搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

涡旋对深海风成噪声垂直空间特性的影响

蒋光禹 孙超 李沁然

引用本文:
Citation:

涡旋对深海风成噪声垂直空间特性的影响

蒋光禹, 孙超, 李沁然

Effect of mesoscale eddies on the vertical spatial characteristics of wind-generated noise in deep ocean

Jiang Guang-Yu, Sun Chao, Li Qin-Ran
PDF
HTML
导出引用
  • 涡旋是深海环境中频繁出现的海洋现象, 它会引起上层海水的声速扰动, 改变海面风成噪声的传播过程, 最终导致噪声场特性异常. 本文采用高斯涡模型描述涡旋引起的声速扰动, 分别使用射线和抛物方程模型描述近场和远场噪声信号的传播, 研究了涡旋对其水平中心位置不同深度上的风成噪声垂直空间特性(包括噪声垂直方向性和垂直相关性)的影响. 研究表明: 1)在涡心深度上, 涡旋对噪声垂直空间特性的影响最大, 其中冷涡导致噪声垂直方向性中水平凹槽的宽度增加, 凹槽下边缘峰值的高度降低, 噪声垂直相关性减弱, 暖涡的影响反之; 2)在远离涡心的深度上, 涡旋对噪声垂直空间特性的影响减小, 冷涡和暖涡分别仅引起噪声垂直方向性中水平凹槽下边缘峰值的高度升高和降低, 对噪声垂直相关性几乎没有影响; 3)涡旋对噪声垂直空间特性的影响均随其绝对强度增大而增强. 针对以上现象, 使用射线逆推方法分析了涡旋影响噪声垂直空间特性的机理. 该方法由噪声接收点发射声线, 利用声场互易性分析噪声沿声线反向到达接收点的俯仰角和能量大小. 分析表明, 存在涡旋时, 噪声沿海面反射声线反向到达接收点的俯仰角和能量变化, 是引起噪声垂直空间特性变化的主要原因. 此外, 仿真表明, 当接收点偏离涡旋水平中心但两者距离较近时, 研究中的分析和结论仍是近似成立的.
    Mesoscale eddy is a marine phenomenon occurring frequently in deep ocean, and it will disturb the sound speed in the upper water layer. As a result, the mesoscale eddies will influence the propagation of wing-generated noise and cause the noise field to vary. In this paper, we investigate the effects of mesoscale eddies on the vertical spatial characteristics (including the noise vertical directionality and the noise vertical correlation) of wind-generated noise at different depths of its horizontal center of the eddy. In the study, the Gaussian eddy model is used to describe the sound speed fluctuation, and the ray and parabolic equation theories are used to describe the noise propagating in the near field and far field, respectively. Simulations indicate as follows. 1) At the depth of the eddy center, a clod-core eddy causes both the width of the horizontal notch and the noise vertical correlation to decrease, while the effect of a warm-core eddy is contrary to that of the cold-core eddy. 2) At the depth far from the eddy center, the effect of eddies is reduced, a cold-core and a warm-core eddy only lead the peak at the down edge of the horizontal notch in the noise directionality to rise and fall, respectively, and do not influence the noise vertical correlation. 3) The effect of an eddy becomes severe as its absolute strength becomes higher. The ray reversion method based on the principle of reciprocity is used to explain the physical reason behind the above phenomena. By the method the rays are launched from the noise receiving point and the polar angle and the strength of the noise arriving reversely along the ray paths are analyzed. It is shown that the change of the polar angle and the strength of the noise arriving reversely along the surface reflected ray paths in the presence of eddies are the main cause for changing the noise vertical spatial characteristics. Furthermore, simulations show that the analyses and conclusions in the study are still approximately valid when the receiving point deviates from the eddy center but the horizontal distance between them is short.
      通信作者: 孙超, csun@nwpu.edu.cn
    • 基金项目: 国际级-国家自然科学基金重点项目(11534009)
      Corresponding author: Sun Chao, csun@nwpu.edu.cn
    [1]

    Carey W M, Evans R B 2011 Ocean Ambient Noise (New York: Springer) pp62−68

    [2]

    Wenz G M 1962 J. Acoust. Soc. Am. 34 1936Google Scholar

    [3]

    Yang T C, Yoo K 1997 J. Acoust. Soc. Am. 101 2541Google Scholar

    [4]

    蒋光禹, 孙超, 刘雄厚, 谢磊 2019 物理学报 68 024302Google Scholar

    Jiang G Y, Sun C, Xie L, Liu X H 2019 Acta Phys. Sin. 68 024302Google Scholar

    [5]

    Yoo K, Yang T C 1998 J. Acoust. Soc. Am. 104 3326Google Scholar

    [6]

    Harrison C H 2018 J. Acoust. Soc. Am. 143 1689Google Scholar

    [7]

    Buckingham M J, Jones S A 1987 J. Acoust. Soc. Am. 81 938Google Scholar

    [8]

    Harrison C H, Simons D G 2002 J. Acoust. Soc. Am. 112 1377Google Scholar

    [9]

    Roux P, Kuperman W A, Group N 2004 J. Acoust. Soc. Am. 116 1995Google Scholar

    [10]

    Sabra K G, Roux P, Kuperman W A 2005 J. Acoust. Soc. Am. 117 164Google Scholar

    [11]

    Buckingham M J 2011 J. Acoust. Soc. Am. 129 3562Google Scholar

    [12]

    Etter P C 2018 Underwater Acoustic Modeling and Simulation (3rd Ed.) (New York: CRC Press) pp214−231, 188−190

    [13]

    Cron B F, Sherman C H 1962 J. Acoust. Soc. Am. 34 1732Google Scholar

    [14]

    Kuperman W A, Ingentio F 1980 J. Acoust. Soc. Am. 67 1988Google Scholar

    [15]

    Liggett W S, Jacobson M J 1965 J. Acoust. Soc. Am. 38 303Google Scholar

    [16]

    Harrison C H 1997 Appl. Acoust. 51 289Google Scholar

    [17]

    Carey W M, Evans R B, Davis J A, Botseas G 1990 IEEE J. Oceanic Eng. 15 324Google Scholar

    [18]

    Perkins J S, Kuperman W A, Ingentio F, Fialkowski L T 1993 J. Acoust. Soc. Am. 93 739Google Scholar

    [19]

    Hamson R M 1985 J. Acoust. Soc. Am. 78 1702Google Scholar

    [20]

    Deane G B, Buckingham M J, Tindle C T 1997 J. Acoust. Soc. Am. 102 3413Google Scholar

    [21]

    Harison C H 1997 J. Acoust. Soc. Am. 102 2655Google Scholar

    [22]

    Buckingham M J 2013 J. Acoust. Soc. Am. 134 950Google Scholar

    [23]

    刘伯胜, 雷家煜 2010 水声学原理第二版 (哈尔滨: 哈尔滨工程大学出版社) 第23−30页

    Liu B S, Lei J Y 2010 Principle of Underwater Acoustics 2nd (Harbin: Harbin Engineering University Press) pp23−30 (in Chinese)

    [24]

    Urick R J 1975 J. Acoust. Soc. Am. 5 8

    [25]

    Rouseff D, Tang D J 2006 J. Acoust. Soc. Am. 120 1284Google Scholar

    [26]

    江鹏飞, 林建恒, 马力, 蒋国健 2013 声学学报 38 724

    Jiang P F, Lin J H, Ma L, Jiang G J 2013 Acta Acustica 38 724

    [27]

    汤博 2019 博士学位论文 (北京: 中国科学院大学)

    Tang B 2019 Ph. D. Dissertation (Beijing: University of Chinese Academy Sciences) (in Chinese)

    [28]

    Weinberg N L, Clark J G 1980 J. Acoust. Soc. Am. 68 703Google Scholar

    [29]

    Baer R N 1980 J. Acoust. Soc. Am. 67 1180Google Scholar

    [30]

    Lawrence M W 1983 J. Acoust. Soc. Am. 73 474Google Scholar

    [31]

    Henrick R F, Burkom H S 1983 J. Acoust. Soc. Am. 73 173Google Scholar

    [32]

    Jian Y J, Zhang J, Liu S Q, Wang Y F 2009 Appl. Acoust. 70 432Google Scholar

    [33]

    Heaney K D, Campbell R L 2016 J. Acoust. Soc. Am. 139 918Google Scholar

    [34]

    李佳迅, 张韧, 陈奕德, 金宝刚 2011 海洋通报 30 37Google Scholar

    Li J X, Zhang R, Chen Y D, Jin B G 2011 Marin. Sci. Bull. 30 37Google Scholar

    [35]

    Xiao Y, Li Z L, Li J, Liu J Q, Sabra K G 2019 Chin. Phys. B 28 054301Google Scholar

    [36]

    Chen C, Jin T, Zhou Z Q 2019 Appl. Acoust. 150 190Google Scholar

    [37]

    Chen C, Gao Y, Yan F G, Zhou Z Q 2019 Acoust. Aust. 47 185Google Scholar

    [38]

    康颖 2014 硕士学位论文 (青岛: 中国海洋大学)

    Kang Y 2004 M.S. Thesis (Qingdao: Ocean University of China) (in Chinese)

    [39]

    Jesen F B, Kuperman W A, Porter M B, Schmidt H Computational Ocean Acoustics 2nd (Berlin: Springer Science Business Media) pp155−230, 457−527

    [40]

    Munk W H 1974 J. Acoust. Soc. Am. 55 220Google Scholar

    [41]

    Poter M B https://oalib-acoustics.org/Rays/HLS-2010-1.pdf [2020-4-17]

    [42]

    Collins M D https://oalib-acoustics.org/PE/RAM/ram.pdf [2020-4-17]

    [43]

    Collins M D 1993 J. Acoust. Soc. Am. 93 1736Google Scholar

    [44]

    Collins M D 1994 J. Acoust. Soc. Am. 96 382Google Scholar

    [45]

    Cox H 1973 J. Acoust. Soc. Am. 54 1289Google Scholar

    [46]

    Poter M B https://oalib-acoustics.org/AcousticsToolbox/Kraken.pdf [2020-4-17]

    [47]

    周建波 2018 博士学位论文 (哈尔滨: 哈尔滨工程大学)

    Zhou J B 2018 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese)

    [48]

    Brekhovskikh L M, Lysanov Y P, Beyer R T 2003 Fundamentals of Ocean Acoustics (3rd Ed.) (New York: Springer) pp50−52

  • 图 1  高斯涡模型示意图

    Fig. 1.  Gaussian eddy model

    图 2  噪声场模型几何示意图

    Fig. 2.  Geometry of the noise model

    图 3  仿真环境

    Fig. 3.  Simulation environment

    图 4  涡旋强度$ D_{\rm c} $不同值时的声速分布 (a) $ D_{\rm c}=0 $; (b) $ D_{\rm c}=-20 $; (c) $ D_{\rm c}=-40 $; (d) $ D_{\rm c}=20 $; (e) $ D_{\rm c}=40 $

    Fig. 4.  Sound speed distribution with different $ D_{\rm c} $: (a) $ D_{\rm c}=0 $; (b) $ D_{\rm c}=-20 $; (c) $ D_{\rm c}=-40 $; (d) $ D_{\rm c}=20 $; (e) $ D_{\rm c}=40 $

    图 5  涡旋强度$ D_{\rm c} $取不同值时, 不同深度上的噪声垂直方向性 (图中黑色虚线指示了水平凹槽下边缘峰值) (a) $ D_{\rm c}=0 $; (b) $ D_{\rm c}=-20 $; (c) $ D_{\rm c}=-40 $; (d) $ D_{\rm c}=20 $; (e) $ D_{\rm c}=40 $

    Fig. 5.  Noise vertical directionalities at different depths with different $ D_{\rm c} $ (black dashed line in each subfigure indicates the location of the peak at the downward edge of the horizontal notch): (a) $ D_{\rm c}=0 $; (b) $ D_{\rm c}=-20 $; (c) $ D_{\rm c}=-40 $; (d) $ D_{\rm c}=20 $; (e) $ D_{\rm c}=40 $

    图 6  800和2000 m深度上, 涡旋强度$ D_{\rm c} $取不同值时的噪声垂直方向性 (a) 800 m; (b) 2000 m

    Fig. 6.  Noise vertical directionalities with different $ D_{\rm c} $ at 800 and 2000 m depths: (a) 800 m; (b) 2000 m

    图 7  800 m深度上, 涡旋强度$ D_{\rm c} $取不同值时的噪声垂直相关函数 (a) $ {\rm Re}\left[ \varGamma(d) \right] $; (b) $ {\rm{Im}}\left[ \varGamma(d) \right] $

    Fig. 7.  Noise vertical correlation functions with different $ D_{\rm c} $ at 800 m depth: (a) $ {\rm Re}\left[ \varGamma(d) \right] $; (b) $ {\rm{Im}}\left[ \varGamma(d) \right] $

    图 8  2000 m深度上, 涡旋强度$ D_{\rm c} $取不同值时的噪声垂直相关函数 (a) $ {\rm Re}\left[ \varGamma(d) \right] $; (b) $ {\rm{Im}}\left[ \varGamma(d) \right] $

    Fig. 8.  Noise vertical correlation functions with different $ D_{\rm c} $ at 2000 m depth: (a) $ {\rm Re}\left[ \varGamma(d) \right] $; (b) $ {\rm{Im}}\left[ \varGamma(d) \right] $

    图 9  $ D_{\rm c} $取0, $ -40 $和40时, 以(0, 800 m)为发射点, 出射俯仰角为$95.5 ^\circ — 110.5 ^\circ$的声线轨迹图(图中绿色虚线、红色实线和灰色点线分别表示NR, SR和SRBR声线) (a) $ D_{\rm c}= $0; (b) $ D_{\rm c}=-40 $; (c) $ D_{\rm c}=40 $

    Fig. 9.  Traces of the rays launching from the (0, 800 m) point with the launching polar angles varying within $95.5 ^\circ - 110.5 ^\circ$ under the conditions where $ D_{\rm c} $ equals to 0, $ -40 $, and 40 (green dashed lines, red solid lines and gray dotted lines in each subfigure indicate the NR, SR, and SRBR rays, respectively): (a) $ D_{\rm c} \!=\! $0; (b) $ D_{\rm c}\!=\! -40 $; (c) $ D_{\rm c}\!=\! 40$

    图 10  $ D_{\rm c} $取0, $ -40 $和40时, 40—50 km不同$ {\rm d}r $范围内的噪声源产生的噪声场在800 m深度上的垂直方向性$ B_r(\theta) $ (a) $ D_{\rm c}=0 $; (b) $ D_{\rm c}=-40 $; (c) $ D_{\rm c}=40 $

    Fig. 10.  Noise vertical noise directionalities $ B_r(\theta) $ generated by noise sources within $ {\rm d}r $ at 800 m depth with r varying from 40 to 50 km under the conditions where $ D_{\rm c} $ equals to 0, $ -40 $, and 40: (a) $ D_{\rm c}=0 $; (b) $ D_{\rm c}=-40 $; (c) $ D_{\rm c}=40 $

    图 11  $ D_{\rm c} $取0, $ -40 $和40时, 以(0, 2000 m)为发射点, 出射俯仰角为$95.5 ^\circ — 110.5 ^\circ$的声线轨迹图(图中绿色虚线、红色实线和灰色点线分别表示NR, SR和SRBR声线) (a) $ D_{\rm c}=0 $; (b) $ D_{\rm c}=-40 $; (c) $ D_{\rm c}=40 $

    Fig. 11.  Traces of the rays launching from the (0, 2000 m) point with the launching polar angles varying within $95.5 ^\circ - 110.5 ^\circ$ under the conditions where $ D_{\rm c} $ equals to 0, $ -40 $, and 40 (green dashed lines, red solid lines and gray dotted lines in each subfigure indicate the NR, SR, and SRBR rays, respectively): (a) $ D_{\rm c}=0 $; (b) $ D_{\rm c}=-40 $; (c) Dc = 40

    图 12  $ D_{\rm c} $取0, $ -40 $和40时, 40—50 km不同$ {\rm d}r $范围内的噪声源产生的噪声场在2000 m深度上的垂直方向性$ B_r(\theta) $ (a) $ D_{\rm c}=0 $; (b) $ D_{\rm c}=-40 $; (c) $ D_{\rm c}=40 $

    Fig. 12.  Noise vertical noise directionalities $ B_r(\theta) $ generated by noise sources within $ {\rm d}r $ at 2000 m depth with r varying from 40 to 50 km under the conditions where $ D_{\rm c} $ equals to 0, $ -40 $, and 40: (a) $ D_{\rm c}=0 $; (b) $ D_{\rm c}=-40 $; (c) $ D_{\rm c}=40 $

    图 13  几何俯视示意图

    Fig. 13.  Downward-view geometry

    图 14  800 m深度水平截面内的声速分布

    Fig. 14.  Sound distribution in the 800 m depth cross section

    图 15  使用Bellhop3D, 分别选择${{N}} \times {\rm{2 D}}$$ \rm 3 D $模式计算得到的$ O_{\rm R} $处800 m深度上的声源到噪声源深度(0.5 m)水平截面的传播损失 (a) ${{N}} \times {\rm{2 D}}$; (b)${\rm{3 D}}$

    Fig. 15.  Transmission loss from $ O_{\rm R} $ 800 m depth to the noise sources depth (0.5 m) cross section computed by the Bellhop3D program in ${{N}} \times {\rm{2D}}$ and 3D modes: (a) N × 2D; (b) 3D

    图 16  800 m深度上, 偏心位置处仅考虑扇面1或扇面2内噪声源的贡献得到的噪声垂直方向性以及涡心位置处的噪声垂直方向性

    Fig. 16.  Noise vertical directionalities at the off-center position 800 m depth generated by the noise sources within sector 1 and sector 2 in comparison with the noise vertical directionality at the eddy center 800 m depth

    表 1  $ D_{\rm c} $取0, $ -40 $和40时, 以(0, 800 m)为发射点, 出射俯仰角大于$90 ^\circ$的声线中, SR声线的最小出射俯仰角$ \theta_{{\rm{SR}}, {\rm{min}}} $、最大出射俯仰角$\theta_{{\rm{SR}}, {\rm{max}}}$、中心出射俯仰角$\theta_{{\rm{SR}}, {\rm{c}}}$和出射俯仰角宽度$ \Delta \theta_{\rm{SR}} $

    Table 1.  Minimal lunching polar angle $\theta_{{\rm{SR}}, {\rm{min}}}$, maximal launching polar angle $\theta_{{\rm{SR}}, {\rm{max}}}$, central launching polar angle $\theta_{{\rm{SR}}, {\rm{c}}}$, and launching polar angle width $ \Delta \theta_{\rm{SR}} $ of the SR rays launching from the (0, 800 m) point with the launching polar angle being greater than $90 ^\circ$ under the conditions where $ D_{\rm c} $ equals to 0, $ -40 $, and 40

    $ D_{\rm c} $ $\theta_{{\rm{SR} }, {\rm{min} }}$ $\theta_{{\rm{SR} }, {\rm{max} }}$ $\theta_{{\rm{SR} }, {\rm{c} }}$ $ \Delta \theta_{\rm{SR}} $
    0 104.3° 105.1° 104.70° 0.8°
    –40 109.3° 110.0° 109.65° 0.7°
    40 96.3° 97.7° 97.00° 1.4°
    下载: 导出CSV

    表 2  $ D_{\rm c} $取0, $ -40 $和40时, 以(0, 2000 m)为发射点, 出射俯仰角大于$90 ^\circ$的声线中, SR声线的最小出射俯仰角$\theta_{{\rm{SR}}, {\rm{min}}}$、最大出射俯仰角$\theta_{{\rm{SR}}, {\rm{max}}}$、中心出射俯仰角$\theta_{{\rm{SR}}, {\rm{c}}}$和出射俯仰角宽度$ \Delta \theta_{\rm{SR}} $

    Table 2.  Minimal launching polar angle $\theta_{{\rm{SR}}, {\rm{min}}}$, maximal launching polar angle $\theta_{{\rm{SR}}, {\rm{max}}}$, central launching polar angle $\theta_{{\rm{SR}}, {\rm{c}}}$, and launching polar angle width $ \Delta \theta_{\rm{SR}} $ of the SR rays launching from the (0, 2000 m) point with the launching polar angle being greater than $90 ^\circ$ under the conditions where $ D_{\rm c} $ equals to 0, $ -40 $, and 40

    $ D_{\rm c} $ $\theta_{{\rm{SR} }, {\rm{min} }}$ $\theta_{{\rm{SR} }, {\rm{max} }}$ $\theta_{{\rm{SR} }, {\rm{c} }}$ $ \Delta \theta_{\rm{SR}} $
    0 102.3° 103.4° 102.85° 1.1°
    –40 102.0° 103.4° 102.70° 1.4°
    40 102.7° 103.4° 103.05° 0.7°
    下载: 导出CSV
  • [1]

    Carey W M, Evans R B 2011 Ocean Ambient Noise (New York: Springer) pp62−68

    [2]

    Wenz G M 1962 J. Acoust. Soc. Am. 34 1936Google Scholar

    [3]

    Yang T C, Yoo K 1997 J. Acoust. Soc. Am. 101 2541Google Scholar

    [4]

    蒋光禹, 孙超, 刘雄厚, 谢磊 2019 物理学报 68 024302Google Scholar

    Jiang G Y, Sun C, Xie L, Liu X H 2019 Acta Phys. Sin. 68 024302Google Scholar

    [5]

    Yoo K, Yang T C 1998 J. Acoust. Soc. Am. 104 3326Google Scholar

    [6]

    Harrison C H 2018 J. Acoust. Soc. Am. 143 1689Google Scholar

    [7]

    Buckingham M J, Jones S A 1987 J. Acoust. Soc. Am. 81 938Google Scholar

    [8]

    Harrison C H, Simons D G 2002 J. Acoust. Soc. Am. 112 1377Google Scholar

    [9]

    Roux P, Kuperman W A, Group N 2004 J. Acoust. Soc. Am. 116 1995Google Scholar

    [10]

    Sabra K G, Roux P, Kuperman W A 2005 J. Acoust. Soc. Am. 117 164Google Scholar

    [11]

    Buckingham M J 2011 J. Acoust. Soc. Am. 129 3562Google Scholar

    [12]

    Etter P C 2018 Underwater Acoustic Modeling and Simulation (3rd Ed.) (New York: CRC Press) pp214−231, 188−190

    [13]

    Cron B F, Sherman C H 1962 J. Acoust. Soc. Am. 34 1732Google Scholar

    [14]

    Kuperman W A, Ingentio F 1980 J. Acoust. Soc. Am. 67 1988Google Scholar

    [15]

    Liggett W S, Jacobson M J 1965 J. Acoust. Soc. Am. 38 303Google Scholar

    [16]

    Harrison C H 1997 Appl. Acoust. 51 289Google Scholar

    [17]

    Carey W M, Evans R B, Davis J A, Botseas G 1990 IEEE J. Oceanic Eng. 15 324Google Scholar

    [18]

    Perkins J S, Kuperman W A, Ingentio F, Fialkowski L T 1993 J. Acoust. Soc. Am. 93 739Google Scholar

    [19]

    Hamson R M 1985 J. Acoust. Soc. Am. 78 1702Google Scholar

    [20]

    Deane G B, Buckingham M J, Tindle C T 1997 J. Acoust. Soc. Am. 102 3413Google Scholar

    [21]

    Harison C H 1997 J. Acoust. Soc. Am. 102 2655Google Scholar

    [22]

    Buckingham M J 2013 J. Acoust. Soc. Am. 134 950Google Scholar

    [23]

    刘伯胜, 雷家煜 2010 水声学原理第二版 (哈尔滨: 哈尔滨工程大学出版社) 第23−30页

    Liu B S, Lei J Y 2010 Principle of Underwater Acoustics 2nd (Harbin: Harbin Engineering University Press) pp23−30 (in Chinese)

    [24]

    Urick R J 1975 J. Acoust. Soc. Am. 5 8

    [25]

    Rouseff D, Tang D J 2006 J. Acoust. Soc. Am. 120 1284Google Scholar

    [26]

    江鹏飞, 林建恒, 马力, 蒋国健 2013 声学学报 38 724

    Jiang P F, Lin J H, Ma L, Jiang G J 2013 Acta Acustica 38 724

    [27]

    汤博 2019 博士学位论文 (北京: 中国科学院大学)

    Tang B 2019 Ph. D. Dissertation (Beijing: University of Chinese Academy Sciences) (in Chinese)

    [28]

    Weinberg N L, Clark J G 1980 J. Acoust. Soc. Am. 68 703Google Scholar

    [29]

    Baer R N 1980 J. Acoust. Soc. Am. 67 1180Google Scholar

    [30]

    Lawrence M W 1983 J. Acoust. Soc. Am. 73 474Google Scholar

    [31]

    Henrick R F, Burkom H S 1983 J. Acoust. Soc. Am. 73 173Google Scholar

    [32]

    Jian Y J, Zhang J, Liu S Q, Wang Y F 2009 Appl. Acoust. 70 432Google Scholar

    [33]

    Heaney K D, Campbell R L 2016 J. Acoust. Soc. Am. 139 918Google Scholar

    [34]

    李佳迅, 张韧, 陈奕德, 金宝刚 2011 海洋通报 30 37Google Scholar

    Li J X, Zhang R, Chen Y D, Jin B G 2011 Marin. Sci. Bull. 30 37Google Scholar

    [35]

    Xiao Y, Li Z L, Li J, Liu J Q, Sabra K G 2019 Chin. Phys. B 28 054301Google Scholar

    [36]

    Chen C, Jin T, Zhou Z Q 2019 Appl. Acoust. 150 190Google Scholar

    [37]

    Chen C, Gao Y, Yan F G, Zhou Z Q 2019 Acoust. Aust. 47 185Google Scholar

    [38]

    康颖 2014 硕士学位论文 (青岛: 中国海洋大学)

    Kang Y 2004 M.S. Thesis (Qingdao: Ocean University of China) (in Chinese)

    [39]

    Jesen F B, Kuperman W A, Porter M B, Schmidt H Computational Ocean Acoustics 2nd (Berlin: Springer Science Business Media) pp155−230, 457−527

    [40]

    Munk W H 1974 J. Acoust. Soc. Am. 55 220Google Scholar

    [41]

    Poter M B https://oalib-acoustics.org/Rays/HLS-2010-1.pdf [2020-4-17]

    [42]

    Collins M D https://oalib-acoustics.org/PE/RAM/ram.pdf [2020-4-17]

    [43]

    Collins M D 1993 J. Acoust. Soc. Am. 93 1736Google Scholar

    [44]

    Collins M D 1994 J. Acoust. Soc. Am. 96 382Google Scholar

    [45]

    Cox H 1973 J. Acoust. Soc. Am. 54 1289Google Scholar

    [46]

    Poter M B https://oalib-acoustics.org/AcousticsToolbox/Kraken.pdf [2020-4-17]

    [47]

    周建波 2018 博士学位论文 (哈尔滨: 哈尔滨工程大学)

    Zhou J B 2018 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese)

    [48]

    Brekhovskikh L M, Lysanov Y P, Beyer R T 2003 Fundamentals of Ocean Acoustics (3rd Ed.) (New York: Springer) pp50−52

  • [1] 蒋铭阳, 李九生. 弧度与旋转共同诱导相位调控太赫兹超表面. 物理学报, 2025, 74(2): 028701. doi: 10.7498/aps.74.20241465
    [2] 马树青, 郭肖晋, 张理论, 蓝强, 黄创霞. 水声射线传播的黎曼几何建模·应用 —深海远程声传播会聚区黎曼几何模型. 物理学报, 2023, 72(4): 044301. doi: 10.7498/aps.72.20221495
    [3] 李明杨, 赵航芳, 孙超. 风成噪声背景下垂直阵阵列信噪比随声源深度的变化规律. 物理学报, 2022, 71(4): 044302. doi: 10.7498/aps.71.20211654
    [4] 李明杨, 赵航芳, 孙超. 风成噪声背景下垂直阵阵列信噪比随声源深度的变化规律. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211654
    [5] 王力, 刘静思, 李吉, 周晓林, 陈向荣, 刘超飞, 刘伍明. 旋量玻色-爱因斯坦凝聚体拓扑性质的研究进展. 物理学报, 2020, 69(1): 010303. doi: 10.7498/aps.69.20191648
    [6] 雍康乐, 闫家伟, 唐善发, 张蓉竹. 彗差和球差对涡旋光束斜程传输特性的影响. 物理学报, 2020, 69(1): 014201. doi: 10.7498/aps.69.20191254
    [7] 蒋光禹, 孙超, 谢磊, 刘雄厚. 表面声道对深海风成噪声垂直空间特性的影响规律. 物理学报, 2019, 68(2): 024302. doi: 10.7498/aps.68.20181794
    [8] 李耀义, 贾金锋. 在人工拓扑超导体磁通涡旋中寻找Majorana零能模. 物理学报, 2019, 68(13): 137401. doi: 10.7498/aps.68.20181698
    [9] 陈光平. 简谐+四次势中自旋轨道耦合旋转玻色-爱因斯坦凝聚体的基态结构. 物理学报, 2015, 64(3): 030302. doi: 10.7498/aps.64.030302
    [10] 史良马, 周明健, 朱仁义. 磁场作用下超导圆环的涡旋演化. 物理学报, 2014, 63(24): 247501. doi: 10.7498/aps.63.247501
    [11] 张青洪, 廖成, 盛楠, 陈伶璐. 森林环境电波传播抛物方程模型的改进研究. 物理学报, 2013, 62(20): 204101. doi: 10.7498/aps.62.204101
    [12] 刘超飞, 万文娟, 张赣源. 自旋轨道耦合的23Na自旋-1玻色-爱因斯坦凝聚体中的涡旋斑图的研究. 物理学报, 2013, 62(20): 200306. doi: 10.7498/aps.62.200306
    [13] 周昱, 周青春, 马晓栋. 幺正极限附近费米气体反常激发模式的涡旋. 物理学报, 2013, 62(14): 140301. doi: 10.7498/aps.62.140301
    [14] 李国龙, 黄卓寅, 李衎, 甄红宇, 沈伟东, 刘旭. 基于光学与光—电转换模型对聚合物电池功能层厚度与性能相关性分析. 物理学报, 2011, 60(7): 077207. doi: 10.7498/aps.60.077207
    [15] 郑巍巍, 王丽琴, 许静平, 王立刚. 带初相位分布的径向基模激光束列阵在湍流大气中的传输特性研究. 物理学报, 2009, 58(7): 5098-5103. doi: 10.7498/aps.58.5098
    [16] 黄思训, 蔡其发, 项 杰, 张 铭. 台风风场分解. 物理学报, 2007, 56(5): 3022-3027. doi: 10.7498/aps.56.3022
    [17] 王 莉, 王庆峰, 王喜庆, 吕百达. 两束离轴高斯光束干涉场中的横向光涡旋. 物理学报, 2007, 56(1): 201-207. doi: 10.7498/aps.56.201
    [18] 李永青, 李希国, 刘紫玉, 罗培燕, 张鹏鸣. Jackiw-Pi模型的新涡旋解. 物理学报, 2007, 56(11): 6178-6182. doi: 10.7498/aps.56.6178
    [19] 王德和. 非晶态硅(锗)中的原子相关性和结构模型. 物理学报, 1992, 41(5): 792-797. doi: 10.7498/aps.41.792
    [20] 黎永清, 王育竹. 利用光子相关性降低量子噪声. 物理学报, 1989, 38(3): 476-480. doi: 10.7498/aps.38.476
计量
  • 文章访问数:  6515
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-09
  • 修回日期:  2020-04-15
  • 上网日期:  2020-05-09
  • 刊出日期:  2020-07-20

/

返回文章
返回