搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂大气背景下机载通信终端与无人机目标之间的激光传输特性研究

王明军 魏亚飞 柯熙政

引用本文:
Citation:

复杂大气背景下机载通信终端与无人机目标之间的激光传输特性研究

王明军, 魏亚飞, 柯熙政

Laser propagation transmission properties characteristics between airborne communication terminal and unmanned aerial vehicle target in complex atmospheric background

Wang Ming-Jun, Wei Ya-Fei, Ke Xi-Zheng
PDF
HTML
导出引用
  • 云层、气溶胶和大气分子是大气环境的主要组成部分. 本文基于逐次散射法求解辐射传输方程, 建立了复杂大气背景下机载无线光通信终端与地空无人机目标之间的激光传输模型. 考虑真实大气背景中卷云、大气分子和气溶胶存在的情况下, 数值计算了1.55 μm激光经机载通信终端发出后通过大气背景的直接传输和一阶散射传输后接收功率随无人机目标高度的变化关系, 分析了飞机在云上、云中和云下以及卷云冰晶粒子有效半径、飞机与无人机之间的水平距离对接收激光信号传输功率的影响. 数值结果表明: 激光通过卷云传输的功率很大程度上取决于飞机在云上、云下或云中的位置; 飞机与无人机目标之间的水平距离和卷云冰晶粒子的有效半径对激光直接传输和一阶散射传输影响较大; 与云上大气相比, 云下的大气分子和气溶胶对激光有较大的衰减. 本文工作可为进一步开展地空链路上复杂大气背景对机载与低空无人机目标激光通信实验、无人机编队、指挥和组网技术的研究提供理论支撑.
    Clouds, aerosols and atmospheric molecules are major components of the atmosphere. In the fields of atmospheric physics such as target detection, wireless optical communication and remote sensing, these atmospheric components have a strong attenuation effect on laser transmission. Based on the successive scattering method for solving the radiative transfer equation, the laser transmission model between airborne wireless optical communication terminal and ground-to-air unmanned aerial vehicle (UAV) target in complex atmospheric background is established in this paper. Considering the fact that cirrus cloud, atmospheric molecules and aerosols exist in the real atmospheric background, the variations of direct transmission power, first-order scattering transmission power of 1.55 μm laser emitted by the airborne wireless optical communication terminal with UAV target height are calculated numerically under complex atmospheric background. The effects of the aircraft located at different locations, effective radius of ice crystal particles in cirrus cloud, as well as the horizontal distance between the aircraft and UAV target on received laser transmission power are also analyzed. In the first three examples (i.e., aircraft is above, below, and inside cirrus cloud), laser direct transmission power (LDTP) is much larger than first-order scattering transmission power (FSTP); when the UAV target rises into the cloud, the FSTP is significantly enhanced as a result of the effect of diffraction light. The fourth example is for calculating the variations of LDTP and FSTP with UAV target height for different effective radii of ice crystals. The results show that the LDTP decreases with the increase of effective radius, whereas the FSTP presents an opposite scenario. The fifth example is for calculating the variations of LDTP and FSTP with UAV target height for different horizontal distances. The results show that the LDTP and FSTP decrease with the increase of the horizontal distance, which is obviously realistic. In summary, it is concluded that the laser transmitted power through cirrus clouds is strongly dependent on aircraft position: above, below, or inside cirrus cloud; the horizontal distance between the aircraft and UVA target, and effective radii of ice crystals have great influences on LDTP and FSTP. Compared with the atmosphere above the clouds, the molecules and aerosols below the clouds make the laser power have a strong attenuation. The results given in this paper provide theoretical support for further studying the laser communication experiment in ground-to-air links, UAV formation, command and networking technology in complex atmospheric background.
      通信作者: 王明军, wmjxd@aliyun.com
    • 基金项目: 国家自然科学基金(批准号: 61771385, 61377080, 60977054)和陕西省重点产业创新项目(批准号: 2017ZDCXL-GY-06-01)资助的课题.
      Corresponding author: Wang Ming-Jun, wmjxd@aliyun.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61771385, 61377080, 60977054) and the Key Industry Innovation Chain of Shaanxi Province, China (Grant No. 2017ZDCXL-GY-06-01).
    [1]

    石广玉 2007 大气辐射学 (北京: 科学出版社) 第1−157页

    Shi G Y 2007 Atmospheric Radiation (Beijing: Science Press) pp1−157 (in Chinese)

    [2]

    Yang P, Hong G, Dessler A E, Ou S S C, Liou K N, Minnis P, Harshvardhan 2010 Bul. Amer. Meteor. Soc. 91 473Google Scholar

    [3]

    Baran A J 2012 Atmos. Res. 112 45Google Scholar

    [4]

    柯熙政, 邓丽君 2016 无线光通信 (北京: 科学出版社) 第98−151页

    Ke X Z, Deng L J 2016 Optical Wireless Communication (Beijing: Science Press) pp98−151 (in Chinese)

    [5]

    王明军 2008 博士学位论文 (西安: 西安电子科技大学)

    Wang M J 2008 Ph. D. Dissertation (Xi'an: Xidian University) (in Chinese)

    [6]

    刘东, 刘群, 白剑, 张与鹏 2017 红外与激光工程 46 1202001

    Liu D, Liu Q, Bai J, Zhang Y P 2017 Infrar. Laser Eng. 46 1202001

    [7]

    廖国男 (郭彩丽, 周诗健 译) 2004 大气辐射导论 (北京: 气象科学出版社) 第5−10页

    Liou K N (translated by Guo C L, Zhou S J) 2004 An Introduction to Atmospheric Radiation (Beijing: Meteorological Science Press) pp5−10 (in Chinese)

    [8]

    Arnon S, Sadot D, Kopeika N S 1994 J. Mod. Opt. 41 1591Google Scholar

    [9]

    李颖颖, 孙东松, 王珍珠, 沈法华, 周小林, 董晶晶 2008 激光技术 32 611

    Li Y Y, Sun D S, Wang Z Z, Shen F H, Zhou X L, Dong J J 2008 Laser Technology 32 611

    [10]

    胡秀寒, 周田华, 朱小磊, 陈卫标 2015 红外 36 8Google Scholar

    Hu X H, Zhou T H, Zhu X L, Chen W B 2015 Infrared 36 8Google Scholar

    [11]

    Hovis W A, Blaine L R, Forman M L 1970 Appl. Opt. 9 561Google Scholar

    [12]

    Liou K N, Takano Y, Ou S C, Heymsfield A, Kreiss W 1990 Appl. Opt. 29 1866Google Scholar

    [13]

    Uthe E E, Nielsen N B, Osberg T E 1998 Geophys. Res. Lett. 25 1339Google Scholar

    [14]

    Liou K N, Takano Y, Ou S C, Johnson M W 2000 Appl. Opt. 39 4886Google Scholar

    [15]

    Kolb I L, Cheng W Y Y, Cotton W R 2001 Proc. SPIE September 4−7, 2001 p124

    [16]

    Norquist D C, Desrochers P R, Mcnicholl P J, Roadcap J R 2008 J. Appl. Meteorol. Climatol. 47 1322Google Scholar

    [17]

    王红霞, 竹有章, 田涛, 李爱君 2013 物理学报 62 024214Google Scholar

    Wang H X, Zhu Y Z, Tian T, Li A J 2013 Acta Phys. Sin. 62 024214Google Scholar

    [18]

    Hess M, Koepke P, Schult I 1998 Bul. Amer. Meteor. Soc. 79 831Google Scholar

    [19]

    Koepke P, Gasteiger J, Hess M 2015 Atmos. Chem. Phys. 15 5947Google Scholar

    [20]

    杨玉峰, 秦建华, 李挺, 姚柳 2017 红外与激光工程 46 S106006

    Yang Y F, Qin J H, Li T, Yao L 2017 Infrar. Laser Eng. 46 S106006

    [21]

    饶瑞中 2012 现代大气光学 (北京: 科学出版社) 第113−215页

    Rao R Z 2012 Modern Atmospheric Optics (Beijing: Science Press) pp113−215 (in Chinese)

    [22]

    赵少卿, 张雏 2013 激光与光电子学进展 50 110101

    Zhao S Q, Zhang C 2013 Laser Optoelectron. Prog. 50 110101

    [23]

    Coakley J, Yang P (刘超, 银燕 译) 2017 大气辐射: 含典型案例的入门教程 (北京: 高等教育出版社) 第97−101页

    Coakley J, Yang P (translated by Liu C, Yin Y) 2017 Atmospheric Radiation: A Primer with Illustrative Solutions (Beijing: Higher Education Press) pp97−101 (in Chinese)

    [24]

    Wendisch M, Yang P 著 (李正强, 李莉, 候伟真, 许华 译) 2014 大气辐射传输原理 (北京: 高等教育出版社) 第172−175页

    Wendisch M, Yang P (translated by Li Z C, Li L, Hou Z W, Xu H) 2014 Theory of Atmospheric Radiative Transfer (Beijing: Higher Education Press) pp172−175 (in Chinese)

    [25]

    Liou K N, Yang P 2016 Light Scattering by Ice Crystals: Fundamentals and Applications (Cambridge: Cambridge University Press) pp1−5, 269−273

    [26]

    Emde C, Schnell R B, Kylling A, Mayer B, Gasteiger J, Hamann U, Kylling J, Richter B, Pause C, Dowling T, Bugliaro L 2015 Geosci. Model. Dev. 8 10237Google Scholar

    [27]

    Yi B Q, Yang P, Liu Q F, Delst P V, Boukabara S A, Weng F Z 2016 Geosci. Model Dev. 121 13577Google Scholar

    [28]

    Hansen J E, Travis L D 1974 Space Sci. Rev. 16 527Google Scholar

    [29]

    Mishchenko M I, Yang P 2018 J. Quant. Spectrosc. Radiat. Transf. 205 241Google Scholar

    [30]

    Petty G W, Huang W 2011 J. Atmos. Sci. 68 1460

    [31]

    Warren S G, Brandt R E 2008 J. Geophys. Res. Atmos. 113 D14220Google Scholar

    [32]

    王英俭, 范承玉, 魏合理 2015 激光在大气和海水中传输及应用 (北京: 国防工业出版社) 第282−327页

    Wang Y J, Fan C Y, Wei H L 2015 Laser Beam Propagation and Applications Through the Atmosphere and Sea Water (Beijing: National Defence Industry Press) pp282−327 (in Chinese)

  • 图 1  飞机对无人机目标的几何模型中激光通过卷云的直接传输、一阶散射传输的示意图

    Fig. 1.  Laser direct transmission, first order scattering transmission through cirrus clouds in aircraft-UAV targets geometric model.

    图 2  卷云的消光系数、单次散射反照率随卷云有效半径的变化

    Fig. 2.  (a) Average extinction coefficient, (b) single scattering albedo of cirrus clouds vs. effective radius at 1.55 μm wavelength.

    图 3  卷云的平均相函数随散射角的变化

    Fig. 3.  Average phase function of cirrus clouds vs. scattering angle

    图 4  (a)大气分子、(b)气溶胶的散射和消光系数随海拔高度的关系

    Fig. 4.  Scattering and extinction coefficient of (a) atmospheric molecules, (b) aerosol vs. altitude.

    图 5  当飞机高度为9 km时, 激光通过卷云的(a)直接传输功率、(b)一阶散射传输功率随无人机目标高度的变化

    Fig. 5.  (a) Direct transmission, (b) first-order scattering transmission through cirrus clouds vs. UAV target height when aircraft’s height is 9 km.

    图 6  当飞机高度为6 km时, 激光通过卷云的(a)直接传输功率、(b)一阶散射传输功率随无人机目标高度的变化

    Fig. 6.  (a) Direct transmission, (b) first-order scattering transmission through cirrus clouds vs. UAV target height when aircraft’s height is 6 km.

    图 7  当飞机高度为7.5 km时, 激光通过卷云的(a)直接传输功率、(b)一阶散射传输功率随无人机目标高度的变化

    Fig. 7.  (a) Direct transmission, (b) first-order scattering transmission through cirrus clouds vs. UAV target height when aircraft’s height is 7.5 km.

    图 8  卷云冰晶粒子的有效半径${r_{{\rm{eff}}}}$不同时, 激光通过卷云的(a)直接传输功率、(b)一阶散射传输功率随无人机目标高度的变化

    Fig. 8.  (a) Direct transmission, (b) first-order scattering transmission through cirrus clouds vs. UAV target height for different effective radius reff.

    图 9  水平距离d不同时, 激光通过卷云的(a)直接传输功率、(b) 一阶散射传输功率随无人机目标高度的变化

    Fig. 9.  (a) Direct transmission, (b) first-order scattering transmission through cirrus clouds vs. UAV target height for different d.

  • [1]

    石广玉 2007 大气辐射学 (北京: 科学出版社) 第1−157页

    Shi G Y 2007 Atmospheric Radiation (Beijing: Science Press) pp1−157 (in Chinese)

    [2]

    Yang P, Hong G, Dessler A E, Ou S S C, Liou K N, Minnis P, Harshvardhan 2010 Bul. Amer. Meteor. Soc. 91 473Google Scholar

    [3]

    Baran A J 2012 Atmos. Res. 112 45Google Scholar

    [4]

    柯熙政, 邓丽君 2016 无线光通信 (北京: 科学出版社) 第98−151页

    Ke X Z, Deng L J 2016 Optical Wireless Communication (Beijing: Science Press) pp98−151 (in Chinese)

    [5]

    王明军 2008 博士学位论文 (西安: 西安电子科技大学)

    Wang M J 2008 Ph. D. Dissertation (Xi'an: Xidian University) (in Chinese)

    [6]

    刘东, 刘群, 白剑, 张与鹏 2017 红外与激光工程 46 1202001

    Liu D, Liu Q, Bai J, Zhang Y P 2017 Infrar. Laser Eng. 46 1202001

    [7]

    廖国男 (郭彩丽, 周诗健 译) 2004 大气辐射导论 (北京: 气象科学出版社) 第5−10页

    Liou K N (translated by Guo C L, Zhou S J) 2004 An Introduction to Atmospheric Radiation (Beijing: Meteorological Science Press) pp5−10 (in Chinese)

    [8]

    Arnon S, Sadot D, Kopeika N S 1994 J. Mod. Opt. 41 1591Google Scholar

    [9]

    李颖颖, 孙东松, 王珍珠, 沈法华, 周小林, 董晶晶 2008 激光技术 32 611

    Li Y Y, Sun D S, Wang Z Z, Shen F H, Zhou X L, Dong J J 2008 Laser Technology 32 611

    [10]

    胡秀寒, 周田华, 朱小磊, 陈卫标 2015 红外 36 8Google Scholar

    Hu X H, Zhou T H, Zhu X L, Chen W B 2015 Infrared 36 8Google Scholar

    [11]

    Hovis W A, Blaine L R, Forman M L 1970 Appl. Opt. 9 561Google Scholar

    [12]

    Liou K N, Takano Y, Ou S C, Heymsfield A, Kreiss W 1990 Appl. Opt. 29 1866Google Scholar

    [13]

    Uthe E E, Nielsen N B, Osberg T E 1998 Geophys. Res. Lett. 25 1339Google Scholar

    [14]

    Liou K N, Takano Y, Ou S C, Johnson M W 2000 Appl. Opt. 39 4886Google Scholar

    [15]

    Kolb I L, Cheng W Y Y, Cotton W R 2001 Proc. SPIE September 4−7, 2001 p124

    [16]

    Norquist D C, Desrochers P R, Mcnicholl P J, Roadcap J R 2008 J. Appl. Meteorol. Climatol. 47 1322Google Scholar

    [17]

    王红霞, 竹有章, 田涛, 李爱君 2013 物理学报 62 024214Google Scholar

    Wang H X, Zhu Y Z, Tian T, Li A J 2013 Acta Phys. Sin. 62 024214Google Scholar

    [18]

    Hess M, Koepke P, Schult I 1998 Bul. Amer. Meteor. Soc. 79 831Google Scholar

    [19]

    Koepke P, Gasteiger J, Hess M 2015 Atmos. Chem. Phys. 15 5947Google Scholar

    [20]

    杨玉峰, 秦建华, 李挺, 姚柳 2017 红外与激光工程 46 S106006

    Yang Y F, Qin J H, Li T, Yao L 2017 Infrar. Laser Eng. 46 S106006

    [21]

    饶瑞中 2012 现代大气光学 (北京: 科学出版社) 第113−215页

    Rao R Z 2012 Modern Atmospheric Optics (Beijing: Science Press) pp113−215 (in Chinese)

    [22]

    赵少卿, 张雏 2013 激光与光电子学进展 50 110101

    Zhao S Q, Zhang C 2013 Laser Optoelectron. Prog. 50 110101

    [23]

    Coakley J, Yang P (刘超, 银燕 译) 2017 大气辐射: 含典型案例的入门教程 (北京: 高等教育出版社) 第97−101页

    Coakley J, Yang P (translated by Liu C, Yin Y) 2017 Atmospheric Radiation: A Primer with Illustrative Solutions (Beijing: Higher Education Press) pp97−101 (in Chinese)

    [24]

    Wendisch M, Yang P 著 (李正强, 李莉, 候伟真, 许华 译) 2014 大气辐射传输原理 (北京: 高等教育出版社) 第172−175页

    Wendisch M, Yang P (translated by Li Z C, Li L, Hou Z W, Xu H) 2014 Theory of Atmospheric Radiative Transfer (Beijing: Higher Education Press) pp172−175 (in Chinese)

    [25]

    Liou K N, Yang P 2016 Light Scattering by Ice Crystals: Fundamentals and Applications (Cambridge: Cambridge University Press) pp1−5, 269−273

    [26]

    Emde C, Schnell R B, Kylling A, Mayer B, Gasteiger J, Hamann U, Kylling J, Richter B, Pause C, Dowling T, Bugliaro L 2015 Geosci. Model. Dev. 8 10237Google Scholar

    [27]

    Yi B Q, Yang P, Liu Q F, Delst P V, Boukabara S A, Weng F Z 2016 Geosci. Model Dev. 121 13577Google Scholar

    [28]

    Hansen J E, Travis L D 1974 Space Sci. Rev. 16 527Google Scholar

    [29]

    Mishchenko M I, Yang P 2018 J. Quant. Spectrosc. Radiat. Transf. 205 241Google Scholar

    [30]

    Petty G W, Huang W 2011 J. Atmos. Sci. 68 1460

    [31]

    Warren S G, Brandt R E 2008 J. Geophys. Res. Atmos. 113 D14220Google Scholar

    [32]

    王英俭, 范承玉, 魏合理 2015 激光在大气和海水中传输及应用 (北京: 国防工业出版社) 第282−327页

    Wang Y J, Fan C Y, Wei H L 2015 Laser Beam Propagation and Applications Through the Atmosphere and Sea Water (Beijing: National Defence Industry Press) pp282−327 (in Chinese)

  • [1] 吴钟书, 赵耀, 翁苏明, 陈民, 盛政明. 非均匀等离子体中1/4临界密度附近受激散射的非线性演化. 物理学报, 2019, 68(19): 195202. doi: 10.7498/aps.68.20190883
    [2] 邓万涛, 赵刚, 夏惠军, 张茂, 杨艺帆. 非相干合成阵列激光倾斜像差校正方法. 物理学报, 2019, 68(23): 234205. doi: 10.7498/aps.68.20190961
    [3] 钟文婷, 刘君, 华灯鑫, 侯海彦, 晏克俊. 多波长发光二极管光源雷达系统与近地面低层大气气溶胶探测. 物理学报, 2018, 67(18): 184208. doi: 10.7498/aps.67.20180721
    [4] 王倩, 毕研盟, 杨忠东. 气溶胶对大气CO2短波红外遥感探测影响的模拟分析. 物理学报, 2018, 67(3): 039202. doi: 10.7498/aps.67.20171993
    [5] 狄慧鸽, 华杭波, 张佳琪, 张战飞, 华灯鑫, 高飞, 汪丽, 辛文辉, 赵恒. 高光谱分辨率激光雷达鉴频器的设计与分析. 物理学报, 2017, 66(18): 184202. doi: 10.7498/aps.66.184202
    [6] 郑利娟, 程天海, 吴俣. 黑碳团簇气溶胶混合生长的红外吸收特性及长波辐射效应. 物理学报, 2017, 66(16): 169201. doi: 10.7498/aps.66.169201
    [7] 李书磊, 刘磊, 高太长, 黄威, 胡帅. 太赫兹波被动遥感卷云微物理参数的敏感性试验分析. 物理学报, 2016, 65(13): 134102. doi: 10.7498/aps.65.134102
    [8] 茹常剑, 魏瑞轩, 祁晓明, 车军, 郭庆. 自主协同系统的宏观稳定机理研究. 物理学报, 2015, 64(10): 100202. doi: 10.7498/aps.64.100202
    [9] 齐月, 房世波, 周文佐. 近50年来中国东、西部地面太阳辐射变化及其与大气环境变化的关系. 物理学报, 2015, 64(8): 089201. doi: 10.7498/aps.64.089201
    [10] 赵虎, 华灯鑫, 毛建东, 周春艳. 基于粒子谱的多波长激光雷达近场大气光学参数校正方法. 物理学报, 2015, 64(12): 124208. doi: 10.7498/aps.64.124208
    [11] 崔军辉, 魏瑞轩, 祁晓明. 一类具有随机时变通信时滞的遥操作系统同步控制. 物理学报, 2014, 63(23): 230203. doi: 10.7498/aps.63.230203
    [12] 茹常剑, 魏瑞轩, 沈东. 多无人机协同的稳定控制机理研究. 物理学报, 2014, 63(22): 220202. doi: 10.7498/aps.63.220202
    [13] 狄慧鸽, 侯晓龙, 赵虎, 阎蕾洁, 卫鑫, 赵欢, 华灯鑫. 多波长激光雷达探测多种天气气溶胶光学特性与分析. 物理学报, 2014, 63(24): 244206. doi: 10.7498/aps.63.244206
    [14] 刘小亮, 孙少华, 曹瑜, 孙铭泽, 刘情操, 胡碧涛. 飞秒激光低压N2等离子体特性的实验研究. 物理学报, 2013, 62(4): 045201. doi: 10.7498/aps.62.045201
    [15] 王红霞, 竹有章, 田涛, 李爱君. 激光在不同类型气溶胶中传输特性研究. 物理学报, 2013, 62(2): 024214. doi: 10.7498/aps.62.024214
    [16] 王广辉, 王晓方, 董克攻. 超短超强激光导引及对电子加速的影响. 物理学报, 2012, 61(16): 165201. doi: 10.7498/aps.61.165201
    [17] 白璐, 汤双庆, 吴振森, 谢品华, 汪世美. 紫外波段多分散系气溶胶散射相函数随机抽样方法研究. 物理学报, 2010, 59(3): 1749-1755. doi: 10.7498/aps.59.1749
    [18] 张改霞, 赵曰峰, 张寅超, 赵培涛. 激光雷达白天探测大气边界层气溶胶. 物理学报, 2008, 57(11): 7390-7395. doi: 10.7498/aps.57.7390
    [19] 左浩毅, 杨经国. 基于气溶胶光学厚度反演大气气溶胶尺度分布. 物理学报, 2007, 56(10): 6132-6136. doi: 10.7498/aps.56.6132
    [20] 司福祺, 刘建国, 谢品华, 张玉钧, 窦 科, 刘文清. 差分吸收光谱技术监测大气气溶胶粒谱分布. 物理学报, 2006, 55(6): 3165-3169. doi: 10.7498/aps.55.3165
计量
  • 文章访问数:  7281
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-19
  • 修回日期:  2019-03-07
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-05

/

返回文章
返回