P 1976 J. Acoust. Soc. Am. 59 368

    [4]

    Baggeroer A B, Kuperman W A, Mikhalevsky P N 1993 IEEE J. Ocean. Eng. 18 401

    [5]

    Lee S, Makris N C 2006 J. Acoust. Soc. Am. 119 336

    [6]

    Thode A M, Kuperman W A, DSpain G L, Hodgkiss W S 2000 J. Acoust. Soc. Am. 107 278

    [7]

    Rakotonarivo S, Kuperman W A 2012 J. Acoust. Soc. Am. 132 2218

    [8]

    Baraniuk R G, Jones D L 1995 IEEE Trans. Sign. Process. 43 2269

    [9]

    Bonnel J, Nicolas B, Mars J I 2010 J. Acoust. Soc. Am. 128 719

    [10]

    Bonnel J, Chapman N R 2011 J. Acoust. Soc. Am. 130 EL101

    [11]

    Niu H Q, He L, Li Z L, Zhang R H, Nan M X 2014 Acta Acoust. 39 1 (in Chinese) [牛海强, 何利, 李整林, 张仁和, 南明星 2014 声学学报 39 1]

    [12]

    Niu H Q, Zhang R H, Li Z L, Guo Y G, He Li 2013 Chin. Phys. Lett. 30 804301

    [13]

    Zhou S H, Niu H Q, Ren Y, He L 2013 Science China: Phys. Mech. Astron. 43 s68 (in Chinese) [周士弘, 牛海强, 任云, 何利 2013 中国科学: 物理学 力学 天文学 43 s68]

    [14]

    Bonnel J, Touz G L, Gervaise C 2008 Oceans 2008 Quebec City, September 15-18, 2008, p1

    [15]

    Bonnel J, Thode A 2013 ICA 2013 Montreal Montreal, Canada, June 2-7, 2013 p070066

    [16]

    Lopatka M, Touz G L, Nicolas B, Cristol X, Mars J I, Fattaccioli D 2010 J. Adv. Signal Proc. 2010 304103

    [17]

    Qi Y B, Zhou S H, Zhang R H, Ren Y 2015 Acta Phys. Sin. 63 074301 (in Chinese) [戚聿波, 周士弘, 张仁和, 任云 2015 物理学报 63 074301]

    [18]

    Qi Y B, Zhou S H, Ren Y 2015 Acta Acoust. 64 144 (in Chinese) [戚聿波, 周士弘, 任云 2015 声学学报 64 144]

    [19]

    Qi Y B, Zhou S H, Zhang R H, Zhang B, Ren Y 2014 Acta Phys. Sin. 63 044303 (in Chinese) [戚聿波, 周士弘, 张仁和, 张波, 任云 2014 物理学报 63 044303]

    [20]

    Qi Y B 2015 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [戚聿波 2015 博士学位论文 (北京:中国科学院大学)]

    [21]

    Niu H Q 2014 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [牛海强 2014 博士学位论文 (北京:中国科学院大学)]

  • [1]

    Mao W N 2001 Journal of Southeast University 3 1 (in Chinese) [毛卫宁 2001 东南大学学报 3 1]

    [2]

    Song X J, Hui J Y, Yin D M, Li Y M 2005 Appl. Acoust. 24 133 (in Chinese) [宋新见, 惠俊英, 殷冬梅, 李艳梅 2005 应用声学 24 133]

    [3]

    Bucker H P 1976 J. Acoust. Soc. Am. 59 368

    [4]

    Baggeroer A B, Kuperman W A, Mikhalevsky P N 1993 IEEE J. Ocean. Eng. 18 401

    [5]

    Lee S, Makris N C 2006 J. Acoust. Soc. Am. 119 336

    [6]

    Thode A M, Kuperman W A, DSpain G L, Hodgkiss W S 2000 J. Acoust. Soc. Am. 107 278

    [7]

    Rakotonarivo S, Kuperman W A 2012 J. Acoust. Soc. Am. 132 2218

    [8]

    Baraniuk R G, Jones D L 1995 IEEE Trans. Sign. Process. 43 2269

    [9]

    Bonnel J, Nicolas B, Mars J I 2010 J. Acoust. Soc. Am. 128 719

    [10]

    Bonnel J, Chapman N R 2011 J. Acoust. Soc. Am. 130 EL101

    [11]

    Niu H Q, He L, Li Z L, Zhang R H, Nan M X 2014 Acta Acoust. 39 1 (in Chinese) [牛海强, 何利, 李整林, 张仁和, 南明星 2014 声学学报 39 1]

    [12]

    Niu H Q, Zhang R H, Li Z L, Guo Y G, He Li 2013 Chin. Phys. Lett. 30 804301

    [13]

    Zhou S H, Niu H Q, Ren Y, He L 2013 Science China: Phys. Mech. Astron. 43 s68 (in Chinese) [周士弘, 牛海强, 任云, 何利 2013 中国科学: 物理学 力学 天文学 43 s68]

    [14]

    Bonnel J, Touz G L, Gervaise C 2008 Oceans 2008 Quebec City, September 15-18, 2008, p1

    [15]

    Bonnel J, Thode A 2013 ICA 2013 Montreal Montreal, Canada, June 2-7, 2013 p070066

    [16]

    Lopatka M, Touz G L, Nicolas B, Cristol X, Mars J I, Fattaccioli D 2010 J. Adv. Signal Proc. 2010 304103

    [17]

    Qi Y B, Zhou S H, Zhang R H, Ren Y 2015 Acta Phys. Sin. 63 074301 (in Chinese) [戚聿波, 周士弘, 张仁和, 任云 2015 物理学报 63 074301]

    [18]

    Qi Y B, Zhou S H, Ren Y 2015 Acta Acoust. 64 144 (in Chinese) [戚聿波, 周士弘, 任云 2015 声学学报 64 144]

    [19]

    Qi Y B, Zhou S H, Zhang R H, Zhang B, Ren Y 2014 Acta Phys. Sin. 63 044303 (in Chinese) [戚聿波, 周士弘, 张仁和, 张波, 任云 2014 物理学报 63 044303]

    [20]

    Qi Y B 2015 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [戚聿波 2015 博士学位论文 (北京:中国科学院大学)]

    [21]

    Niu H Q 2014 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [牛海强 2014 博士学位论文 (北京:中国科学院大学)]

  • [1] 韦宜政, 孙超, 朱启轩. 浅海矢量声场极化特性的深度分布规律(已撤稿). 物理学报, 2024, 73(9): 094302. doi: 10.7498/aps.73.20231767
    [2] 刘欣宇, 杨苏辉, 廖英琦, 林学彤. 基于小波变换的激光水下测距. 物理学报, 2021, 70(18): 184205. doi: 10.7498/aps.70.20210569
    [3] 高德洋, 高大治, 迟静, 王良, 宋文华. Doppler-warping变换及其应用在声学目标运动速度估计. 物理学报, 2021, 70(12): 124302. doi: 10.7498/aps.70.20201653
    [4] 孟瑞洁, 周士弘, 李风华, 戚聿波. 浅海波导中低频声场干涉简正模态的判别. 物理学报, 2019, 68(13): 134304. doi: 10.7498/aps.68.20190221
    [5] 卫毅, 刘飞, 杨奎, 韩平丽, 王新华, 邵晓鹏. 浅海被动水下偏振成像探测方法. 物理学报, 2018, 67(18): 184202. doi: 10.7498/aps.67.20180692
    [6] 李佳蔚, 鹿力成, 郭圣明, 马力. warping变换提取单模态反演海底衰减系数. 物理学报, 2017, 66(20): 204301. doi: 10.7498/aps.66.204301
    [7] 李晓曼, 张明辉, 张海刚, 朴胜春, 刘亚琴, 周建波. 一种基于模态匹配的浅海波导中宽带脉冲声源的被动测距方法. 物理学报, 2017, 66(9): 094302. doi: 10.7498/aps.66.094302
    [8] 李晓曼, 朴胜春, 张明辉, 刘亚琴, 周建波. 一种基于单水听器的浅海水下声源被动测距方法. 物理学报, 2017, 66(18): 184301. doi: 10.7498/aps.66.184301
    [9] 冯明春, 徐亮, 刘文清, 刘建国, 高闽光, 魏秀丽. 基于MODTRAN模型使用被动傅里叶变换红外光谱技术对生物气溶胶的探测研究. 物理学报, 2016, 65(1): 014210. doi: 10.7498/aps.65.014210
    [10] 戚聿波, 周士弘, 张仁和. 浅海波导中折射类简正波的warping变换. 物理学报, 2016, 65(13): 134301. doi: 10.7498/aps.65.134301
    [11] 鹿力成, 马力. 基于Warping变换的波导时频分析. 物理学报, 2015, 64(2): 024305. doi: 10.7498/aps.64.024305
    [12] 戚聿波, 周士弘, 张仁和, 任云. 一种基于β-warping变换算子的被动声源距离估计方法. 物理学报, 2015, 64(7): 074301. doi: 10.7498/aps.64.074301
    [13] 张瑜, 刘秉琦, 闫宗群, 华文深, 李刚. 背景辐射对被动测距精度影响分析及实验研究. 物理学报, 2015, 64(3): 034216. doi: 10.7498/aps.64.034216
    [14] 朱良明, 李风华, 孙梅, 陈德胜. 基于频带分解和距离加权的单矢量水听器浅海被动测距方法研究. 物理学报, 2015, 64(15): 154303. doi: 10.7498/aps.64.154303
    [15] 戚聿波, 周士弘, 张仁和, 张波, 任云. 水平变化浅海声波导中模态特征频率与声源距离被动估计. 物理学报, 2014, 63(4): 044303. doi: 10.7498/aps.63.044303
    [16] 屈科, 胡长青, 赵梅. 利用时域波形快速反演海底单参数的方法. 物理学报, 2013, 62(22): 224303. doi: 10.7498/aps.62.224303
    [17] 安永泉, 李晋华, 王志斌, 王召巴. 基于大气氧光谱吸收特性的单目单波段被动测距. 物理学报, 2013, 62(14): 144210. doi: 10.7498/aps.62.144210
    [18] 钱祖文, 邵道远. 关于浅海声参量阵的应用. 物理学报, 1986, 35(10): 1374-1377. doi: 10.7498/aps.35.1374
    [19] 唐应吾. 负声速梯度浅海中的平均声强. 物理学报, 1977, 26(3): 225-231. doi: 10.7498/aps.26.225
    [20] 尚尔昌, 张仁和. 浅海远程混响理论. 物理学报, 1975, 24(4): 260-267. doi: 10.7498/aps.24.260
计量
  • 文章访问数:  6816
  • PDF下载量:  218
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-30
  • 修回日期:  2016-03-02
  • 刊出日期:  2016-05-05

/

返回文章
返回