搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

彗差和球差对涡旋光束斜程传输特性的影响

雍康乐 闫家伟 唐善发 张蓉竹

引用本文:
Citation:

彗差和球差对涡旋光束斜程传输特性的影响

雍康乐, 闫家伟, 唐善发, 张蓉竹

Influence of coma and spherical aberration on transmission characteristics of vortex beams in slant atmospheric turbulence

Yong Kang-Le, Yan Jia-Wei, Tang Shan-Fa, Zhang Rong-Zhu
PDF
HTML
导出引用
  • 利用涡旋光束作为空间光通信载波可以大大提高数据传输的容量, 因此, 研究涡旋光束在大气湍流中的传输具有重要意义. 涡旋光束在大气湍流中传输时会产生光束漂移, 进而影响通信系统的性能. 本文基于多相位屏和傅里叶变换的方法, 研究了带有彗差和球差的涡旋光束在大气湍流中传输时的光束漂移特性. 结果表明, 涡旋光束在大气湍流中传输时, 随着传输距离的增大, 彗差和球差对光束漂移特性的影响均明显增强. 传输天顶角及彗差系数越大, 涡旋光束的光束漂移量越大, 而球差系数的增大, 将会降低光束漂移量. 当天顶角和传输距离相同时, 涡旋光束的漂移量都会随着拓扑荷数的增大而减小. 相对而言, 彗差对涡旋光束的光束漂移特性影响比球差更大.
    Vortex beam has potential applications in free space optical communication because of its capacity of data transmission. Therefore, it is necessary to study the propagation characteristics of vortex beams in atmospheric turbulence. When the vortex beam propagates in the atmospheric turbulence the beam drift will occur, which has a great influence on the free space optical communication. In this paper, the beam drift of vortex beams with coma and spherical aberration transmitted in atmospheric turbulence is studied by using multi-phase screen and Fourier transform method. The numerical results show that as the transmission distance increases, the effects of both coma and spherical aberration on the beam drift are enhanced. The larger the transmission zenith angle and the coma coefficients, the greater the beam drift of the vortex beam is. However, the beam drift decreases with spherical aberration coefficient increasing. When the zenith angle and the transmission distance are both unchanged, the beam drift of the both vortex beams decrease with topological charges increasing. The influence of coma aberration on beam drift is bigger than that of spherical aberration.
      通信作者: 张蓉竹, zhang_rz@scu.edu.cn
    • 基金项目: 中央高校基本科研业务费 (批准号: 2012017yjsy160)资助的课题
      Corresponding author: Zhang Rong-Zhu, zhang_rz@scu.edu.cn
    • Funds: Project supported by the Fundamental Research Fund for the Central Universities, China (Grant No. 2012017yjsy160)
    [1]

    Qiu S, Liu T, Li Z M, Wang C, Ren Y, Shao Q L, et al 2019 Appl. Opt 58 2650Google Scholar

    [2]

    郑晓桐, 郭立新, 程明建, 李江挺 2018 物理学报 67 214206Google Scholar

    Zheng X T, Guo L X, Cheng M J, Li J T 2018 Acta Phys. Sin. 67 214206Google Scholar

    [3]

    Paterson C 2005 Phys. Rev. Lett. 94 153901Google Scholar

    [4]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Ren Y X, et al 2012 Nat. Photonics 6 488Google Scholar

    [5]

    Juhasz T, Loesel F H, Kurtz R M, Horvath C, Bille J F, Mourou G 1999 IEEE J. Sel. Top. Quantum Electron. 5 902Google Scholar

    [6]

    Qian Y X, Shi Y L, Jin W M, Hu F R, Ren Z J 2019 Opt. Express 27 18085Google Scholar

    [7]

    Allen L, Beijersbergen M W, Spreeuw J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [8]

    He H, Friese M E, Heckenberg N R, Rubinsztein-Dunlop H 1995 Phys. Rev. Lett. 75 826Google Scholar

    [9]

    Auguita J A, Neifeld M A, Vasic B V 2008 Appl. Opt. 47 2414Google Scholar

    [10]

    Wu J Z, Li H, Li Y J 2007 Opt. Eng. 46 019701Google Scholar

    [11]

    葛筱璐, 王本义, 国承山 2016 光学学报 36 0301002

    Ge X L, Wang B Y, Guo C S 2016 Acta Opt. Sin. 36 0301002

    [12]

    Ge X L, Wang B Y, Guo C S 2015 J. Opt. Soc. Am. A 32 837

    [13]

    Li J, Chen X, Duffie S M, Najjar M A, Rafsanjani H, Korotkova O 2019 Opt. Commun. 446 178Google Scholar

    [14]

    Sandalidis H G 2011 Appl. Opt. 50 952Google Scholar

    [15]

    柯熙政, 邓莉君 2016 无线光通信中的部分相干光传输理论 (北京:科学出版社) 第14页

    Ke X Z, Deng L J 2016 The Theory of Partially Coherent Optical Transmission in Wireless Optical Communication (Beijing: Science Press) p14 (in Chinese)

    [16]

    Aksenov V P, Pogutsa C E 2012 Appl. Opt 51 7262Google Scholar

    [17]

    Huang Y, Yuan Y S, Liu X L, Zeng J, Wang F, Yu J Y, et al 2018 Appl. Sci 8 2476Google Scholar

    [18]

    Wu G H, Dai W, Tang H, Guo H 2015 Opt. Commun. 336 55Google Scholar

    [19]

    Xu Y G, Tian H H, Dan Y Q, Feng H, Wang S J 2017 J. Mod. Opt. 64 844Google Scholar

    [20]

    狄颢萍, 张淇博, 周木春, 辛煜, 赵琦 2018 中国激光 45 0305001

    Di H P, Zhang Q B, Zhou M C, Xin Y, Zhao Q 2018 Chin. J. Laser 45 0305001

    [21]

    程振, 楚兴春, 赵尚弘, 邓博于, 张曦文 2015 中国激光 42 1213002

    Cheng Z, Chu X C, Zhao S H, Deng B Y, Zhang X W 2015 Chin. J. Laser 42 1213002

    [22]

    Dabby F W, Whinnery J R 1968 Appl. Phys. Lett. 13 284Google Scholar

    [23]

    Born M, Wolf E 1997 Principles of Optics (6th ed.) (Cambridge: Cambridge University Press)

    [24]

    Pu J X, Zhang H H 1998 Opt. Commun. 151 331Google Scholar

    [25]

    Chu X X, Zhou G Q 2007 Opt. Express 15 7697Google Scholar

    [26]

    钱仙妹, 朱文越, 饶瑞中 2009 物理学报 58 6633Google Scholar

    Qian X M, Zhu W Y, Rao R Z 2009 Acta. Phys. Sin. 58 6633Google Scholar

    [27]

    Fleck J A, Morris J R, Feit M D 1976 Appl. Phys. 10 129

    [28]

    Ke X Z, Lei S C 2016 Appl. Opt. 55 3897Google Scholar

    [29]

    李大海, 曹益平, 张启灿, 王琼华 2013 现代工程光学 (北京: 科学出版社) 第217页

    Li D H, Cao Y P, Zhang Q C, Wang Q H 2013 XianDai GongCheng GuangXue (Beijing: Science Press) p217 (in Chinese)

    [30]

    陈鸣, 高太长, 刘磊, 胡帅, 曾庆伟, 李刚, 等 2017 强激光与粒子束 29 091008

    Chen M, Gao T C, Liu L, Hu S, Zeng Q W, Li G, et al 2017 High Power Laser and Particle Beams 29 091008

  • 图 1  激光在大气湍流中斜程传输时的示意图

    Fig. 1.  schematic diagram of laser propagation in slant atmospheric turbulence.

    图 2  含彗差涡旋光束在大气湍流中不同传输距离时的光强分布. (a1)−(a3) $n = 1$; (b1)−(b3) $n = 2$

    Fig. 2.  Two-dimensional intensity distribution of Gaussian vortex beam with coma in slant atmospheric turbulence at different propagation distance: (a1)−(a3) $n = 1$; (b1)−(b3) $n = 2$

    图 3  拓扑荷数 (a) $n = 1$和(b) $n = 2$时带有彗差的涡旋光束在大气湍流中不同传输距离的归一化光强分布

    Fig. 3.  Normalized intensity distribution of Gaussian vortex beam with coma when the propagation distance is different. Topological charge (a) $n = 1$, (b) $n = 2$.

    图 4  拓扑荷数不同时, 无像差、带有彗差和带有球差的涡旋光束在大气湍流中传输时相位变化. 传输距离z = 3639 m (a1)−(a3)无像差; (b1)−(b3)带有彗差kC3 = 0.5; (c1)−(c3)带有球差kC4 = 0.5. 相位对应黑色(–π)-白色(${\text{π}}$)

    Fig. 4.  The phase change of the vortex beam with no aberration, with coma and with spherical aberration propagated in atmospheric turbulence when the topological charges are different. Distance z = 3639 m: (a1)−(a3) with no aberration; (b1)−(b3) with coma kC3 = 0.5; (c1)−(c3) with spherical aberration kC4 = 0.5. Phase responding to black (–π)-white (π).

    图 5  拓扑荷数 (a) $n = 1$和(b) $n = 2$时不同彗差系数对涡旋光束光强分布的影响

    Fig. 5.  The effects of coma aberration coefficients on the intensity distribution of Gaussian vortex beam. Topological charge (a) $n = 1$, (b) $n = 2$.

    图 6  拓扑荷数 (a) $n = 1$和(b) $n = 2$时球差系数对涡旋光束光强分布的影响

    Fig. 6.  The effects of spherical aberration coefficients on the intensity distribution of Gaussian vortex beam. Topological charge (a) $n = 1$, (b) $n = 2$

    图 7  分别带有不同彗差和球差系数的涡旋光束在湍流中传输时相位分布. 传输距离z = 3639 m, 拓扑核数n = 1 (a1)−(a3)带有彗差; (b1)−(b3)带有球差. 相位对应黑色(–π)-白色π)

    Fig. 7.  Phase change of vortex beams with different coma and spherical aberration propagated through atmospheric turbulence. Distance z = 3639 m, topological charge n = 1: (a1)−(a3) with coma; (b1)−(b3) with spherical aberration. Phase responding to black (–π)-white (π).

    图 8  彗差系数(a)以及拓扑荷数(b)对涡旋光束的光束漂移影响

    Fig. 8.  The effects of coma coefficients (a) and topological charges (b) on the beam drift.

    图 9  光束漂移量随着传输距离、天顶角和拓扑荷数的变化曲线. 实线: 拓扑荷数 $n = 1$, 虚线: 拓扑荷数$n = 2$

    Fig. 9.  Curves of beam drift with different transmission distance, zenith angles and topological charges. The solid line: $n = 1$, the dash line: $n = 2$.

    图 10  天顶角、拓扑荷数(a)以及球差系数(b)对光束漂移的影响

    Fig. 10.  The effects of zenith angles, topological charges (a) and spherical aberration coefficients (b) on beam drift of vortex beam.

    图 11  分别带有彗差和球差的涡旋光束在不同传输距离不同天顶角时的光束漂移量对比

    Fig. 11.  Comparison of beam drift of Gaussian vortex beams with coma and spherical aberration at different zenith angles and different transmission distances.

  • [1]

    Qiu S, Liu T, Li Z M, Wang C, Ren Y, Shao Q L, et al 2019 Appl. Opt 58 2650Google Scholar

    [2]

    郑晓桐, 郭立新, 程明建, 李江挺 2018 物理学报 67 214206Google Scholar

    Zheng X T, Guo L X, Cheng M J, Li J T 2018 Acta Phys. Sin. 67 214206Google Scholar

    [3]

    Paterson C 2005 Phys. Rev. Lett. 94 153901Google Scholar

    [4]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Ren Y X, et al 2012 Nat. Photonics 6 488Google Scholar

    [5]

    Juhasz T, Loesel F H, Kurtz R M, Horvath C, Bille J F, Mourou G 1999 IEEE J. Sel. Top. Quantum Electron. 5 902Google Scholar

    [6]

    Qian Y X, Shi Y L, Jin W M, Hu F R, Ren Z J 2019 Opt. Express 27 18085Google Scholar

    [7]

    Allen L, Beijersbergen M W, Spreeuw J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [8]

    He H, Friese M E, Heckenberg N R, Rubinsztein-Dunlop H 1995 Phys. Rev. Lett. 75 826Google Scholar

    [9]

    Auguita J A, Neifeld M A, Vasic B V 2008 Appl. Opt. 47 2414Google Scholar

    [10]

    Wu J Z, Li H, Li Y J 2007 Opt. Eng. 46 019701Google Scholar

    [11]

    葛筱璐, 王本义, 国承山 2016 光学学报 36 0301002

    Ge X L, Wang B Y, Guo C S 2016 Acta Opt. Sin. 36 0301002

    [12]

    Ge X L, Wang B Y, Guo C S 2015 J. Opt. Soc. Am. A 32 837

    [13]

    Li J, Chen X, Duffie S M, Najjar M A, Rafsanjani H, Korotkova O 2019 Opt. Commun. 446 178Google Scholar

    [14]

    Sandalidis H G 2011 Appl. Opt. 50 952Google Scholar

    [15]

    柯熙政, 邓莉君 2016 无线光通信中的部分相干光传输理论 (北京:科学出版社) 第14页

    Ke X Z, Deng L J 2016 The Theory of Partially Coherent Optical Transmission in Wireless Optical Communication (Beijing: Science Press) p14 (in Chinese)

    [16]

    Aksenov V P, Pogutsa C E 2012 Appl. Opt 51 7262Google Scholar

    [17]

    Huang Y, Yuan Y S, Liu X L, Zeng J, Wang F, Yu J Y, et al 2018 Appl. Sci 8 2476Google Scholar

    [18]

    Wu G H, Dai W, Tang H, Guo H 2015 Opt. Commun. 336 55Google Scholar

    [19]

    Xu Y G, Tian H H, Dan Y Q, Feng H, Wang S J 2017 J. Mod. Opt. 64 844Google Scholar

    [20]

    狄颢萍, 张淇博, 周木春, 辛煜, 赵琦 2018 中国激光 45 0305001

    Di H P, Zhang Q B, Zhou M C, Xin Y, Zhao Q 2018 Chin. J. Laser 45 0305001

    [21]

    程振, 楚兴春, 赵尚弘, 邓博于, 张曦文 2015 中国激光 42 1213002

    Cheng Z, Chu X C, Zhao S H, Deng B Y, Zhang X W 2015 Chin. J. Laser 42 1213002

    [22]

    Dabby F W, Whinnery J R 1968 Appl. Phys. Lett. 13 284Google Scholar

    [23]

    Born M, Wolf E 1997 Principles of Optics (6th ed.) (Cambridge: Cambridge University Press)

    [24]

    Pu J X, Zhang H H 1998 Opt. Commun. 151 331Google Scholar

    [25]

    Chu X X, Zhou G Q 2007 Opt. Express 15 7697Google Scholar

    [26]

    钱仙妹, 朱文越, 饶瑞中 2009 物理学报 58 6633Google Scholar

    Qian X M, Zhu W Y, Rao R Z 2009 Acta. Phys. Sin. 58 6633Google Scholar

    [27]

    Fleck J A, Morris J R, Feit M D 1976 Appl. Phys. 10 129

    [28]

    Ke X Z, Lei S C 2016 Appl. Opt. 55 3897Google Scholar

    [29]

    李大海, 曹益平, 张启灿, 王琼华 2013 现代工程光学 (北京: 科学出版社) 第217页

    Li D H, Cao Y P, Zhang Q C, Wang Q H 2013 XianDai GongCheng GuangXue (Beijing: Science Press) p217 (in Chinese)

    [30]

    陈鸣, 高太长, 刘磊, 胡帅, 曾庆伟, 李刚, 等 2017 强激光与粒子束 29 091008

    Chen M, Gao T C, Liu L, Hu S, Zeng Q W, Li G, et al 2017 High Power Laser and Particle Beams 29 091008

  • [1] 蒋铭阳, 李九生. 弧度与旋转共同诱导相位调控太赫兹超表面. 物理学报, 2025, 74(2): . doi: 10.7498/aps.74.20241465
    [2] 刘俊杰, 盛泉, 王盟, 张钧翔, 耿兴宁, 石争, 王爱华, 史伟, 姚建铨. 基于腔内球差选模产生高阶拉盖尔-高斯模式激光. 物理学报, 2022, 71(1): 014204. doi: 10.7498/aps.71.20211514
    [3] 黄梓樾, 邓宇, 季小玲. 球差对高功率激光上行大气传输光束质量的影响. 物理学报, 2021, 70(23): 234202. doi: 10.7498/aps.70.20211226
    [4] 王力, 刘静思, 李吉, 周晓林, 陈向荣, 刘超飞, 刘伍明. 旋量玻色-爱因斯坦凝聚体拓扑性质的研究进展. 物理学报, 2020, 69(1): 010303. doi: 10.7498/aps.69.20191648
    [5] 蒋光禹, 孙超, 李沁然. 涡旋对深海风成噪声垂直空间特性的影响. 物理学报, 2020, 69(14): 144301. doi: 10.7498/aps.69.20200059
    [6] 李耀义, 贾金锋. 在人工拓扑超导体磁通涡旋中寻找Majorana零能模. 物理学报, 2019, 68(13): 137401. doi: 10.7498/aps.68.20181698
    [7] 姚强强, 王启晗, 冯池, 陈思, 金光勇, 董渊. 数值模拟抽运分布对端泵激光器晶体热透镜球差的影响. 物理学报, 2018, 67(17): 174204. doi: 10.7498/aps.67.20180113
    [8] 刘扬阳, 吕群波, 吴戈, 裴琳琳, 王建威. 编码孔径光谱成像仪光学简化彗差对图谱反演误差分析. 物理学报, 2015, 64(5): 054205. doi: 10.7498/aps.64.054205
    [9] 陈光平. 简谐+四次势中自旋轨道耦合旋转玻色-爱因斯坦凝聚体的基态结构. 物理学报, 2015, 64(3): 030302. doi: 10.7498/aps.64.030302
    [10] 李晓庆, 王涛, 季小玲. 球差光束在大气湍流中传输特性的实验研究. 物理学报, 2014, 63(13): 134209. doi: 10.7498/aps.63.134209
    [11] 史良马, 周明健, 朱仁义. 磁场作用下超导圆环的涡旋演化. 物理学报, 2014, 63(24): 247501. doi: 10.7498/aps.63.247501
    [12] 刘超飞, 万文娟, 张赣源. 自旋轨道耦合的23Na自旋-1玻色-爱因斯坦凝聚体中的涡旋斑图的研究. 物理学报, 2013, 62(20): 200306. doi: 10.7498/aps.62.200306
    [13] 周昱, 周青春, 马晓栋. 幺正极限附近费米气体反常激发模式的涡旋. 物理学报, 2013, 62(14): 140301. doi: 10.7498/aps.62.140301
    [14] 罗亚梅, 吕百达. 异常空心光束通过球差光阑透镜的聚焦和在焦区的位相奇异特性. 物理学报, 2009, 58(6): 3915-3922. doi: 10.7498/aps.58.3915
    [15] 郑巍巍, 王丽琴, 许静平, 王立刚. 带初相位分布的径向基模激光束列阵在湍流大气中的传输特性研究. 物理学报, 2009, 58(7): 5098-5103. doi: 10.7498/aps.58.5098
    [16] 黄思训, 蔡其发, 项 杰, 张 铭. 台风风场分解. 物理学报, 2007, 56(5): 3022-3027. doi: 10.7498/aps.56.3022
    [17] 李永青, 李希国, 刘紫玉, 罗培燕, 张鹏鸣. Jackiw-Pi模型的新涡旋解. 物理学报, 2007, 56(11): 6178-6182. doi: 10.7498/aps.56.6178
    [18] 王 莉, 王庆峰, 王喜庆, 吕百达. 两束离轴高斯光束干涉场中的横向光涡旋. 物理学报, 2007, 56(1): 201-207. doi: 10.7498/aps.56.201
    [19] 赵光普, 吕百达. 有球差多色高斯光束衍射引起的光谱开关. 物理学报, 2004, 53(9): 2974-2979. doi: 10.7498/aps.53.2974
    [20] 季小玲, 陶向阳, 吕百达. 光束控制系统热效应与球差对激光光束质量的影响. 物理学报, 2004, 53(3): 952-960. doi: 10.7498/aps.53.952
计量
  • 文章访问数:  8012
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-20
  • 修回日期:  2019-10-15
  • 上网日期:  2019-12-14
  • 刊出日期:  2020-01-05

/

返回文章
返回