搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气溶胶对大气CO2短波红外遥感探测影响的模拟分析

王倩 毕研盟 杨忠东

引用本文:
Citation:

气溶胶对大气CO2短波红外遥感探测影响的模拟分析

王倩, 毕研盟, 杨忠东

Simulation analysis of aerosol effect on shortwave infrared remote sensing detection of atmospheric CO2

Wang Qian, Bi Yan-Meng, Yang Zhong-Dong
PDF
导出引用
  • 气溶胶引起的光学路径长度改变是影响高分辨率近红外光谱反演大气CO2浓度的重要误差源.本文利用高精度大气辐射传输模式模拟中国碳卫星观测,结合CALIPSO(Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations)卫星的气溶胶廓线产品研究了不同特性的气溶胶对卫星观测光谱的影响.模拟结果显示:气溶胶散射引起的光学路径长度改变与气溶胶类型、模态以及垂直分布密切相关;城市型和海洋型气溶胶对观测光谱影响很大;多层分布的积聚模态大陆型和海洋型气溶胶在光学厚度小于0.3时,会引起5%以内的负辐射变化,随光学厚度不断增加会引起正的辐射变化;主要以粗粒子模态存在的气溶胶在不同的垂直分布情况下均会引起辐射的负变化,从而造成CO2浓度的高估;另外,随气溶胶分布高度变高,负的辐射变化程度会逐渐减小.
    The research of carbon dioxide (CO2) sources and sinks within the carbon cycle is significant for enhancing our understanding of global climate change. Space based measurement of CO2 concentration in lower atmosphere by reflected sunlight in near infrared (NIR) band has become a hot research topic at present. The global characteristic of atmospheric CO2 retrieval from NIR is studied using the expected measurement performance of Tansat (Tan Satellite) mission. With the development of CO2 retrieval algorithms, the light-path modification due to multiple scattering by aerosol is identified as a major source of error when retrieving CO2 from high resolution near-infrared spectrum. The present study focuses on atmospheric CO2 retrieval sensitivity to aerosol properties such as aerosol types, aerosol modes, and profiles aiming at the demands for retrieval accuracy of CO2 no larger than 0.3%-0.5% on a regional scale. Here, we carry out the aerosol scattering effects analysis on retrieving atmospheric CO2 near 1610 nm using the simulated nadir observation for Tansat based on CALIPSO aerosol profile products and SCIATRAN radiative transfer model. The results show that light path modification due to aerosol scattering is closely related to their types, modes and vertical distributions. For aerosol types, on the one hand, urban aerosol has the most significant influence on the measured radiance, followed by maritime aerosols, and has a much smaller influence for rural aerosol, which will lead to overestimated CO2 concentration for the typical surface albedo. On the other hand, the measured radiance will decrease with the increase of aerosol optical thickness (AOT) for urban and rural aerosols, but exactly the opposite to maritime aerosols. For aerosol modes and vertical distributions, aerosols in accumulation mode, the continental aerosols with multilayer aerosol vertical distribution and maritime aerosols with AOT less than 0.3 will bring about less than 5% of negative radiance changes, and will cause positive changes with the increase of AOT. However, aerosols in coarse mode will always cause negative changes of radiance regardless of aerosol vertical distribution, and thus resulting in an overestimation of CO2. In addition, the higher the aerosol layer distributed, the smaller the negative radiance change is. If aerosol profiles can be successfully retrieved as a state vector, then it can be expected that satellite measurement can lead to tremendous improvement in CO2 retrieval precision. This study provides important information about estimations of the influence of aerosol property on CO2 retrieval algorithm. All these results can contribute to improving the accuracy of CO2 retrieval.
      通信作者: 杨忠东, yangzd@cma.cn
    • 基金项目: 国家高技术研究发展计划(批准号:2011AA12A104)资助的课题.
      Corresponding author: Yang Zhong-Dong, yangzd@cma.cn
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2011AA12A104).
    [1]

    Baker D F, Bosch H, Doney S C, OBrien D, Schimel D S 2008 Atmos. Chem. Phys. 10 4145

    [2]

    Buchwitz M, Beek R D, Noel S, Burrows J P, Bovensmann H, Schneising O, Khlystova I, Bruns M, Bremer H, Bremer H, Bergamaschi P, Korner S, Heimann M 2006 Atmos. Chem. Phys. 6 2727

    [3]

    Barkley M P, Frie U, Monks P S 2006 Atmos. Chem. Phys. 6 2765

    [4]

    Yokota T, Yoshida Y, Eguchi N, Ota Y, Tanaka T, Watanabe H, Maksyutov S 2009 Sci. Lett. Atmos. 5 160

    [5]

    Crisp D 2015Proc. SPIE 9607 960702

    [6]

    Frankenberg C, Pollock R, Lee R A M, Rosenberg R, Blavier J F, Crisp D, O'Dell C W, Osterman G B, Wennberg P O, Wunch D 2014 Atmos. Meas. Tech. Discuss. 7 7641

    [7]

    Butz A, Guerlet S, Hasekamp O, Schepers D, Galli A, Aben I, Frankenberg C, Hartmann J M, Tran H, Kuze A, Keppel A G, Toon G, Wunch D, Wennberg P, Deutscher N, Griffith D, Macatangay R, Messerschmidt J, Notholt J, Warneke T 2011 Geophy. Res. Lett. 38 L14812

    [8]

    Christi M J, Stephens G L 2004 J. Geophys. Res. 109 D04316

    [9]

    Jiang X, Crisp D, Olsen E T, Kulawik S S, Miller C E, Pagano T S, Yung Y L 2016 Earth Space Sci. 3 78

    [10]

    Fraser A, Palmer P I, Feng L, Bsch H, Parker R, Dlugokencky E J, Krummel P B, Langenfelds R L 2014 Atmos. Chem. Phys. Discuss. 14 15867

    [11]

    Rayner P J, O'Brien D M 2001 Geophys. Res. Lett. 28 175

    [12]

    Jung Y, Kim J, Kim W, Boesch H, Lee H, Cho C, Goo T Y 2016 Remote Sens. 8 322

    [13]

    Oshchepkov S, Bril A, Maksyutov S, Yokota T 2011 J. Geophys. Res. Atmos. 116 D14304

    [14]

    Butz A, Hasekamp O P, Frankenberg C, Aben I 2009 Appl. Opt. 48 3322

    [15]

    Nelson R R, O'Dell C W, Taylor T E, Mandrake L, Smyth M 2015 Atmos. Meas. Tech. Discuss. 8 13039

    [16]

    Crisp D, Bsch H, Brown L https://discscigsfcnasagov/informationpage=1keywords=OCO%20(Orbiting%20Carbon%20Observatory)-2%20Level%202%20Full%20Physics%20Retrieval%20Algorithm/documentation [2014-12-17]

    [17]

    Mao J, Kawa S R 2004 Appl. Opt. 43 914

    [18]

    Natraj V 2008 Ph. D. Dissertation (Pasadena: California Institute of Technology)

    [19]

    Boesch H, Baker D, Connor B, Crisp D, Miller C 2011 Remote Sens. 3 270

    [20]

    Li H, Sun X J, Tang L P 2011 J. Infrared Millim. Waves 30 328 (in Chinese) [李浩, 孙学金, 唐丽萍 2011 红外与毫米波学报 30 328]

    [21]

    Dong W 2009 M. S. Thesis (Qingdao: China Ocean University) (in Chinese) [董文 2009 硕士学位论文 (青岛: 中国海洋大学)]

    [22]

    Hinds W C 1999 Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles (2nd Ed.) (New York: John Wiley Sons, Inc.) pp8-11

    [23]

    Rozanov V V, Diebel D, Spurr R J D, Burrows J P 1997 J. Geophys. Res. Atmos. 102 16683

    [24]

    Hess M, Koepke P, Schult I 1998 Bull. Am. Meteorol. Soc. 79 831

  • [1]

    Baker D F, Bosch H, Doney S C, OBrien D, Schimel D S 2008 Atmos. Chem. Phys. 10 4145

    [2]

    Buchwitz M, Beek R D, Noel S, Burrows J P, Bovensmann H, Schneising O, Khlystova I, Bruns M, Bremer H, Bremer H, Bergamaschi P, Korner S, Heimann M 2006 Atmos. Chem. Phys. 6 2727

    [3]

    Barkley M P, Frie U, Monks P S 2006 Atmos. Chem. Phys. 6 2765

    [4]

    Yokota T, Yoshida Y, Eguchi N, Ota Y, Tanaka T, Watanabe H, Maksyutov S 2009 Sci. Lett. Atmos. 5 160

    [5]

    Crisp D 2015Proc. SPIE 9607 960702

    [6]

    Frankenberg C, Pollock R, Lee R A M, Rosenberg R, Blavier J F, Crisp D, O'Dell C W, Osterman G B, Wennberg P O, Wunch D 2014 Atmos. Meas. Tech. Discuss. 7 7641

    [7]

    Butz A, Guerlet S, Hasekamp O, Schepers D, Galli A, Aben I, Frankenberg C, Hartmann J M, Tran H, Kuze A, Keppel A G, Toon G, Wunch D, Wennberg P, Deutscher N, Griffith D, Macatangay R, Messerschmidt J, Notholt J, Warneke T 2011 Geophy. Res. Lett. 38 L14812

    [8]

    Christi M J, Stephens G L 2004 J. Geophys. Res. 109 D04316

    [9]

    Jiang X, Crisp D, Olsen E T, Kulawik S S, Miller C E, Pagano T S, Yung Y L 2016 Earth Space Sci. 3 78

    [10]

    Fraser A, Palmer P I, Feng L, Bsch H, Parker R, Dlugokencky E J, Krummel P B, Langenfelds R L 2014 Atmos. Chem. Phys. Discuss. 14 15867

    [11]

    Rayner P J, O'Brien D M 2001 Geophys. Res. Lett. 28 175

    [12]

    Jung Y, Kim J, Kim W, Boesch H, Lee H, Cho C, Goo T Y 2016 Remote Sens. 8 322

    [13]

    Oshchepkov S, Bril A, Maksyutov S, Yokota T 2011 J. Geophys. Res. Atmos. 116 D14304

    [14]

    Butz A, Hasekamp O P, Frankenberg C, Aben I 2009 Appl. Opt. 48 3322

    [15]

    Nelson R R, O'Dell C W, Taylor T E, Mandrake L, Smyth M 2015 Atmos. Meas. Tech. Discuss. 8 13039

    [16]

    Crisp D, Bsch H, Brown L https://discscigsfcnasagov/informationpage=1keywords=OCO%20(Orbiting%20Carbon%20Observatory)-2%20Level%202%20Full%20Physics%20Retrieval%20Algorithm/documentation [2014-12-17]

    [17]

    Mao J, Kawa S R 2004 Appl. Opt. 43 914

    [18]

    Natraj V 2008 Ph. D. Dissertation (Pasadena: California Institute of Technology)

    [19]

    Boesch H, Baker D, Connor B, Crisp D, Miller C 2011 Remote Sens. 3 270

    [20]

    Li H, Sun X J, Tang L P 2011 J. Infrared Millim. Waves 30 328 (in Chinese) [李浩, 孙学金, 唐丽萍 2011 红外与毫米波学报 30 328]

    [21]

    Dong W 2009 M. S. Thesis (Qingdao: China Ocean University) (in Chinese) [董文 2009 硕士学位论文 (青岛: 中国海洋大学)]

    [22]

    Hinds W C 1999 Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles (2nd Ed.) (New York: John Wiley Sons, Inc.) pp8-11

    [23]

    Rozanov V V, Diebel D, Spurr R J D, Burrows J P 1997 J. Geophys. Res. Atmos. 102 16683

    [24]

    Hess M, Koepke P, Schult I 1998 Bull. Am. Meteorol. Soc. 79 831

  • [1] 王松, 周闯, 李素文, 牟福生. 基于法布里-珀罗干涉仪测量大气环境CO2的方法. 物理学报, 2024, 73(2): 020702. doi: 10.7498/aps.73.20231224
    [2] 刘祥群, 刘宇, 凌艺铭, 雷久侯, 曹金祥, 李瑾, 钟育民, 谌明, 李艳华. 等离子体风洞中释放二氧化碳降低电子密度. 物理学报, 2022, 71(14): 145202. doi: 10.7498/aps.71.20212353
    [3] 臧益鹏, 许振宇, 黄安, 艾苏曼, 夏晖晖, 阚瑞峰. 基于改进模拟退火算法的非均匀燃烧场分布重建. 物理学报, 2021, 70(13): 134205. doi: 10.7498/aps.70.20202124
    [4] 冯帅, 常军, 胡瑶瑶, 吴昊, 刘鑫. 偏振成像激光雷达与短波红外复合光学接收系统设计与分析. 物理学报, 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [5] 才啟胜, 黄旻, 韩炜, 刘怡轩, 路向宁. 大孔径空间外差干涉光谱成像技术多谱段成像仿真. 物理学报, 2018, 67(23): 234205. doi: 10.7498/aps.67.20180943
    [6] 钟文婷, 刘君, 华灯鑫, 侯海彦, 晏克俊. 多波长发光二极管光源雷达系统与近地面低层大气气溶胶探测. 物理学报, 2018, 67(18): 184208. doi: 10.7498/aps.67.20180721
    [7] 单昌功, 王薇, 刘诚, 徐兴伟, 孙友文, 田园, 刘文清. 基于傅里叶变换红外光谱技术测量大气中CO2的稳定同位素比值. 物理学报, 2017, 66(22): 220204. doi: 10.7498/aps.66.220204
    [8] 郑利娟, 程天海, 吴俣. 黑碳团簇气溶胶混合生长的红外吸收特性及长波辐射效应. 物理学报, 2017, 66(16): 169201. doi: 10.7498/aps.66.169201
    [9] 狄慧鸽, 华杭波, 张佳琪, 张战飞, 华灯鑫, 高飞, 汪丽, 辛文辉, 赵恒. 高光谱分辨率激光雷达鉴频器的设计与分析. 物理学报, 2017, 66(18): 184202. doi: 10.7498/aps.66.184202
    [10] 赵虎, 华灯鑫, 毛建东, 周春艳. 基于粒子谱的多波长激光雷达近场大气光学参数校正方法. 物理学报, 2015, 64(12): 124208. doi: 10.7498/aps.64.124208
    [11] 齐月, 房世波, 周文佐. 近50年来中国东、西部地面太阳辐射变化及其与大气环境变化的关系. 物理学报, 2015, 64(8): 089201. doi: 10.7498/aps.64.089201
    [12] 李娜, 贾迪, 赵慧洁, 苏云, 李妥妥. 基于改进维纳逆滤波的衍射成像光谱仪数据误差分析与重构. 物理学报, 2014, 63(17): 177801. doi: 10.7498/aps.63.177801
    [13] 狄慧鸽, 侯晓龙, 赵虎, 阎蕾洁, 卫鑫, 赵欢, 华灯鑫. 多波长激光雷达探测多种天气气溶胶光学特性与分析. 物理学报, 2014, 63(24): 244206. doi: 10.7498/aps.63.244206
    [14] 李相贤, 徐亮, 高闽光, 童晶晶, 金岭, 李胜, 魏秀丽, 冯明春. CO2及其碳同位素比值高精度检测研究. 物理学报, 2013, 62(18): 180203. doi: 10.7498/aps.62.180203
    [15] 王红霞, 竹有章, 田涛, 李爱君. 激光在不同类型气溶胶中传输特性研究. 物理学报, 2013, 62(2): 024214. doi: 10.7498/aps.62.024214
    [16] 李相贤, 高闽光, 徐亮, 童晶晶, 魏秀丽, 冯明春, 金岭, 王亚萍, 石建国. 基于傅里叶变换红外光谱法CO2气体碳同位素比检测研究. 物理学报, 2013, 62(3): 030202. doi: 10.7498/aps.62.030202
    [17] 程巳阳, 徐亮, 高闽光, 金岭, 李胜, 冯书香, 刘建国, 刘文清. 直射太阳光红外吸收光谱技术遥测大气中二氧化碳柱浓度. 物理学报, 2013, 62(12): 124206. doi: 10.7498/aps.62.124206
    [18] 白璐, 汤双庆, 吴振森, 谢品华, 汪世美. 紫外波段多分散系气溶胶散射相函数随机抽样方法研究. 物理学报, 2010, 59(3): 1749-1755. doi: 10.7498/aps.59.1749
    [19] 张改霞, 赵曰峰, 张寅超, 赵培涛. 激光雷达白天探测大气边界层气溶胶. 物理学报, 2008, 57(11): 7390-7395. doi: 10.7498/aps.57.7390
    [20] 司福祺, 刘建国, 谢品华, 张玉钧, 窦 科, 刘文清. 差分吸收光谱技术监测大气气溶胶粒谱分布. 物理学报, 2006, 55(6): 3165-3169. doi: 10.7498/aps.55.3165
计量
  • 文章访问数:  5126
  • PDF下载量:  230
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-08
  • 修回日期:  2017-11-07
  • 刊出日期:  2018-02-05

/

返回文章
返回