搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高光谱分辨率激光雷达鉴频器的设计与分析

狄慧鸽 华杭波 张佳琪 张战飞 华灯鑫 高飞 汪丽 辛文辉 赵恒

引用本文:
Citation:

高光谱分辨率激光雷达鉴频器的设计与分析

狄慧鸽, 华杭波, 张佳琪, 张战飞, 华灯鑫, 高飞, 汪丽, 辛文辉, 赵恒

Design and analysis of high-spectral resolution lidar discriminator

Di Hui-Ge, Hua Hang-Bo, Zhang Jia-Qi, Zhang Zhan-Fei, Hua Deng-Xin, Gao Fei, Wang Li, Xin Wen-Hui, Zhao Heng
PDF
导出引用
  • 提出了利用Fabry-Perot干涉仪的反射场实现高光谱分辨率激光雷达精细探测大气光学参量的新方法和思路.设计了高光谱分辨率的分光系统,并分析了干涉仪反射场的光谱透过特征曲线.结合高光谱激光雷达探测信号特征,讨论分析了谱分离比和瑞利信号透过率随反射率和腔长的变化曲线,同时结合误差传递公式,建立了仿真分析模型,讨论了回波光束发散角和入射角变化对激光雷达探测结果的影响.结果表明,所提出的Fabry-Perot干涉仪反射场可以实现高光谱分辨率激光雷达探测系统的精细分光,同时探测结果误差随回波光束发散角变化不敏感,控制发散角在10 mrad以内,入射角在1.5 mrad以内时,可以实现气溶胶光学参数廓线的高精度探测.
    An accurate aerosol optical property can be obtained by a high spectral resolution lidar (HSRL) technique, which employs a narrow spectral filter to suppress Mie scattering in the lidar return signal. The ability for filter to suppress Rayleigh scattering is critical for the HSRL. In the HSRL system, Rayleigh scattering signal is obtained and aerosol scattering is suppressed at least by a factor of 10-5 through using the narrow filter. Usually, an atomic absorption filter can reach this level. While, the gaseous absorption lines do not exist at many convenient laser wavelengths, thus restricting the development of multi-wavelength HSRL instrument. A new and practical filtering method is proposed to realize the precise detection of atmospheric optical parameters by using the reflection field of Fabry-Perot (FP) interferometer. An optical splitting system with high spectral resolution is designed and its spectral characteristics are analyzed. Based on the characteristic of hyper-spectral lidar detection signal, the variations of spectral separation ratio and Rayleigh signal transmittance with reflectivity and cavity length are discussed. Spectral separation ratio is the transmittance ratio of aerosol scattering signal to molecular scattering signal through the spectral filter. With the increases of FP cavity length and surface reflectivity, the spectral separation ratio decreases and the Rayleigh signal transmission increases. The high spectral separation ratio and Rayleigh signal transmittance can be achieved by the reflection field of FP interferometer when the FP cavity length and reflectivity parameter can be chosen reasonably. We design an FP interferometer with a cavity length of 36 mm and reflectivity of 0.4. Its spectral separation ratio is affected by the echo divergence and incidence angle. The spectral separation ratio keeps unchanged when the beam divergence angle is within 3 mrad and the incident angle of the beam is within 0.5 mrad. In addition, a simulation analysis model is established based on the error propagation. An observed actual Mie-scattering profile is used for analyzing the errors. Moreover, the influences of the divergence angle and the incident angle of the echo beam on detection results are also discussed. The results show that the proposed FP interferometer can achieve fine spectral separation of Mie and Rayleigh scattering signal, and the error of detection result is not sensitive to laser divergence angle. Fine aerosol optical parameters can be achieved when the divergence and incidence angles are controlled within 10 mrad and 1.5 mrad, respectively.
      通信作者: 华灯鑫, dengxinhua@xaut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61575160,61308107,41627807)和陕西省青年科技新星人才项目(资助号:2016KJXX-72)资助的课题.
      Corresponding author: Hua Deng-Xin, dengxinhua@xaut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61575160, 61308107, 41627807) and the Shaanxi Province Youth Science and Technology Talent Fund, China (Grant No. 2016KJXX-72).
    [1]

    Shipley S T, Tracy D H, Eloranta E W, Trauger J T, Sroga J T, Roesler F L, Weinman J A 1983 Appl. Opt. 22 3716

    [2]

    Fokitis E, Fetfatzis P, Georgakopoulou A, Maltezos S, Aravantinos A 2009 Nucl. Phys. B 190 61

    [3]

    Foster M J, Bond R, Storey J, Thwaite C, Labandibar J Y, Bakalski I, Heliere A, Delev A, Rees D, Slimm M 2009 Opt. Express 17 3476

    [4]

    Zhang R W, Sun X J, Yan W, Zhao J, Liu L, Li Y, Zhang C L, Zhou J H 2014 Acta Phys. Sin. 63 140703(in Chinese)[张日伟, 孙学金, 严卫, 赵剑, 刘磊, 李岩, 张传亮, 周俊浩2014物理学报 63 140703]

    [5]

    Shen F H, Sun D S, Liu C L, Qiu C Q, Shu Z F 2013 Acta Phys. Sin. 62 220702(in Chinese)[沈法华, 孙东松, 刘成林, 仇成群, 舒志峰2013物理学报 62 220702]

    [6]

    Burton S P, Ferrare R A, Hostetler C A, Hair J W, Rogers R R, Obland M D, Butler C F, Cook A L, Harper D B, Froyd K D 2012 Atmos. Meas. Tech. 5 73

    [7]

    Cheng Z T, Liu D, Luo J, Yang Y Y, Zhou Y D, Zhang Y P, Duan L L, Su L, Yang L M, Shen Y B, Wang K W, Bai J 2015 Op. Express 23 12117

    [8]

    Shimizu H, Lee S A, She C Y 1983 Appl. Opt. 22 1373

    [9]

    She C Y, Alvarez Ⅱ R J, Caldwell L M, Krueger D A 1992 Opt. Lett. 17 541

    [10]

    Hair J W, Hostetler C A, Cook A L, Harper D B, Ferrare R A, Mack T L, Welch W, Izquierdo L R, Hovis F E 2008 Appl. Opt. 47 6734

    [11]

    Hair J W, Hostetler C A, Ferrare R A, Cook A L, Harper D B 2006 Proceedings of 23rd International Laser Radar Conference 1 411

    [12]

    Song X Q, Guo J J, Yan Z A, Zhang K L, Li Z G, Liu Z S 2008 Prog. Nat. Sci. 18 1009(in Chinese)[宋小全, 郭金家, 闫召爱, 张凯临, 李志刚, 刘智深2008自然科学进展 18 1009]

    [13]

    Guo J J, Yan Z A, Wu S H, Song X Q, Liu Z S 2005 J. Optoelectron. Lasers 19 66(in Chinese)[郭金家, 闫召爱, 吴松华, 宋小全, 刘智深2005光电子激光 19 66]

    [14]

    Hua D X, Uchida M, Kobayashi T 2004 Opt. Lett. 29 1063

    [15]

    Hua D X, Uchida M, Kobayashi T 2005 Appl. Opt. 44 1305

    [16]

    Hua D X, Uchida M, Kobayashi T 2005 Appl. Opt. 44 1315

    [17]

    Liu D, Yang Y Y, Cheng Z T, Huang H L, Zhang B, Ling T, Shen Y B 2013 Opt. Express 21 13084

    [18]

    Cheng Z T, Liu D, Luo J, Yang Y Y, Wang Z F, Zhou Y D, Huang H L, Shen Y B 2014 Acta Opt. Sin. 34 0801003(in Chinese)[成中涛, 刘东, 罗敬, 杨甬英, 王治飞, 周雨迪, 黄寒璐, 沈亦兵2014光学学报 34 0801003]

    [19]

    Cheng Z T, Liu D, Luo J, Yang Y Y, Zhou Y D, Zhang Y P, Duan L L, Su L, Yang L M, Shen Y B, Wang K W, Bai J 2015 Chin. J. Lasers 23 12117(in Chinese)[成中涛, 刘东, 罗敬, 杨甬英, 周雨迪, 张与鹏, 段绿林, 苏林, 杨李茗, 沈亦兵, 汪凯巍, 白剑2015中国激光 23 12117]

    [20]

    Di H G, Zhang Z F, Hua H B, Zhang J Q, Hua D X, Wang Y F, He T Y 2017 Opt. Express 25 5068

  • [1]

    Shipley S T, Tracy D H, Eloranta E W, Trauger J T, Sroga J T, Roesler F L, Weinman J A 1983 Appl. Opt. 22 3716

    [2]

    Fokitis E, Fetfatzis P, Georgakopoulou A, Maltezos S, Aravantinos A 2009 Nucl. Phys. B 190 61

    [3]

    Foster M J, Bond R, Storey J, Thwaite C, Labandibar J Y, Bakalski I, Heliere A, Delev A, Rees D, Slimm M 2009 Opt. Express 17 3476

    [4]

    Zhang R W, Sun X J, Yan W, Zhao J, Liu L, Li Y, Zhang C L, Zhou J H 2014 Acta Phys. Sin. 63 140703(in Chinese)[张日伟, 孙学金, 严卫, 赵剑, 刘磊, 李岩, 张传亮, 周俊浩2014物理学报 63 140703]

    [5]

    Shen F H, Sun D S, Liu C L, Qiu C Q, Shu Z F 2013 Acta Phys. Sin. 62 220702(in Chinese)[沈法华, 孙东松, 刘成林, 仇成群, 舒志峰2013物理学报 62 220702]

    [6]

    Burton S P, Ferrare R A, Hostetler C A, Hair J W, Rogers R R, Obland M D, Butler C F, Cook A L, Harper D B, Froyd K D 2012 Atmos. Meas. Tech. 5 73

    [7]

    Cheng Z T, Liu D, Luo J, Yang Y Y, Zhou Y D, Zhang Y P, Duan L L, Su L, Yang L M, Shen Y B, Wang K W, Bai J 2015 Op. Express 23 12117

    [8]

    Shimizu H, Lee S A, She C Y 1983 Appl. Opt. 22 1373

    [9]

    She C Y, Alvarez Ⅱ R J, Caldwell L M, Krueger D A 1992 Opt. Lett. 17 541

    [10]

    Hair J W, Hostetler C A, Cook A L, Harper D B, Ferrare R A, Mack T L, Welch W, Izquierdo L R, Hovis F E 2008 Appl. Opt. 47 6734

    [11]

    Hair J W, Hostetler C A, Ferrare R A, Cook A L, Harper D B 2006 Proceedings of 23rd International Laser Radar Conference 1 411

    [12]

    Song X Q, Guo J J, Yan Z A, Zhang K L, Li Z G, Liu Z S 2008 Prog. Nat. Sci. 18 1009(in Chinese)[宋小全, 郭金家, 闫召爱, 张凯临, 李志刚, 刘智深2008自然科学进展 18 1009]

    [13]

    Guo J J, Yan Z A, Wu S H, Song X Q, Liu Z S 2005 J. Optoelectron. Lasers 19 66(in Chinese)[郭金家, 闫召爱, 吴松华, 宋小全, 刘智深2005光电子激光 19 66]

    [14]

    Hua D X, Uchida M, Kobayashi T 2004 Opt. Lett. 29 1063

    [15]

    Hua D X, Uchida M, Kobayashi T 2005 Appl. Opt. 44 1305

    [16]

    Hua D X, Uchida M, Kobayashi T 2005 Appl. Opt. 44 1315

    [17]

    Liu D, Yang Y Y, Cheng Z T, Huang H L, Zhang B, Ling T, Shen Y B 2013 Opt. Express 21 13084

    [18]

    Cheng Z T, Liu D, Luo J, Yang Y Y, Wang Z F, Zhou Y D, Huang H L, Shen Y B 2014 Acta Opt. Sin. 34 0801003(in Chinese)[成中涛, 刘东, 罗敬, 杨甬英, 王治飞, 周雨迪, 黄寒璐, 沈亦兵2014光学学报 34 0801003]

    [19]

    Cheng Z T, Liu D, Luo J, Yang Y Y, Zhou Y D, Zhang Y P, Duan L L, Su L, Yang L M, Shen Y B, Wang K W, Bai J 2015 Chin. J. Lasers 23 12117(in Chinese)[成中涛, 刘东, 罗敬, 杨甬英, 周雨迪, 张与鹏, 段绿林, 苏林, 杨李茗, 沈亦兵, 汪凯巍, 白剑2015中国激光 23 12117]

    [20]

    Di H G, Zhang Z F, Hua H B, Zhang J Q, Hua D X, Wang Y F, He T Y 2017 Opt. Express 25 5068

  • [1] 王明军, 魏亚飞, 柯熙政. 复杂大气背景下机载通信终端与无人机目标之间的激光传输特性研究. 物理学报, 2019, 68(9): 094203. doi: 10.7498/aps.68.20182052
    [2] 刘厚通, 毛敏娟. 一种无需定标的地基激光雷达气溶胶消光系数精确反演方法. 物理学报, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [3] 杜军, 杨娜, 李峻灵, 曲彦臣, 李世明, 丁云鸿, 李锐. 相位调制激光多普勒频移测量方法的改进. 物理学报, 2018, 67(6): 064204. doi: 10.7498/aps.67.20172049
    [4] 才啟胜, 黄旻, 韩炜, 刘怡轩, 路向宁. 大孔径空间外差干涉光谱成像技术多谱段成像仿真. 物理学报, 2018, 67(23): 234205. doi: 10.7498/aps.67.20180943
    [5] 钟文婷, 刘君, 华灯鑫, 侯海彦, 晏克俊. 多波长发光二极管光源雷达系统与近地面低层大气气溶胶探测. 物理学报, 2018, 67(18): 184208. doi: 10.7498/aps.67.20180721
    [6] 王倩, 毕研盟, 杨忠东. 气溶胶对大气CO2短波红外遥感探测影响的模拟分析. 物理学报, 2018, 67(3): 039202. doi: 10.7498/aps.67.20171993
    [7] 郑利娟, 程天海, 吴俣. 黑碳团簇气溶胶混合生长的红外吸收特性及长波辐射效应. 物理学报, 2017, 66(16): 169201. doi: 10.7498/aps.66.169201
    [8] 王建波, 钱进, 刘忠有, 陆祖良, 黄璐, 杨雁, 殷聪, 李同保. 计算电容中Fabry-Perot干涉仪测量位移的相位修正方法. 物理学报, 2016, 65(11): 110601. doi: 10.7498/aps.65.110601
    [9] 饶志敏, 华灯鑫, 何廷尧, 乐静. 基于本征荧光的生物气溶胶测量激光雷达性能. 物理学报, 2016, 65(20): 200701. doi: 10.7498/aps.65.200701
    [10] 赵虎, 华灯鑫, 毛建东, 周春艳. 基于粒子谱的多波长激光雷达近场大气光学参数校正方法. 物理学报, 2015, 64(12): 124208. doi: 10.7498/aps.64.124208
    [11] 李娜, 贾迪, 赵慧洁, 苏云, 李妥妥. 基于改进维纳逆滤波的衍射成像光谱仪数据误差分析与重构. 物理学报, 2014, 63(17): 177801. doi: 10.7498/aps.63.177801
    [12] 谭林秋, 华灯鑫, 汪丽, 高飞, 狄慧鸽. Mach-Zehnder干涉仪条纹成像多普勒激光雷达风速反演及视场展宽技术. 物理学报, 2014, 63(22): 224205. doi: 10.7498/aps.63.224205
    [13] 狄慧鸽, 侯晓龙, 赵虎, 阎蕾洁, 卫鑫, 赵欢, 华灯鑫. 多波长激光雷达探测多种天气气溶胶光学特性与分析. 物理学报, 2014, 63(24): 244206. doi: 10.7498/aps.63.244206
    [14] 王红霞, 竹有章, 田涛, 李爱君. 激光在不同类型气溶胶中传输特性研究. 物理学报, 2013, 62(2): 024214. doi: 10.7498/aps.62.024214
    [15] 杜军, 赵卫疆, 曲彦臣, 陈振雷, 耿利杰. 基于相位调制器与Fabry-Perot干涉仪的激光多普勒频移测量方法. 物理学报, 2013, 62(18): 184206. doi: 10.7498/aps.62.184206
    [16] 白璐, 汤双庆, 吴振森, 谢品华, 汪世美. 紫外波段多分散系气溶胶散射相函数随机抽样方法研究. 物理学报, 2010, 59(3): 1749-1755. doi: 10.7498/aps.59.1749
    [17] 王敏, 胡顺星, 方欣, 汪少林, 曹开法, 赵培涛, 范广强, 王英俭. 激光雷达精确修正对流层目标定位误差. 物理学报, 2009, 58(7): 5091-5097. doi: 10.7498/aps.58.5091
    [18] 张改霞, 赵曰峰, 张寅超, 赵培涛. 激光雷达白天探测大气边界层气溶胶. 物理学报, 2008, 57(11): 7390-7395. doi: 10.7498/aps.57.7390
    [19] 洪光烈, 张寅超, 赵曰峰, 邵石生, 谭 锟, 胡欢陵. 探测大气中CO2的Raman激光雷达. 物理学报, 2006, 55(2): 983-987. doi: 10.7498/aps.55.983
    [20] 司福祺, 刘建国, 谢品华, 张玉钧, 窦 科, 刘文清. 差分吸收光谱技术监测大气气溶胶粒谱分布. 物理学报, 2006, 55(6): 3165-3169. doi: 10.7498/aps.55.3165
计量
  • 文章访问数:  5541
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-23
  • 修回日期:  2017-05-05
  • 刊出日期:  2017-09-05

/

返回文章
返回