搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甚高频激发的容性耦合Ar+O2等离子体电负特性研究

杨郁 唐成双 赵一帆 虞一青 辛煜

引用本文:
Citation:

甚高频激发的容性耦合Ar+O2等离子体电负特性研究

杨郁, 唐成双, 赵一帆, 虞一青, 辛煜

Electronegativity of capacitively coupled Ar+O2 plasma excited at very high frequency

Yang Yu, Tang Cheng-Shuang, Zhao Yi-Fan, Yu Yi-Qing, Xin Yu
PDF
导出引用
  • 利用探针辅助的脉冲激光诱导负离子剥离诊断技术对掺入5% O2的容性耦合Ar等离子体电负特性进行了诊断研究.首先详细解析了脉冲激光剥离后探针的电信号,分析了探针偏压在低于或高于空间电位下的探针收集信号特征;根据探针偏压与探针收集信号之间的依赖关系,用来描述Ar+O2等离子体电负特性的等离子体电负度被定义为脉冲激光剥离出的电子电流与偏压高于空间电位的探针收集到的背景电子电流的饱和比值,并对等离子体电负度随放电气压、射频功率以及轴向位置的变化进行了诊断测量.实验结果表明等离子体的电负度随着射频功率的增加而减小、随着放电气压的上升而变大;由于非对称电极的分布特性,在轴向方向上靠近功率电极时等离子体电负度有升高的趋势,这种趋势可能与鞘层边界附近二次电子的动力学行为以及负离子的产生与消失过程有关.
    By using pulsed laser induced detachment technique assisted with a Langmuir probe, the electronegative characteristics of the capacitively coupled Ar plasma doped with 5% O2 are studied in this paper. We first focus on the electrical signal of the probe after laser pulse has induced negative ion detachment, and then analyze characteristics of the probe signal with the probe bias below or above the plasma space potential. When the bias is set to be lower than the plasma potential, the probe signal usually shows a downward surge signal. As the bias is higher than the plasma potential, the main characteristics of the signal takes on an upward wide wave packet. The evolution behavior of the probe signal with bias from the downward surge valley to the upward wide wave packet might be due to the potential difference between the plasma space potential and the probe bias voltage. Furthermore, it shows that the position of the upward peak appears later than that of the downward surge valley, which may be related to the changing of the rate of the electron diffusion flux and the electric field drift flux. According to the dependence of probe collection signal on bias, the electronegativity describing the Ar+O2 plasma electronegative property is defined as saturation ratio of electron current after pulsed laser radiation to that of collection probe at a potential above plasma spatial potential. Plasma electronegativity is diagnosed with discharge pressure, radio-frequency (RF) input power and axial position. The experimental results show that the electronegativity of plasma decreases with input RF power increasing. As the gas pressure is kept at 12.0 Pa, the plasma electronegativity decreases from 5.05 to 0.98 with RF input power increasing from 50 to 300 W. It also shows an increasing trend of electronegativity with plasma discharge pressure increasing. Due to asymmetrical distribution of electrodes, the plasma electronegativity also takes on asymmetric one with respect to the axial position. In our experiments, the electronegativity near the power electrode shows about 1-4 times higher than that near the ground electrode, the lowest point of the plasma electronegativity seems to be located in the center of the plasma discharge. This may be related to the dynamics of the secondary electrons emitted from electrode and the competition processes between negative ion production in collisional dissociation of oxygen molecules and the losses of high energy electron and negative ion in collisional detachment of negative ion with oxygen molecule.
      通信作者: 辛煜, yuxin@suda.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11675117)资助的课题.
      Corresponding author: Xin Yu, yuxin@suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11675117).
    [1]

    Lieberman M A, Lichtenberg A J (translated by Pu Y K et al.) 2007 Plasma Discharge Principle and Material Processing (Beijing:Science Press) (in Chinese)[力伯曼M A, 里登伯格A J著(蒲以康等译) 2007等离子体放电原理与材料处理(北京:科学出版社)]

    [2]

    Inoue T, Taniguchi M, Morishita T, Dairaku M, Hanada M, Imai T, Kashiwagi M, Sakamoto K, Seki T, Watanabe K 2005 Nuclear Fusion 45 790

    [3]

    Shibayama T, Shindo H, Horiike Y 1996 Plasma Sources Sci. Technol. 5 254

    [4]

    Samukawa S 1996 Appl. Phys. Lett. 68 316

    [5]

    Takizawa K, Kono A, Sasaki K 2007 Appl. Phys. Lett. 90 011503

    [6]

    Franklin R N, Snell J 2000 J. Phys. D:Appl. Phys. 33 1990

    [7]

    Lichtenberg A J, Vahedi V, Lieberman M A, Rognlien T 1994 J. Appl. Phys. 75 2339

    [8]

    Sheridan T E, Chabert P, Boswell R W 1999 Plasma Sources Sci. Technol. 8 457

    [9]

    Chabert P, Sheridan T E, Boswell R W, Perrin J 1999 Plasma Sources Sci. Technol. 8 561

    [10]

    Liu H P, Zou X, Zou B Y, Qiu M H 2012 Acta Phys. Sin. 61 035201(in Chinese)[刘惠平, 邹秀, 邹滨雁, 邱明辉2012物理学报 61 035201]

    [11]

    Tuszewski M, Gary S P 2003 Phys. Plasmas 10 539

    [12]

    Plihon N, Chabert P 2011 Phys. Plasmas 18 082102

    [13]

    Dittmann K, Kllig C, Meichsner J 2012 Plasma Phys. Controlled Fusion 54 124038

    [14]

    Godyak V A, Piejak R B, Alexandrovich B M 1992 Phys. Rev. Lett. 68 40

    [15]

    Braithwaite N S J, Allen J E 1988 J. Phys. D:Appl. Phys. 21 1733

    [16]

    Shindo M, Uchino S, Ichiki R, Yoshimura S, Kawai Y 2001 Rev. Sci. Instrum. 72 2288

    [17]

    Bacal M, Hamilton G W, Bruneteau A M, Doucet H J, Taillet J 1979 Rev. Sci. Instrum. 50 719

    [18]

    Bacal M, Berlemont P, Bruneteau A M, Leroy R, Stern R A 1991 J. Appl. Phys. 70 1212

    [19]

    Bacal M 2000 Rev. Sci. Instrum. 71 3981

    [20]

    Sirse N, Karkari S K, Mujawar M A, Conway J, Turner M M 2011 Plasma Sources Sci. Technol. 20 055003

    [21]

    Conway J, Sirse N, Karkari S K, Turner M M 2010 Plasma Sources Sci. Technol. 19 065002

    [22]

    Meichsner J, Dittmann K, Kllig C 2012 Contribut. to Plasma Phys. 52 561

    [23]

    Surendra M, Graves D B 1991 Appl. Phys. Lett. 59 2091

    [24]

    Zou S, Tang Z H, Ji L L, Su X D, Xin Y 2012 Acta Phys. Sin. 61 075204(in Chinese)[邹帅, 唐中华, 吉亮亮, 苏晓东, 辛煜2012物理学报 61 075204]

    [25]

    Hong B S, Yuan T, Zou S, Tang Z H, Xu D S, Yu Y Q, Wang X S, Xin Y 2013 Acta Phys. Sin. 62 115202(in Chinese)[洪布双, 苑涛, 邹帅, 唐中华, 徐东升, 虞一青, 王栩生, 辛煜2013物理学报 62 115202]

    [26]

    Dodd R, You S D, Bryant P M, Bradley J W 2010 Plasma Sources Sci. Technol. 19 015021

    [27]

    Katsch H M, Sturm T, Quandt E, Döbele H F 2000 Plasma Sources Sci. Technol. 9 323

    [28]

    Vender D, Stoffels W W, Stoffels E, Kroesen G M, de Hoog F J 1995 Phys. Rev. E 51 2436

    [29]

    Stoffels E, Stoffels W W, Vender D, Kando M, Kroesen G M, de Hoog F J 1995 Phys. Rev. E 51 2425

    [30]

    Wang T, Wang J, Tang C S, Yang Y, Xin Y 2017 Nuclear Fusion and Plasma Phys. 37 37(in Chinese)[王涛, 王俊, 唐成双, 杨郁, 辛煜2017核聚变与等离子体物理 37 37]

    [31]

    Oudini N, Sirse N, Benallal R, Taccogna F, Aanesland A, Bendib A, Ellingboe A R 2015 Phys. Plasmas 22 073509

    [32]

    Pandey A K, Karkari S K 2017 Phys. Plasmas 24 013507

    [33]

    Teichmann T, Kllig C, Dittmann K, Matyash K, Schneider R, Meichsner J 2013 Phys. Plasmas 20 113509

    [34]

    Devynck P, Auvray J, Bacal M, Berlemont P, Bruneteau J, Leroy R, Stern R A 1989 Rev. Sci. Instrum. 60 2873

    [35]

    Bryant P M, Bradley J W 2012 Plasma Sources Sci. Technol. 22 015014

    [36]

    Wang J, Wang T, Tang C S, Xin Y 2016 Acta Phys. Sin. 65 055203(in Chinese)[王俊, 王涛, 唐成双, 辛煜2016物理学报 65 055203]

    [37]

    Wang J 2016 M. S. Thesis (Suzhou:Soochow University) (in Chinese)[王俊2016硕士学位论文(苏州:苏州大学)

    [38]

    Gudmundsson J T, Thorsteinsson E G 2007 Plasma Sources Sci. Technol. 16 399

    [39]

    Jaffke T, Meinke M, Hashemi R, Christophorou L G, Illenberger E 1992 Chem. Phys. Lett. 193 62

    [40]

    Brockhaus A, Leu G F, Selenin V, Tarnev K, Engemann J 2006 Plasma Sources Sci. Technol. 15 171

    [41]

    Burrow P D 1973 J. Chem. Phys. 59 4922

  • [1]

    Lieberman M A, Lichtenberg A J (translated by Pu Y K et al.) 2007 Plasma Discharge Principle and Material Processing (Beijing:Science Press) (in Chinese)[力伯曼M A, 里登伯格A J著(蒲以康等译) 2007等离子体放电原理与材料处理(北京:科学出版社)]

    [2]

    Inoue T, Taniguchi M, Morishita T, Dairaku M, Hanada M, Imai T, Kashiwagi M, Sakamoto K, Seki T, Watanabe K 2005 Nuclear Fusion 45 790

    [3]

    Shibayama T, Shindo H, Horiike Y 1996 Plasma Sources Sci. Technol. 5 254

    [4]

    Samukawa S 1996 Appl. Phys. Lett. 68 316

    [5]

    Takizawa K, Kono A, Sasaki K 2007 Appl. Phys. Lett. 90 011503

    [6]

    Franklin R N, Snell J 2000 J. Phys. D:Appl. Phys. 33 1990

    [7]

    Lichtenberg A J, Vahedi V, Lieberman M A, Rognlien T 1994 J. Appl. Phys. 75 2339

    [8]

    Sheridan T E, Chabert P, Boswell R W 1999 Plasma Sources Sci. Technol. 8 457

    [9]

    Chabert P, Sheridan T E, Boswell R W, Perrin J 1999 Plasma Sources Sci. Technol. 8 561

    [10]

    Liu H P, Zou X, Zou B Y, Qiu M H 2012 Acta Phys. Sin. 61 035201(in Chinese)[刘惠平, 邹秀, 邹滨雁, 邱明辉2012物理学报 61 035201]

    [11]

    Tuszewski M, Gary S P 2003 Phys. Plasmas 10 539

    [12]

    Plihon N, Chabert P 2011 Phys. Plasmas 18 082102

    [13]

    Dittmann K, Kllig C, Meichsner J 2012 Plasma Phys. Controlled Fusion 54 124038

    [14]

    Godyak V A, Piejak R B, Alexandrovich B M 1992 Phys. Rev. Lett. 68 40

    [15]

    Braithwaite N S J, Allen J E 1988 J. Phys. D:Appl. Phys. 21 1733

    [16]

    Shindo M, Uchino S, Ichiki R, Yoshimura S, Kawai Y 2001 Rev. Sci. Instrum. 72 2288

    [17]

    Bacal M, Hamilton G W, Bruneteau A M, Doucet H J, Taillet J 1979 Rev. Sci. Instrum. 50 719

    [18]

    Bacal M, Berlemont P, Bruneteau A M, Leroy R, Stern R A 1991 J. Appl. Phys. 70 1212

    [19]

    Bacal M 2000 Rev. Sci. Instrum. 71 3981

    [20]

    Sirse N, Karkari S K, Mujawar M A, Conway J, Turner M M 2011 Plasma Sources Sci. Technol. 20 055003

    [21]

    Conway J, Sirse N, Karkari S K, Turner M M 2010 Plasma Sources Sci. Technol. 19 065002

    [22]

    Meichsner J, Dittmann K, Kllig C 2012 Contribut. to Plasma Phys. 52 561

    [23]

    Surendra M, Graves D B 1991 Appl. Phys. Lett. 59 2091

    [24]

    Zou S, Tang Z H, Ji L L, Su X D, Xin Y 2012 Acta Phys. Sin. 61 075204(in Chinese)[邹帅, 唐中华, 吉亮亮, 苏晓东, 辛煜2012物理学报 61 075204]

    [25]

    Hong B S, Yuan T, Zou S, Tang Z H, Xu D S, Yu Y Q, Wang X S, Xin Y 2013 Acta Phys. Sin. 62 115202(in Chinese)[洪布双, 苑涛, 邹帅, 唐中华, 徐东升, 虞一青, 王栩生, 辛煜2013物理学报 62 115202]

    [26]

    Dodd R, You S D, Bryant P M, Bradley J W 2010 Plasma Sources Sci. Technol. 19 015021

    [27]

    Katsch H M, Sturm T, Quandt E, Döbele H F 2000 Plasma Sources Sci. Technol. 9 323

    [28]

    Vender D, Stoffels W W, Stoffels E, Kroesen G M, de Hoog F J 1995 Phys. Rev. E 51 2436

    [29]

    Stoffels E, Stoffels W W, Vender D, Kando M, Kroesen G M, de Hoog F J 1995 Phys. Rev. E 51 2425

    [30]

    Wang T, Wang J, Tang C S, Yang Y, Xin Y 2017 Nuclear Fusion and Plasma Phys. 37 37(in Chinese)[王涛, 王俊, 唐成双, 杨郁, 辛煜2017核聚变与等离子体物理 37 37]

    [31]

    Oudini N, Sirse N, Benallal R, Taccogna F, Aanesland A, Bendib A, Ellingboe A R 2015 Phys. Plasmas 22 073509

    [32]

    Pandey A K, Karkari S K 2017 Phys. Plasmas 24 013507

    [33]

    Teichmann T, Kllig C, Dittmann K, Matyash K, Schneider R, Meichsner J 2013 Phys. Plasmas 20 113509

    [34]

    Devynck P, Auvray J, Bacal M, Berlemont P, Bruneteau J, Leroy R, Stern R A 1989 Rev. Sci. Instrum. 60 2873

    [35]

    Bryant P M, Bradley J W 2012 Plasma Sources Sci. Technol. 22 015014

    [36]

    Wang J, Wang T, Tang C S, Xin Y 2016 Acta Phys. Sin. 65 055203(in Chinese)[王俊, 王涛, 唐成双, 辛煜2016物理学报 65 055203]

    [37]

    Wang J 2016 M. S. Thesis (Suzhou:Soochow University) (in Chinese)[王俊2016硕士学位论文(苏州:苏州大学)

    [38]

    Gudmundsson J T, Thorsteinsson E G 2007 Plasma Sources Sci. Technol. 16 399

    [39]

    Jaffke T, Meinke M, Hashemi R, Christophorou L G, Illenberger E 1992 Chem. Phys. Lett. 193 62

    [40]

    Brockhaus A, Leu G F, Selenin V, Tarnev K, Engemann J 2006 Plasma Sources Sci. Technol. 15 171

    [41]

    Burrow P D 1973 J. Chem. Phys. 59 4922

  • [1] 操礼阳, 马晓萍, 邓丽丽, 卢曼婷, 辛煜. 射频容性耦合Ar/O2等离子体的轴向诊断. 物理学报, 2021, 70(11): 115204. doi: 10.7498/aps.70.20202113
    [2] 王兴生, 马彦明, 高勋, 林景全. 纳秒脉冲激光诱导空气等离子体的近红外辐射特性. 物理学报, 2020, 69(2): 029502. doi: 10.7498/aps.69.20190753
    [3] 刘家合, 鲁佳哲, 雷俊杰, 高勋, 林景全. 气体压强对纳秒激光诱导空气等离子体特性的影响. 物理学报, 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [4] 林芷伊, 简俊涛, 王小华, 杭纬. 激光诱导铝等离子体中原子和离子组分膨胀特性. 物理学报, 2018, 67(18): 185201. doi: 10.7498/aps.67.20180595
    [5] 李百慧, 高勋, 宋超, 林景全. 磁空混合约束激光诱导Cu等离子体光谱特性. 物理学报, 2016, 65(23): 235201. doi: 10.7498/aps.65.235201
    [6] 刘超, 关燚炳, 张爱兵, 郑香脂, 孙越强. 电磁监测试验卫星朗缪尔探针电离层探测技术. 物理学报, 2016, 65(18): 189401. doi: 10.7498/aps.65.189401
    [7] 刘玉峰, 张连水, 和万霖, 黄宇, 杜艳君, 蓝丽娟, 丁艳军, 彭志敏. 激光诱导击穿火焰等离子体光谱研究. 物理学报, 2015, 64(4): 045202. doi: 10.7498/aps.64.045202
    [8] 刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君. 激光诱导击穿空气等离子体时间分辨特性的光谱研究. 物理学报, 2014, 63(20): 205205. doi: 10.7498/aps.63.205205
    [9] 汪胜晗, 李占龙, 孙成林, 里佐威, 门志伟. 激光诱导等离子体对水OH伸缩振动受激拉曼散射的影响. 物理学报, 2014, 63(20): 205204. doi: 10.7498/aps.63.205204
    [10] 李丞, 高勋, 刘潞, 林景全. 磁场约束下激光诱导等离子体光谱强度演化研究. 物理学报, 2014, 63(14): 145203. doi: 10.7498/aps.63.145203
    [11] 李宏伟, 韩建伟, 蔡明辉, 吴逢时, 张振龙. 激光诱导等离子体模拟微小空间碎片撞击诱发放电研究. 物理学报, 2014, 63(11): 119601. doi: 10.7498/aps.63.119601
    [12] 王琛, 安红海, 贾果, 方智恒, 王伟, 孟祥富, 谢志勇, 王世绩. 软X射线激光探针诊断高Z材料等离子体. 物理学报, 2014, 63(21): 215203. doi: 10.7498/aps.63.215203
    [13] 洪布双, 苑涛, 邹帅, 唐中华, 徐东升, 虞一青, 王栩生, 辛煜. 电负性气体的掺入对容性耦合Ar等离子体的影响. 物理学报, 2013, 62(11): 115202. doi: 10.7498/aps.62.115202
    [14] 李世雄, 白忠臣, 黄政, 张欣, 秦水介, 毛文雪. 激光诱导等离子体加工石英微通道机理研究. 物理学报, 2012, 61(11): 115201. doi: 10.7498/aps.61.115201
    [15] 邹帅, 唐中华, 吉亮亮, 苏晓东, 辛煜. 悬浮型微波共振探针在电负性容性耦合等离子体中电子密度的测量. 物理学报, 2012, 61(7): 075204. doi: 10.7498/aps.61.075204
    [16] 夏志林, 郭培涛, 薛亦渝, 黄才华, 李展望. 短脉冲激光诱导薄膜损伤的等离子体爆炸过程分析. 物理学报, 2010, 59(5): 3523-3530. doi: 10.7498/aps.59.3523
    [17] 洪小刚, 徐文东, 李小刚, 赵成强, 唐晓东. 数值模拟探针诱导表面等离子体共振耦合纳米光刻. 物理学报, 2008, 57(10): 6643-6648. doi: 10.7498/aps.57.6643
    [18] 姚若河, 池凌飞, 林璇英, 石旺舟, 林揆训. 射频辉光放电等离子体的电探针诊断及数据处理. 物理学报, 2000, 49(5): 922-925. doi: 10.7498/aps.49.922
    [19] 朱莳通, 沈文达. 强激光等离子体的光学度规描述. 物理学报, 1993, 42(9): 1438-1442. doi: 10.7498/aps.42.1438
    [20] 江志明, 徐至展, 陈时胜, 林礼煌, 张伟清, 钱爱娣. 利用多分幅光学探针诊断系统研究激光等离子体. 物理学报, 1988, 37(10): 1658-1663. doi: 10.7498/aps.37.1658
计量
  • 文章访问数:  2545
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-28
  • 修回日期:  2017-06-21
  • 刊出日期:  2017-09-05

甚高频激发的容性耦合Ar+O2等离子体电负特性研究

  • 1. 苏州大学物理与光电·能源学部, 苏州 215006
  • 通信作者: 辛煜, yuxin@suda.edu.cn
    基金项目: 国家自然科学基金(批准号:11675117)资助的课题.

摘要: 利用探针辅助的脉冲激光诱导负离子剥离诊断技术对掺入5% O2的容性耦合Ar等离子体电负特性进行了诊断研究.首先详细解析了脉冲激光剥离后探针的电信号,分析了探针偏压在低于或高于空间电位下的探针收集信号特征;根据探针偏压与探针收集信号之间的依赖关系,用来描述Ar+O2等离子体电负特性的等离子体电负度被定义为脉冲激光剥离出的电子电流与偏压高于空间电位的探针收集到的背景电子电流的饱和比值,并对等离子体电负度随放电气压、射频功率以及轴向位置的变化进行了诊断测量.实验结果表明等离子体的电负度随着射频功率的增加而减小、随着放电气压的上升而变大;由于非对称电极的分布特性,在轴向方向上靠近功率电极时等离子体电负度有升高的趋势,这种趋势可能与鞘层边界附近二次电子的动力学行为以及负离子的产生与消失过程有关.

English Abstract

参考文献 (41)

目录

    /

    返回文章
    返回