搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

真空及空气中金属丝电爆炸特性研究

王坤 史宗谦 石元杰 赵志刚 张董

引用本文:
Citation:

真空及空气中金属丝电爆炸特性研究

王坤, 史宗谦, 石元杰, 赵志刚, 张董

Characteristics of electrical explosion of single wire in a vacuum and in the air

Wang Kun, Shi Zong-Qian, Shi Yuan-Jie, Zhao Zhi-Gang, Zhang Dong
PDF
导出引用
  • 开展了铝丝在真空和空气环境中的电爆炸特性研究.从金属丝电爆炸的电压、电流波形得到了金属丝内的沉积能量,并基于以上电参数特征分析了电爆炸产物的状态,获得了空气中铝丝电爆炸电流暂停时间随初级储能电容充电电压的变化规律.真空和空气中铝丝电爆炸在电压击穿时刻的沉积能量分别为2.8和6 eV/atom.采用波长为532 nm、亚纳秒激光探针对金属丝电爆炸物理过程开展了高时空分辨率的阴影和纹影诊断.阴影图像清晰地展示了不同气氛环境中高密度电爆炸产物的膨胀过程,根据光学诊断图像分析了高密度丝核沉积能量的结构和空气中铝丝电爆炸产生的激波的膨胀轨迹.真空和空气环境中高密度电爆炸产物的平均膨胀速度分别为1.9和3 km/s.基于实验数据和输运参数模型,估算了金属丝在电压击穿时刻的温度.
    The characteristics of the electrical explosion of aluminum wire in a vacuum and in the air are investigated.The process of energy deposition is derived from the typical voltage and current waveforms.The energy deposited into the aluminum wire at the instant of voltage breakdown is very important for estimating the state of the metal wire.Energy of~2.8 eV/atom is deposited into the aluminum wire in a vacuum at the instant of voltage breakdown.However,the current flowing through the load for the electrical explosion of aluminum wire in the air decreases to zero gradually after the onset of the phase explosion,coming into the dwell stage.Energy of about 6 eV/atom is deposited into the wire at the instant of voltage breakdown for exploding aluminum wire in the air.Temperatures of 0.9 eV and 0.4 eV are estimated for exploding aluminum wires in a vacuum and in the air according to the experimental data combined with the transport coefficient model.The dwell stage is a significant feature for exploding aluminum wires in the air.The dependence of the dwell time on the initial charging voltage of the primary energy-storage capacitor is derived.The dwell time decreases from 95 ns to 17 ns with the increase of the initial voltage from 13 kV to 17 kV.The optical diagnostic equipment with high spatial and temporal resolution is constructed by a 532 nm,30 ps laser probe.The shadowgram demonstrates the expansion trajectories of the high-density products in different media.The expansion velocities of the high-density core for exploding aluminum wire in a vacuum and in the air are 1.9 km/s and 3 km/s,respectively.The energy deposition into the aluminum wire near the electrode region is slightly higher than in the middle region due to the polarity effect, which is analyzed by the distribution of the radial electric field on the wire surface.Because the explosive emission of the electrons is suppressed substantially by the air,the structure of the energy deposition for exploding aluminum wire in the air is more homogeneous.The structures of the energy deposition and the expansion trajectory of the shock wave are analyzed.The schlieren diagnostic is used to translate the exploding products with different refractivities.The schlieren images for exploding aluminum wire in a vacuum show that the metal wire is exploded into two-phase structure,i.e.,the low-density high-temperature corona plasma surrounding the high-density low-temperature core.However,the schlieren images for exploding aluminum wire in the air demonstrate that in addition to the core-corona structure,the channels of shock wave and compressed air layer are formed.The expansion trajectory of the shockwave front is derived according to the optical diagnostics.
      通信作者: 史宗谦, zqshi@mail.xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51322706,51237006,51325705)和河北省高等学校青年拔尖人才(批准号:BJ2017038)资助的课题.
      Corresponding author: Shi Zong-Qian, zqshi@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51322706, 51237006, 51325705) and the Program for the Top Young and Middle-aged Innovative Talents of Higher Learning Institutions of Hebei, China (Grant No. BJ2017038).
    [1]

    Zou X B, Mao Z G, Wang X X, Jiang W H 2013 Chin. Phys. B 22 045206

    [2]

    Clérouin J, Noiret P, Blottiau P, Recoules V, Siberchicot B, Renaudin P, Blancard C, Faussurier G, Holst B, Starrett C E 2012 Phys. Plasmas 19 082702

    [3]

    Zhang Y M, Qiu A C, Zhou H B, Liu Q Y, Tang J P, Liu M J 2016 High Voltage Eng. 42 1009(in Chinese)[张永民, 邱爱慈, 周海滨, 刘巧珏, 汤俊萍, 刘美娟2016高电压技术 42 1009]

    [4]

    Haines M G 2011 Plasma Phys. Control. Fusion 53 093001

    [5]

    Sarkisov G S, Rosenthal S E, Cochrane K W, Struve K, Deeney C, McDaniel D 2005 Phys. Rev. E 71 046404

    [6]

    Shi Z Q, Shi Y J, Wang K, Jia S L 2016 Phys. Plasmas 23 032707

    [7]

    Duselis P U, Kusse B R 2003 Phys. Plasmas 10 565

    [8]

    Shi Z Q, Wang K, Shi Y J, Wu J, Han R Y 2015 J. Appl. Phys. 118 243302

    [9]

    Sarkisov G S, Sasorov P, Struve K, McDaniel D, Gribov A, Oleinik G 2002 Phys. Rev. E 66 046413

    [10]

    Wang K 2017 Phys. Plasmas 24 022702

    [11]

    Li Y, Sheng L, Wu J, Li X, Zhao J, Zhang M, Yuan Y, Peng B 2014 Phys. Plasmas 21 102513

    [12]

    Shi Y J, Shi Z Q, Wang K, Wu Z Q, Jia S L 2017 Phys. Plasmas 24 012706

    [13]

    Beilis I I, Baksht B R, Oreshkin V I, Russkikh A G, Chaikovskii S A, Labetskii A, Ratakhin N A, Shishlov A V 2008 Phys. Plasmas 15 013501

    [14]

    Shi H T, Zou X B, Wang X X 2016 Appl. Phys. Lett. 109 134105

    [15]

    Wu J, Li X W, Wang K, Li Z, Yang Z, Shi Q Z, Jia S L, Qiu A C 2014 Phys. Plasmas 21 112708

    [16]

    Wang K, Shi Z Q, Shi Y J, Bai J, Li Y, Wu Z Q, Qiu A C, Jia S L 2016 Acta Phys. Sin. 65 015203(in Chinese)[王坤, 史宗谦, 石元杰, 白骏, 李阳, 武子骞, 邱爱慈, 贾申利2016物理学报 65 015203]

    [17]

    Wang K, Shi Z Q, Shi Y J, Bai J, Wu J, Jia S L 2015 Phys. Plasmas 22 062709

    [18]

    Tkachenkon S I, Gasilov V, Ol'khovskaya O 2011 Math. Models Comput. Simul. 3 575

    [19]

    Chase Jr M W 1998 J. Phys. Chem. Ref. Data Monograph 9

    [20]

    Desjarlais M P 2001 Contrib. Plasma Phys. 41 267

    [21]

    Hu M, Kusse B R 2004 Phys. Plasmas 11 1145

  • [1]

    Zou X B, Mao Z G, Wang X X, Jiang W H 2013 Chin. Phys. B 22 045206

    [2]

    Clérouin J, Noiret P, Blottiau P, Recoules V, Siberchicot B, Renaudin P, Blancard C, Faussurier G, Holst B, Starrett C E 2012 Phys. Plasmas 19 082702

    [3]

    Zhang Y M, Qiu A C, Zhou H B, Liu Q Y, Tang J P, Liu M J 2016 High Voltage Eng. 42 1009(in Chinese)[张永民, 邱爱慈, 周海滨, 刘巧珏, 汤俊萍, 刘美娟2016高电压技术 42 1009]

    [4]

    Haines M G 2011 Plasma Phys. Control. Fusion 53 093001

    [5]

    Sarkisov G S, Rosenthal S E, Cochrane K W, Struve K, Deeney C, McDaniel D 2005 Phys. Rev. E 71 046404

    [6]

    Shi Z Q, Shi Y J, Wang K, Jia S L 2016 Phys. Plasmas 23 032707

    [7]

    Duselis P U, Kusse B R 2003 Phys. Plasmas 10 565

    [8]

    Shi Z Q, Wang K, Shi Y J, Wu J, Han R Y 2015 J. Appl. Phys. 118 243302

    [9]

    Sarkisov G S, Sasorov P, Struve K, McDaniel D, Gribov A, Oleinik G 2002 Phys. Rev. E 66 046413

    [10]

    Wang K 2017 Phys. Plasmas 24 022702

    [11]

    Li Y, Sheng L, Wu J, Li X, Zhao J, Zhang M, Yuan Y, Peng B 2014 Phys. Plasmas 21 102513

    [12]

    Shi Y J, Shi Z Q, Wang K, Wu Z Q, Jia S L 2017 Phys. Plasmas 24 012706

    [13]

    Beilis I I, Baksht B R, Oreshkin V I, Russkikh A G, Chaikovskii S A, Labetskii A, Ratakhin N A, Shishlov A V 2008 Phys. Plasmas 15 013501

    [14]

    Shi H T, Zou X B, Wang X X 2016 Appl. Phys. Lett. 109 134105

    [15]

    Wu J, Li X W, Wang K, Li Z, Yang Z, Shi Q Z, Jia S L, Qiu A C 2014 Phys. Plasmas 21 112708

    [16]

    Wang K, Shi Z Q, Shi Y J, Bai J, Li Y, Wu Z Q, Qiu A C, Jia S L 2016 Acta Phys. Sin. 65 015203(in Chinese)[王坤, 史宗谦, 石元杰, 白骏, 李阳, 武子骞, 邱爱慈, 贾申利2016物理学报 65 015203]

    [17]

    Wang K, Shi Z Q, Shi Y J, Bai J, Wu J, Jia S L 2015 Phys. Plasmas 22 062709

    [18]

    Tkachenkon S I, Gasilov V, Ol'khovskaya O 2011 Math. Models Comput. Simul. 3 575

    [19]

    Chase Jr M W 1998 J. Phys. Chem. Ref. Data Monograph 9

    [20]

    Desjarlais M P 2001 Contrib. Plasma Phys. 41 267

    [21]

    Hu M, Kusse B R 2004 Phys. Plasmas 11 1145

  • [1] 李琛, 韩若愚, 刘毅, 张晨阳, 欧阳吉庭, 丁卫东. 空气中单丝和丝阵电爆炸特性的比较. 物理学报, 2020, 69(7): 075203. doi: 10.7498/aps.69.20191797
    [2] 陈忠旺, 宁成. 基于MULTI2D-Z程序的Z箍缩动态黑腔形成过程模拟. 物理学报, 2017, 66(12): 125202. doi: 10.7498/aps.66.125202
    [3] 蒙世坚, 黄展常, 甯家敏, 胡青元, 叶繁, 秦义, 许泽平, 徐荣昆. Z箍缩动态黑腔冲击波辐射图像诊断. 物理学报, 2016, 65(7): 075201. doi: 10.7498/aps.65.075201
    [4] 王坤, 史宗谦, 石元杰, 白骏, 李阳, 武子骞, 邱爱慈, 贾申利. 真空中铝单丝电爆炸的实验研究. 物理学报, 2016, 65(1): 015203. doi: 10.7498/aps.65.015203
    [5] 赵屾, 朱鑫磊, 石桓通, 邹晓兵, 王新新. 用X-pinch对双丝Z箍缩进行轴向X射线背光照相. 物理学报, 2015, 64(1): 015203. doi: 10.7498/aps.64.015203
    [6] 盛亮, 李阳, 袁媛, 彭博栋, 李沫, 张美, 赵吉祯, 魏福利, 王亮平, 黑东炜, 邱爱慈. 表面绝缘铝平面丝阵Z箍缩实验研究. 物理学报, 2014, 63(5): 055201. doi: 10.7498/aps.63.055201
    [7] 盛亮, 彭博栋, 袁媛, 张美, 李奎念, 张信军, 赵晨, 赵吉祯, 李沫, 王培伟, 李阳. 表面绝缘混合平面丝阵Z箍缩激光阴影图像诊断. 物理学报, 2014, 63(23): 235205. doi: 10.7498/aps.63.235205
    [8] 但加坤, 任晓东, 黄显宾, 张思群, 周少彤, 段书超, 欧阳凯, 蔡红春, 卫兵, 计策, 何安, 夏明鹤, 丰树平, 王勐, 谢卫平. Z箍缩内爆产生的电磁脉冲辐射. 物理学报, 2013, 62(24): 245201. doi: 10.7498/aps.62.245201
    [9] 叶繁, 薛飞彪, 褚衍运, 司粉妮, 胡青元, 宁家敏, 周林, 杨建伦, 徐荣昆, 李正宏, 许泽平. 双层丝阵Z箍缩电流分配实验研究. 物理学报, 2013, 62(17): 175203. doi: 10.7498/aps.62.175203
    [10] 周少彤, 李军, 黄显宾, 蔡红春, 张思群, 李晶, 段书超, 周荣国. 阳加速器钛丝X箍缩光源辐射特性实验研究. 物理学报, 2012, 61(16): 165202. doi: 10.7498/aps.61.165202
    [11] 蒙世坚, 李正宏, 秦义, 叶繁, 徐荣昆. X射线连续谱法诊断铝丝阵Z箍缩等离子体温度. 物理学报, 2011, 60(4): 045211. doi: 10.7498/aps.60.045211
    [12] 盛亮, 邱孟通, 黑东炜, 邱爱慈, 丛培天, 王亮平, 魏福利. 丝阵负载Z箍缩内爆动力学研究. 物理学报, 2011, 60(5): 055205. doi: 10.7498/aps.60.055205
    [13] 盛亮, 王亮平, 李阳, 彭博栋, 张美, 吴坚, 王培伟, 魏福利, 袁媛. 平面丝阵负载Z箍缩内爆动力学一维图像诊断. 物理学报, 2011, 60(10): 105205. doi: 10.7498/aps.60.105205
    [14] 王亮平, 韩娟娟, 吴坚, 郭宁, 吴刚, 李岩, 邱爱慈. 基于单丝行为的平面型丝阵Z箍缩模拟. 物理学报, 2010, 59(12): 8685-8691. doi: 10.7498/aps.59.8685
    [15] 夏广新, 章法强, 许泽平, 徐荣昆, 陈进川, 宁家敏. 单层丝阵负载Z箍缩内爆辐射特性研究. 物理学报, 2010, 59(1): 97-102. doi: 10.7498/aps.59.97
    [16] 吴刚, 邱爱慈, 吕敏, 蒯斌, 王亮平, 丛培天, 邱孟通, 雷天时, 孙铁平, 郭宁, 韩娟娟, 张信军, 黄涛, 张国伟, 乔开来. “强光一号”Al丝阵Z箍缩产生K层辐射实验研究. 物理学报, 2009, 58(7): 4779-4786. doi: 10.7498/aps.58.4779
    [17] 黄显宾, 杨礼兵, 顾元朝, 邓建军, 周荣国, 邹 杰, 周少彤, 张思群, 陈光华, 畅里华, 李丰平, 欧阳凯, 李 军, 杨 亮, 王 雄, 张朝辉. 氩气Z箍缩内爆动力学过程实验研究. 物理学报, 2006, 55(4): 1900-1906. doi: 10.7498/aps.55.1900
    [18] 张 扬, 丁 宁. 轴向流对Z箍缩等离子体稳定性的影响. 物理学报, 2006, 55(5): 2333-2339. doi: 10.7498/aps.55.2333
    [19] 宁 成, 李正宏, 华欣生, 徐荣昆, 彭先觉, 许泽平, 杨建伦, 郭 存, 蒋世伦, 丰树平, 杨礼兵, 晏成立, 宋凤军, V. P. Smirnov, Yu. G. Kalinin, A. S. Kingsep, A. S. Chernenko, E. V. Grabovsky. 铝-钨丝混编阵的Z-箍缩实验研究. 物理学报, 2004, 53(7): 2244-2249. doi: 10.7498/aps.53.2244
    [20] 李玉同, 张 杰, 陈黎明, 夏江帆, 腾 浩, 魏志义, 江文勉. 对飞秒激光等离子体相互作用中横向箍缩的观察. 物理学报, 2000, 49(7): 1400-1403. doi: 10.7498/aps.49.1400
计量
  • 文章访问数:  6139
  • PDF下载量:  203
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-03
  • 修回日期:  2017-06-24
  • 刊出日期:  2017-09-05

/

返回文章
返回