搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浅海内波环境下声场干涉条纹的稀疏重建

李永飞 郭瑞明 赵航芳

引用本文:
Citation:

浅海内波环境下声场干涉条纹的稀疏重建

李永飞, 郭瑞明, 赵航芳

Sparse reconstruction of acoustic interference fringes in shallow water and internal wave environment

Li Yong-Fei, Guo Rui-Ming, Zhao Hang-Fang
PDF
HTML
导出引用
  • 针对浅海内波引起的干涉条纹“扭曲”问题, 利用耦合模理论, 提出了一种声场干涉条纹的稀疏重建方法. 该方法主要分为两个步骤: 1)将干涉条纹近似为几组二维正弦的和, 并用向量有限新息率方法重建; 2)根据耦合模理论, 未耦合模对的二维频率不随内波位置变化, 而耦合模对的频率随内波位置变化. 因此, 二维频率可以分为两部分: 未耦合模对包含了波导的信息, 可用于背景环境规则干涉条纹的重建和波导不变量的估计; 耦合模对包含了内波的位置信息, 可用于内波的追踪. 仿真结果表明, 本文方法在内波环境下能够提供有效的干涉条纹重建、波导不变量估计和内波的追踪.
    To reduce the distortion of acoustic interference fringes caused by internal waves in shallow water, a sparse reconstruction method of acoustic interference fringes is proposed in this paper according to the coupled mode theory. The proposed method consists of two steps: 1) The interference fringes are approximated to the sum of several two-dimension sinusoids, which are sparsely reconstructed by the vector finite rate of innovation method. 2) According to coupled mode theory, two-dimension frequencies related to uncoupled mode pairs do not vary with the location of internal waves. However, two-dimension frequencies related to coupled mode pairs vary with the location of internal waves. So these frequencies are classified into two parts. The uncoupled mode pairs are used to recover the regular interference fringes and estimate the waveguide invariant in the background environment. The coupled mode pairs are used to track the locations of internal waves. The simulation results show that the proposed method can effectively provide interference fringe reconstruction, waveguide invariant estimation, and internal wave tracking in the internal wave environment.
      通信作者: 赵航芳, hfzhao@zju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62071429)和国家重点研发计划(批准号: 2016YFC1400100)资助的课题
      Corresponding author: Zhao Hang-Fang, hfzhao@zju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62071429) and the National Key R&D Program of China (Grant No. 2016YFC1400100)
    [1]

    Chuprov S D 1982 Ocean Acoustic: Current State (Moscow: Nauka) p71

    [2]

    Brekhovskikh L M, Lysanov Y P 1991 Fundamentals of Ocean Acoustics (2nd Ed.) (NewYork: Springer) pp140–145

    [3]

    Cockrell K L, Schmidt H 2010 J. Acoust. Soc. Am. 127 2780Google Scholar

    [4]

    Turgut A, Orr M, Rouseff D 2010 J. Acoust. Soc. Am. 127 73Google Scholar

    [5]

    Kim S, Kuperman W, Hodgkiss W, Song H C, Edelmann G F, Akal T 2003 J. Acoust. Soc. Am. 114 145Google Scholar

    [6]

    Song H C, Kuperman W, Hodgkiss W 1998 J. Acoust. Soc. Am. 103 3234Google Scholar

    [7]

    Ren Q Y, Hermand J P 2013 J. Acoust. Soc. Am. 133 82Google Scholar

    [8]

    Heaney K D 2004 IEEE J. Oceanic Eng. 29 88Google Scholar

    [9]

    Hu T, Krolik J L 2008 J. Acoust. Soc. Am. 123 1338Google Scholar

    [10]

    高飞, 徐芳华, 李整林, 秦继兴 2022 物理学报 71 204301Google Scholar

    Gao F, Xu F H, Li Z L, Qin J X 2022 Acta Phys. Sin. 71 204301Google Scholar

    [11]

    李沁然, 孙超, 谢磊 2022 物理学报 71 024302Google Scholar

    Li Q R, Sun C, Xie L 2022 Acta Phys. Sin. 71 024302Google Scholar

    [12]

    Song W H, Wang N, Gao D Z, Wang H Z, Hu T, Guo S M 2017 J. Acoust. Soc. Am. 142 1848Google Scholar

    [13]

    Rouseff D 2001 Waves Random Media 11 377Google Scholar

    [14]

    Li X L, Song W H, Gao D Z, Gao W, Wang H Z 2020 J. Acoust. Soc. Am. 147 EL363Google Scholar

    [15]

    宋文华, 胡涛, 郭圣明, 马力 2014 物理学报 63 194303Google Scholar

    Song W H, Hu T, Guo S M, Ma L 2014 Acta Phys. Sin. 63 194303Google Scholar

    [16]

    Remi E, Julien B, Marie G, Xavier C, Thierry C 2018 J. Acoust. Soc. Am. 143 3444Google Scholar

    [17]

    Le G Y, Bonnel J 2013 J. Acoust. Soc. Am. 134 EL230Google Scholar

    [18]

    Yang T C, Huang C F, Huang S H, Liu J Y 2016 IEEE J. Oceanic Eng. 42 663Google Scholar

    [19]

    Thode A M 2000 J. Acoust. Soc. Am. 108 1582Google Scholar

    [20]

    田玲爱, 刘福臣, 周士弘 2009 声学与电子工程 96 22

    Tian L A, Liu F C, Zhou S H 2009 Acoustics and Electronics Engineering 96 22

    [21]

    Guo R M, Li Y F, Thierry B, Zhao H F 2022 IEEE Trans. Signal Process. 70 4369Google Scholar

    [22]

    Li Y F, Guo R M, Thierry B, Zhao H F 2021 IEEE Trans. Signal Process. 69 4102Google Scholar

    [23]

    Colosi J A 2008 J. Acoust. Soc. Am. 124 1452Google Scholar

    [24]

    Yang T C 2014 J. Acoust. Soc. Am. 135 610Google Scholar

    [25]

    马树青 2011 博士学位论文 (哈尔滨: 哈尔滨工程大学)

    Ma S Q 2011 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese)

  • 图 1  频率配对示意图

    Fig. 1.  Diagram of frequency pairing

    图 2  仿真设置示意图

    Fig. 2.  Diagram of simulation setting

    图 3  声速剖面 (a)背景声速剖面(无内波); (b)内波环境下的声速剖面, 内波位置$r_{0} = 20\; \text{km}$

    Fig. 3.  Sound speed profile: (a) Background sound speed profile (without internal waves); (b) sound speed profile with the location of internal waves $r_ {0} = $20 km

    图 4  背景声速剖面干涉条纹的稀疏表示 (a)规则干涉条纹(无内波); (b)干涉条纹的二维频谱(背景图表示2D-FFT谱, 黑色方块表示KRAKEN计算的真实中心频率, 红色星号表示vector-FRI估计频率); (c) vector FRI重建的干涉条纹; (d)利用2D-FFT方法计算出的背景环境干涉条纹(黑线)和vector FRI恢复的干涉条纹(红线)对应的波导不变量分布

    Fig. 4.  Sparse representation of interference fringes in background sound speed profile: (a) Regular interference fringes (without internal wave); (b) 2D Fourier spectrum of interference fringes (the background color represents the results of 2D-FFT, the black square represents the true center frequencies calculated by KRAKEN, and the red asterisk represents frequencies estimated by vector FRI); (c) interference fringes recovered by vector FRI; (d) waveguide invariant distributions of regular interference fringes (black line) in background sound speed profile and vector FRI recovery interference fringes(red line), calculated by the 2D-FFT method, are shown

    图 5  存在内波环境下干涉条纹图和对应的二位频谱图 (a)和(b)分别表示内波位置距声源24 km和35 km处的干涉条纹图; (c)和(d)分别表示(a)和(b)中干涉条纹的二维频谱图. 背景图表示2D-FFT谱, 黑色方块表示KRAKEN计算的真实中心频率, 红色星号表示vector-FRI估计频率

    Fig. 5.  (a) and (b) represent the interference fringes when the positions of internal waves are 24 km and 35 km away from the source, respectively; (c) and (d) are the 2D frequency spectrum of interference fringes in panels (a) and (b), respectively. The background color is the result of 2D FFT. The black square represents the true center frequencies calculated by KRAKEN. The red asterisk represents frequencies estimated by vector FRI

    图 6  (a)规则干涉条纹(真实值)及内波位置为24和35 km时干涉条纹的距离维频谱; (b)利用2D-FFT方法计算出的规则干涉条纹(真实值)及内波位置为24和35 km时干涉条纹的波导不变量分布

    Fig. 6.  (a) Frequency spectrums in range of regular interference fringes (ground truth) and interference fringes with internal wave locations at 24 km and 35 km; (b) waveguide invariant distributions of regular interference fringes (ground truth) and interference fringes with internal wave locations at 24 km and 35 km, calculated by the 2D FFT method

    图 7  (a)距离维频率$ \omega^{{\rm{r}}} = k_{12} $时, 频率维频率随时间的变化, 其中, 背景图表示傅里叶变换的结果, $ \times $表示vector FRI的估计结果, 红色直线表示由未耦合模对频率(频率不随时间变化)拟合的直线, 蓝色直线表示由耦合模对频率(频率随时间变化)拟合的直线; (b)利用耦合模对频率估计出的内波轨迹

    Fig. 7.  (a) Frequency in the frequency dimension versus time when The frequency in the range dimension $ \omega^{{\rm{r}}} = k_{12} $, where the background color is the result of Fourier transform and $ \times $ the estimated results of vector FRI; (b) trajectory of the internal wave estimated by the frequencies related to coupled modes

    图 8  水下声场干涉条纹图的重构以及波导不变量的恢复; (a)内波环境下($r_{0} = 20\; \text{km}$)的声场干涉条纹图; (b)内波环境下($r_{0} = 20\; \text{km}$)声场干涉条纹图的二维傅里叶频谱, 背景图为2DFFT结果, 黑色方块表示KRAKEN计算的真实中心频率, 红色星号表示vector-FRI估计的未耦合模对频率; (c)利用未耦合模对重建的干涉条纹图; (d)波导不变量分布. 红线为内波环境下重建干涉条纹对应的波导不变量, 黑线为背景场(无内波)对应的波导不变量分布

    Fig. 8.  Recovered interference fringes of underwater acoustic field and the recovery of waveguide invariant: (a) Interference fringes of acoustic field in internal wave environment ($r_{0} = 20\; \text{km}$). (b) 2D Fourier spectrum of interference fringes in internal wave environment ($r_{0} = 20\; \text{km}$). The background color is the result of 2D-FFT. The black square represents the true center frequencies calculated by KRAKEN. The red asterisk represents frequencies estimated by vector FRI. (c) Recovered interference fringes using uncoupled mode pairs. (d) Distribution of waveguide invariants. The red line is the distribution of waveguide invariants corresponding to the reconstruction of interference fringes in the internal wave environment, and the black line is the distribution of waveguide invariants corresponding to the background field (without internal waves)

    表 1  不同未耦合模对波导不变量的估计结果

    Table 1.  Results of waveguide invariants related to different mode pairs

    $ \beta $ $ \beta_{12} $ $ \beta_{23} $ $ \beta_{13} $
    理论值 估计值 理论值 估计值 理论值 估计值
    无内波 1.51—1.57 1.556 1.54—1.64 1.599 1.53—1.61 1.585
    有内波 1.51—1.57 1.555 1.54—1.64 1.593 1.53—1.61 1.595
    下载: 导出CSV
  • [1]

    Chuprov S D 1982 Ocean Acoustic: Current State (Moscow: Nauka) p71

    [2]

    Brekhovskikh L M, Lysanov Y P 1991 Fundamentals of Ocean Acoustics (2nd Ed.) (NewYork: Springer) pp140–145

    [3]

    Cockrell K L, Schmidt H 2010 J. Acoust. Soc. Am. 127 2780Google Scholar

    [4]

    Turgut A, Orr M, Rouseff D 2010 J. Acoust. Soc. Am. 127 73Google Scholar

    [5]

    Kim S, Kuperman W, Hodgkiss W, Song H C, Edelmann G F, Akal T 2003 J. Acoust. Soc. Am. 114 145Google Scholar

    [6]

    Song H C, Kuperman W, Hodgkiss W 1998 J. Acoust. Soc. Am. 103 3234Google Scholar

    [7]

    Ren Q Y, Hermand J P 2013 J. Acoust. Soc. Am. 133 82Google Scholar

    [8]

    Heaney K D 2004 IEEE J. Oceanic Eng. 29 88Google Scholar

    [9]

    Hu T, Krolik J L 2008 J. Acoust. Soc. Am. 123 1338Google Scholar

    [10]

    高飞, 徐芳华, 李整林, 秦继兴 2022 物理学报 71 204301Google Scholar

    Gao F, Xu F H, Li Z L, Qin J X 2022 Acta Phys. Sin. 71 204301Google Scholar

    [11]

    李沁然, 孙超, 谢磊 2022 物理学报 71 024302Google Scholar

    Li Q R, Sun C, Xie L 2022 Acta Phys. Sin. 71 024302Google Scholar

    [12]

    Song W H, Wang N, Gao D Z, Wang H Z, Hu T, Guo S M 2017 J. Acoust. Soc. Am. 142 1848Google Scholar

    [13]

    Rouseff D 2001 Waves Random Media 11 377Google Scholar

    [14]

    Li X L, Song W H, Gao D Z, Gao W, Wang H Z 2020 J. Acoust. Soc. Am. 147 EL363Google Scholar

    [15]

    宋文华, 胡涛, 郭圣明, 马力 2014 物理学报 63 194303Google Scholar

    Song W H, Hu T, Guo S M, Ma L 2014 Acta Phys. Sin. 63 194303Google Scholar

    [16]

    Remi E, Julien B, Marie G, Xavier C, Thierry C 2018 J. Acoust. Soc. Am. 143 3444Google Scholar

    [17]

    Le G Y, Bonnel J 2013 J. Acoust. Soc. Am. 134 EL230Google Scholar

    [18]

    Yang T C, Huang C F, Huang S H, Liu J Y 2016 IEEE J. Oceanic Eng. 42 663Google Scholar

    [19]

    Thode A M 2000 J. Acoust. Soc. Am. 108 1582Google Scholar

    [20]

    田玲爱, 刘福臣, 周士弘 2009 声学与电子工程 96 22

    Tian L A, Liu F C, Zhou S H 2009 Acoustics and Electronics Engineering 96 22

    [21]

    Guo R M, Li Y F, Thierry B, Zhao H F 2022 IEEE Trans. Signal Process. 70 4369Google Scholar

    [22]

    Li Y F, Guo R M, Thierry B, Zhao H F 2021 IEEE Trans. Signal Process. 69 4102Google Scholar

    [23]

    Colosi J A 2008 J. Acoust. Soc. Am. 124 1452Google Scholar

    [24]

    Yang T C 2014 J. Acoust. Soc. Am. 135 610Google Scholar

    [25]

    马树青 2011 博士学位论文 (哈尔滨: 哈尔滨工程大学)

    Ma S Q 2011 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese)

  • [1] 陈科, 王宏伟, 盛立, 尤云祥. 拖曳体激发内波时空特性实验及其理论模型. 物理学报, 2018, 67(3): 034701. doi: 10.7498/aps.67.20170920
    [2] 宋文华, 王宁, 高大治, 王好忠, 屈科. 波导不变量谱值及其分离方法. 物理学报, 2017, 66(11): 114301. doi: 10.7498/aps.66.114301
    [3] 郭晓乐, 杨坤德, 马远良, 杨秋龙. 一种基于简正波模态消频散变换的声源距离深度估计方法. 物理学报, 2016, 65(21): 214302. doi: 10.7498/aps.65.214302
    [4] 秦继兴, Katsnelson Boris, 彭朝晖, 李整林, 张仁和, 骆文于. 三维绝热简正波-抛物方程理论及应用. 物理学报, 2016, 65(3): 034301. doi: 10.7498/aps.65.034301
    [5] 戚聿波, 周士弘, 张仁和, 任云. 一种基于β-warping变换算子的被动声源距离估计方法. 物理学报, 2015, 64(7): 074301. doi: 10.7498/aps.64.074301
    [6] 鹿力成, 马力. 基于Warping变换的波导时频分析. 物理学报, 2015, 64(2): 024305. doi: 10.7498/aps.64.024305
    [7] 林旺生, 梁国龙, 王燕, 付进, 张光普. 运动目标辐射声场干涉结构映射域特征研究. 物理学报, 2014, 63(3): 034306. doi: 10.7498/aps.63.034306
    [8] 宋文华, 胡涛, 郭圣明, 马力. 浅海内波影响下的波导不变量变化特性分析. 物理学报, 2014, 63(19): 194303. doi: 10.7498/aps.63.194303
    [9] 黄文昊, 尤云祥, 王旭, 胡天群. 有限深两层流体中内孤立波造波实验及其理论模型. 物理学报, 2013, 62(8): 084705. doi: 10.7498/aps.62.084705
    [10] 林旺生, 梁国龙, 付进, 张光普. 浅海矢量声场干涉结构形成机理及试验研究. 物理学报, 2013, 62(14): 144301. doi: 10.7498/aps.62.144301
    [11] 王晶, 马瑞玲, 王龙, 孟俊敏. 采用混合模型数值模拟从深海到浅海内波的传播. 物理学报, 2012, 61(6): 064701. doi: 10.7498/aps.61.064701
    [12] 文文, 李慧军, 陈秉岩. 强相互作用费米气体在谐振子势中的干涉演化. 物理学报, 2012, 61(22): 220306. doi: 10.7498/aps.61.220306
    [13] 余赟, 惠俊英, 陈阳, 惠娟, 殷敬伟. 基于时空滤波理论的低频声场干涉结构研究. 物理学报, 2012, 61(5): 054303. doi: 10.7498/aps.61.054303
    [14] 刁其龙, 黄春琳. 抑制穿过具有倾斜角度的介质探测成像时产生的寄生干涉条纹现象. 物理学报, 2012, 61(21): 210204. doi: 10.7498/aps.61.210204
    [15] 魏岗, 吴宁, 徐小辉, 苏晓冰, 尤云祥. 线性密度分层流体中半球体运动生成内波的实验研究. 物理学报, 2011, 60(4): 044704. doi: 10.7498/aps.60.044704
    [16] 尤云祥, 赵先奇, 陈科, 魏岗. 有限深密度分层流体中运动物体生成内波的一种等效质量源方法. 物理学报, 2009, 58(10): 6750-6760. doi: 10.7498/aps.58.6750
    [17] 梅凤翔, 蔡建乐. 广义Birkhoff系统的积分不变量. 物理学报, 2008, 57(8): 4657-4659. doi: 10.7498/aps.57.4657
    [18] 陈小刚, 宋金宝, 孙 群. 三层流体界面内波的二阶Stokes解. 物理学报, 2005, 54(12): 5699-5706. doi: 10.7498/aps.54.5699
    [19] 符 建, 高孝纯, 许晶波, 邹旭波. 与不变量有关的幺正变换方法和含时均匀电场中的量子Dirac场的演化. 物理学报, 1999, 48(6): 1011-1022. doi: 10.7498/aps.48.1011
    [20] 钱祖文, 施修祥, 赵春生, 吕凤玲, 王晓霞. 圆形活塞声源的有限振幅反射波. 物理学报, 1983, 32(9): 1109-1117. doi: 10.7498/aps.32.1109
计量
  • 文章访问数:  3903
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-10
  • 修回日期:  2022-12-22
  • 上网日期:  2023-02-14
  • 刊出日期:  2023-04-05

/

返回文章
返回