搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等效零折射率材料微腔中均匀化腔场作用下的简正模劈裂现象

徐小虎 陈永强 郭志伟 孙勇 苗向阳

引用本文:
Citation:

等效零折射率材料微腔中均匀化腔场作用下的简正模劈裂现象

徐小虎, 陈永强, 郭志伟, 孙勇, 苗向阳

Normal-mode splitting induced by homogeneous electromagnetic fields in cavities filled with effective zero-index metamaterials

Xu Xiao-Hu, Chen Yong-Qiang, Guo Zhi-Wei, Sun Yong, Miao Xiang-Yang
PDF
导出引用
  • 研究了零折射率材料微腔中人造原子与腔模的相干耦合现象.首先通过数值模拟的方法研究了在二维光子晶体微腔中填充阻抗匹配的零折射率材料后腔模的场分布.结果表明零折射率材料的引入使得原本以驻波场形式存在的腔模分布在整个微腔中变得近似均匀且值最大.其次,将人造原子放入腔中的不同位置并与腔模耦合,结果从频谱上观察到腔模的劈裂与人造原子在腔中的位置无关.最后,利用微波实验,通过开口谐振环等效的人造原子与一维复合左右手传输线等效的零折射率材料微腔之间的耦合验证了仿真结果的准确性.该结果为腔量子电动力学中量子点对位难的问题提供了新的方案,同时零折射率材料微腔也为今后研究原子与光子之间的相互作用提供了一个新的平台.
    In cavity quantum electrodynamics (cQED), how an atom behaves in a cavity is what people care about. The coupling strength (g) between cavity field and atoms plays a fundamental role in various QED effects including Rabi splitting. In the solid-state case, when an atomic-like two-level system such as a single quantum dot (QD) is placed into a cavity, Rabi splitting would occur if g is strong enough. In the classical limit, when a QD in a cavity changes into a classical oscillator, the normal-mode splitting would also take place. It is known that g relies on the local fields at the places of the QDs or classical oscillators inside the cavity. However, for both cases, the traditional cavity modes involved are all in the form of standing waves and the localized fields are position-dependent. To ensure strong coupling between QDs or classical oscillators and photons, they should be placed right at the place where the cavity field is maximum, which is very challenging. How is the positional uncertainty overcome? Recently, the peculiar behaviors of electromagnetic (EM) fields inside zero-index metamaterial (ZIM) in which permittivity and/or permeability are zero have aroused considerable interest. In ZIMs the propagating phase everywhere is the same and the effective wavelength is infinite, which strongly changes the scattering and mode properties of the EM waves. In addition to the above characteristics, the fields in ZIM could be homogeneous as required by Maxwell equations. While the special properties of ZIMs are investigated, the fabrication of ZIMs is widely studied. It is found that a two dimensional (2D) photonic crystal consisting of a square lattice of dielectric rods with accidental degeneracy can behave as a loss-free ZIM at Dirac point. To overcome the positional uncertainty, in this paper we propose a cavity filled with effective zero-index metamaterial (ZIM). When the ZIM is embedded in a cavity, the enhanced homogeneous fields can occur under the resonance condition. Finally, experimental verification in microwave regime is conducted. In the experiments, we utilize a composite right/left-handed transmission line with deep subwavelength unit cell to mimic a ZIM and use a metallic split ring resonator (SRR) as a magnetic resonator whose resonance frequency is determined by structural parameters. The experimental results that in general agree well with the simulations demonstrate nearly position-independent normal-mode splitting.
      通信作者: 徐小虎, bigbrowm@163.com;sxxymiao@126.com ; 苗向阳, bigbrowm@163.com;sxxymiao@126.com
    • 基金项目: 国家自然科学基金(批准号:11404204,51607119,11674247)资助的课题.
      Corresponding author: Xu Xiao-Hu, bigbrowm@163.com;sxxymiao@126.com ; Miao Xiang-Yang, bigbrowm@163.com;sxxymiao@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11404204, 51607119, 11674247).
    [1]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [2]

    Pendry J B, Holden A J, Stewart W J 1996 Phys. Rev. Lett. 76 4773

    [3]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [4]

    Monticone F, Alu A 2014 Chin. Phys. B 23 047809

    [5]

    Xi S, Chen H, Jiang T, Ran L, Huang fu J, Wu B I, Kong J, Chen M 2009 Phys. Rev. Lett. 103 194801

    [6]

    Ran J, Zhang Y, Chen X, Fang K, Zhao J, Sun Y, Chen H 2015 Sci. Rep. 5 11659

    [7]

    Pendry J B, Holden A J, Robbins D J 1999 IEEE Trans. Microwave Theory Tech. 47 2075

    [8]

    Hao J M, Yan W, Qiu M 2010 Appl. Phys. Lett. 96 101109

    [9]

    Nguyen V C, Chen L, Halterman K 2010 Phys. Rev. Lett. 105 233908

    [10]

    Silveirinha M, Engheta N 2006 Phys. Rev. Lett. 97 157403

    [11]

    Edwards B, Al A, Young M E, Silveirinha M, Engheta N 2008 Phys. Rev. Lett. 100 033903

    [12]

    Liu R P, Cheng Q, Hand T, Mock J J, Cui T J, Cummer S A, Smith D R 2008 Phys. Rev. Lett. 100 023903

    [13]

    Feng S M, Halterman K 2012 Phys. Rev. B 86 165103

    [14]

    Sun L, Feng S M, Yang X D 2012 Appl. Phys. Lett. 101 241101

    [15]

    Enoch S, Tayeb G, Sabouroux P, Gurin N, Vincent P 2002 Phys. Rev. Lett. 89 213902

    [16]

    Naika G V, Liu J J, Kildisheva A V, Shalaeva V M, Boltassevaa A 2012 PNAS 109 8834

    [17]

    Subramania G, Fischer A J, Luk T S 2012 Appl. Phys. Lett. 101 241107

    [18]

    Huang X Q, Lai Y, Hang Z H, Zheng H H, Chan C T 2011 Nat. Mater. 10 582

    [19]

    Jiang H T, Wang Z L, Sun Y, Li Y H, Zhang Y W, Li H Q, Chen H 2011 J. Appl. Phys. 109 073113

    [20]

    Weisbuch C, Nishioka M, Ishikawa A, Arakawa Y 1992 Phys. Rev. Lett. 69 3314

    [21]

    Boca A, Miller R, Birnbaum K M, Boozer A D, McKeever J, Kimble H J 2004 Phys. Rev. Lett. 93 233603

    [22]

    Tischler J R, Bradley M S, Bulovic V, Song J H, Nurmikko A 2005 Phys. Rev. Lett. 95 036401

    [23]

    Vujic D, John S 2005 Phys. Rev. A 72 013807

    [24]

    Gersen H, Karle T J, Engelen R J P, Bogaerts W, Korterik J P, Hulst N F V, Krauss T F, Kuipers L 2005 Phys. Rev. Lett. 94 073903

    [25]

    Khitrova G, Gibbs H M, Jahnke F, Kira M, Koch S W 1999 Rev. Mod. Phys. 71 1591

    [26]

    Berman P R 1994 Cavity Quantum Electrodynamics (Boston: Academic) pp377-390

    [27]

    Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B, Deppe D G 2004 Nature 432 200

    [28]

    Aoki K, Guimard D, Nishioka M, Nomura M, Iwamoto S, Arakawa Y 2008 Nat. Photon. 2 688

    [29]

    Raimond J M, Brune M, Haroche S 2001 Rev. Mod. Phys. 73 565

    [30]

    Blais A, Huang R S, Wallraff A, Girvin S M, Schoelkopf R J 2004 Phys. Rev. A 69 062320

    [31]

    Holmstrm P, Thyln L, Bratkovsky A 2010 J. Appl. Phys. 107 064307

    [32]

    Gil I, Bonache J, Garcia J G, Martin F 2006 IEEE Trans. Microwave Theory Tech. 54 2665

    [33]

    Zhang L W, Zhang Y W, Yang Y P, Li H Q, Chen H, Zhu S Y 2008 Phys. Rev. E 78 035601

  • [1]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [2]

    Pendry J B, Holden A J, Stewart W J 1996 Phys. Rev. Lett. 76 4773

    [3]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [4]

    Monticone F, Alu A 2014 Chin. Phys. B 23 047809

    [5]

    Xi S, Chen H, Jiang T, Ran L, Huang fu J, Wu B I, Kong J, Chen M 2009 Phys. Rev. Lett. 103 194801

    [6]

    Ran J, Zhang Y, Chen X, Fang K, Zhao J, Sun Y, Chen H 2015 Sci. Rep. 5 11659

    [7]

    Pendry J B, Holden A J, Robbins D J 1999 IEEE Trans. Microwave Theory Tech. 47 2075

    [8]

    Hao J M, Yan W, Qiu M 2010 Appl. Phys. Lett. 96 101109

    [9]

    Nguyen V C, Chen L, Halterman K 2010 Phys. Rev. Lett. 105 233908

    [10]

    Silveirinha M, Engheta N 2006 Phys. Rev. Lett. 97 157403

    [11]

    Edwards B, Al A, Young M E, Silveirinha M, Engheta N 2008 Phys. Rev. Lett. 100 033903

    [12]

    Liu R P, Cheng Q, Hand T, Mock J J, Cui T J, Cummer S A, Smith D R 2008 Phys. Rev. Lett. 100 023903

    [13]

    Feng S M, Halterman K 2012 Phys. Rev. B 86 165103

    [14]

    Sun L, Feng S M, Yang X D 2012 Appl. Phys. Lett. 101 241101

    [15]

    Enoch S, Tayeb G, Sabouroux P, Gurin N, Vincent P 2002 Phys. Rev. Lett. 89 213902

    [16]

    Naika G V, Liu J J, Kildisheva A V, Shalaeva V M, Boltassevaa A 2012 PNAS 109 8834

    [17]

    Subramania G, Fischer A J, Luk T S 2012 Appl. Phys. Lett. 101 241107

    [18]

    Huang X Q, Lai Y, Hang Z H, Zheng H H, Chan C T 2011 Nat. Mater. 10 582

    [19]

    Jiang H T, Wang Z L, Sun Y, Li Y H, Zhang Y W, Li H Q, Chen H 2011 J. Appl. Phys. 109 073113

    [20]

    Weisbuch C, Nishioka M, Ishikawa A, Arakawa Y 1992 Phys. Rev. Lett. 69 3314

    [21]

    Boca A, Miller R, Birnbaum K M, Boozer A D, McKeever J, Kimble H J 2004 Phys. Rev. Lett. 93 233603

    [22]

    Tischler J R, Bradley M S, Bulovic V, Song J H, Nurmikko A 2005 Phys. Rev. Lett. 95 036401

    [23]

    Vujic D, John S 2005 Phys. Rev. A 72 013807

    [24]

    Gersen H, Karle T J, Engelen R J P, Bogaerts W, Korterik J P, Hulst N F V, Krauss T F, Kuipers L 2005 Phys. Rev. Lett. 94 073903

    [25]

    Khitrova G, Gibbs H M, Jahnke F, Kira M, Koch S W 1999 Rev. Mod. Phys. 71 1591

    [26]

    Berman P R 1994 Cavity Quantum Electrodynamics (Boston: Academic) pp377-390

    [27]

    Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B, Deppe D G 2004 Nature 432 200

    [28]

    Aoki K, Guimard D, Nishioka M, Nomura M, Iwamoto S, Arakawa Y 2008 Nat. Photon. 2 688

    [29]

    Raimond J M, Brune M, Haroche S 2001 Rev. Mod. Phys. 73 565

    [30]

    Blais A, Huang R S, Wallraff A, Girvin S M, Schoelkopf R J 2004 Phys. Rev. A 69 062320

    [31]

    Holmstrm P, Thyln L, Bratkovsky A 2010 J. Appl. Phys. 107 064307

    [32]

    Gil I, Bonache J, Garcia J G, Martin F 2006 IEEE Trans. Microwave Theory Tech. 54 2665

    [33]

    Zhang L W, Zhang Y W, Yang Y P, Li H Q, Chen H, Zhu S Y 2008 Phys. Rev. E 78 035601

  • [1] 李锦芳, 何东山, 王一平. 一维耦合腔晶格中磁子-光子拓扑相变和拓扑量子态的调制. 物理学报, 2024, 73(4): 044203. doi: 10.7498/aps.73.20231519
    [2] 段雪珂, 任娟娟, 郝赫, 张淇, 龚旗煌, 古英. 微纳光子结构中光子和激子相互作用. 物理学报, 2019, 68(14): 144201. doi: 10.7498/aps.68.20190269
    [3] 赵彦辉, 钱琛江, 唐静, 孙悦, 彭凯, 许秀来. 偶极子位置及偏振对激发光子晶体H1微腔的影响. 物理学报, 2016, 65(13): 134206. doi: 10.7498/aps.65.134206
    [4] 龚健, 张利伟, 陈亮, 乔文涛, 汪舰. 石墨烯基双曲色散特异材料的负折射与体等离子体性质. 物理学报, 2015, 64(6): 067301. doi: 10.7498/aps.64.067301
    [5] 康永强, 高鹏, 刘红梅, 张淳民, 石云龙. 单负材料组成一维光子晶体双量子阱结构的共振模. 物理学报, 2015, 64(6): 064207. doi: 10.7498/aps.64.064207
    [6] 卢道明. 腔量子电动力学系统中耦合三原子的纠缠特性. 物理学报, 2014, 63(6): 060301. doi: 10.7498/aps.63.060301
    [7] 武继江, 高金霞. 含特异材料一维超导光子晶体的带隙特性研究. 物理学报, 2013, 62(12): 124102. doi: 10.7498/aps.62.124102
    [8] 刘丽想, 董丽娟, 刘艳红, 杨成全, 石云龙. 含特异材料的光量子阱频率特性研究. 物理学报, 2012, 61(13): 134210. doi: 10.7498/aps.61.134210
    [9] 李文胜, 罗时军, 黄海铭, 张琴, 是度芳. 含特异材料光子晶体隧穿模的偏振特性. 物理学报, 2012, 61(10): 104101. doi: 10.7498/aps.61.104101
    [10] 童星, 韩奎, 沈晓鹏, 吴琼华, 周菲, 葛阳, 胡晓娟. 基于光子晶体自准直环形谐振腔的全光均分束器. 物理学报, 2011, 60(6): 064217. doi: 10.7498/aps.60.064217
    [11] 费宏明, 周飞, 杨毅彪, 梁九卿. 光子晶体双量子阱的共振隧穿. 物理学报, 2011, 60(7): 074225. doi: 10.7498/aps.60.074225
    [12] 李岩, 傅海威, 邵敏, 李晓莉. 石墨点阵柱状光子晶体共振腔的温度特性. 物理学报, 2011, 60(7): 074219. doi: 10.7498/aps.60.074219
    [13] 陈微, 邢名欣, 任刚, 王科, 杜晓宇, 张冶金, 郑婉华. 光子晶体微腔中高偏振单偶极模的研究. 物理学报, 2009, 58(6): 3955-3960. doi: 10.7498/aps.58.3955
    [14] 鲁辉, 田慧平, 李长红, 纪越峰. 基于二维光子晶体耦合腔波导的新型慢光结构研究. 物理学报, 2009, 58(3): 2049-2055. doi: 10.7498/aps.58.2049
    [15] 刘漾, 巩华荣, 魏彦玉, 宫玉彬, 王文祥, 廖复疆. 有效抑制光子晶体加载矩形谐振腔中模式竞争的方法. 物理学报, 2009, 58(11): 7845-7851. doi: 10.7498/aps.58.7845
    [16] 杜晓宇, 郑婉华, 任 刚, 王 科, 邢名欣, 陈良惠. 二维光子晶体耦合腔阵列的慢波效应研究. 物理学报, 2008, 57(1): 571-575. doi: 10.7498/aps.57.571
    [17] 董海霞, 江海涛, 杨成全, 石云龙. 含双负缺陷的一维光子晶体耦合腔的杂质带特性. 物理学报, 2006, 55(6): 2777-2780. doi: 10.7498/aps.55.2777
    [18] 王素玲, 张冶文, 赫 丽, 李宏强, 陈 鸿. 可调谐一维特异材料(Metamaterial)的微波传输性质. 物理学报, 2006, 55(1): 226-229. doi: 10.7498/aps.55.226
    [19] 许兴胜, 熊志刚, 孙增辉, 杜 伟, 鲁 琳, 陈弘达, 金爱子, 张道中. 半导体量子阱材料微加工光子晶体的光学特性. 物理学报, 2006, 55(3): 1248-1252. doi: 10.7498/aps.55.1248
    [20] 冯立娟, 江海涛, 李宏强, 张冶文, 陈 鸿. 光子晶体耦合腔波导的色散特性. 物理学报, 2005, 54(5): 2102-2105. doi: 10.7498/aps.54.2102
计量
  • 文章访问数:  6515
  • PDF下载量:  234
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-21
  • 修回日期:  2017-09-16
  • 刊出日期:  2019-01-20

/

返回文章
返回