搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稳定噪声环境下过阻尼系统中的参数诱导随机共振现象

张广丽 吕希路 康艳梅

引用本文:
Citation:

稳定噪声环境下过阻尼系统中的参数诱导随机共振现象

张广丽, 吕希路, 康艳梅

Parameter-induced stochastic resonance in overdamped system with stable noise

Zhang Guang-Li, Lü Xi-Lu, Kang Yan-Mei
PDF
导出引用
  • 本文采用随机模拟方法, 研究了过阻尼振子系统在稳定噪声环境下的参数诱导随机共振现象. 结果表明, 在噪声环境下, 调节系统参数能够诱导随机共振现象; 而且调节非线性项参数时, 随机共振效果随稳定噪声的指数的减小而减弱, 但当调节线性项参数时, 随机共振效果则随着稳定噪声的特征指数的减小而增强. 本文的结论在稳定噪声环境下, 利用参数诱导随机共振原理进行弱信号检测方面具有重要的理论意义, 并有助于理解不同稳定噪声对一般随机共振系统的共振效果的影响.
    Parameter-induced stochastic resonance is an important method of detecting weak signal from noise, but under stable noise background, this method has not been reported. In this paper, we study the parameter-induced stochastic resonance in an overdamped system with stable noise. Our investigation discloses that the stochastic resonance can be realized by tuning the system parameter under stable noise background; when the nonlinear term parameter is turned, the resonant effect becomes weakened as the stability index decreases. But when the linear term parameter is turned, the resonant effect becomes strengthened as the stability index decreases. Our observation is significant for understanding the positive role of stable noise in weak signal detection, which is helpful for understanding the effects of different stable noises on stochastic resonance systems.
    • 基金项目: 国家自然科学基金(批准号: 11072182)资助的课题
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No.11072182).
    [1]

    Benzi R, Sutera A, Vulpiani A 1981 Phys. A 14 453

    [2]

    Gammaitoni L, Hanggi P, Marchesoni F 1998 Rev. Mod. Phys. 70 223

    [3]

    Kang Y M 2004 Ph. D. Dissertation (Xian: Xi’an Jiaotong University) (in Chinese) [康艳梅 2004 博士学位论文 (西安: 西安交通大学)]

    [4]

    Bartussek R, Hanggi P, Jung P 1994 Phys Rev. E 49 3939

    [5]

    Zhu G Q, Ding K, Zhang Y, Zhao Y 2010 Acta Phys. Sin. 59 3001 (in Chinese) [朱光起, 丁珂, 张宇, 赵远 2010 物理学报 59 3001]

    [6]

    Zhang L, Liu L, Cao L 2010 Acta Phys. Sin. 59 1494 (in Chinese) [张莉, 刘立, 曹力 2010 物理学报 59 1494]

    [7]

    Kang Y M, Xu J X, Xie Y 2003 Phys. Rev. E 68 036123

    [8]

    Wan P, Zhan Y J, Li X C, Wang Y H 2011 Acta Phys. Sin. 60 040502 (in Chinese) [万频, 詹宜巨, 李学聪, 王永华 2011 物理学报 60 040502]

    [9]

    Lin M, Meng Y 2010 Acta Phys. Sin. 59 3627 (in Chinese) [林敏, 孟莹 2010 物理学报 59 3627]

    [10]

    Zhang X Y, Xu W, Zhou B C 2011 Acta Phys. Sin. 60 060514 (in Chinese) [张晓燕, 徐伟, 周丙常 2011 物理学报 60 060514]

    [11]

    Anishchenko V S, Safonova M A, Chua L O 1993 Journal of Circuit, System and Computer 3 553

    [12]

    Anishchenko V S, Safonova M A, Chua L O 1992 International Journal of Bifurcation and Chaos 2(2) 397

    [13]

    Bulsara A R, Gammaitoni L 1996 Physics Today 3 39

    [14]

    Duan F, Xu B H 2003 Int. J. Bifurcation and Chaos 13 411

    [15]

    Xu B H, Duan F B 2004 Phys. Rev. E 69 061110

    [16]

    Xu B H, Zeng L Z, Li J L 2007 Sound and Vibration 303 255

    [17]

    Xu B H, Zhang H Q, Zeng L Z, Li J L, Wu X X, Jiang Z P 2007 Appl. Phys. Lett. 91 91908

    [18]

    Zhao Z K, Hui G H 2010 Advanced Materials Research 121-122 646

    [19]

    Yang Y B, Xu B H 2011 IUTAM Bookseries 29 229

    [20]

    Jiang S Q, Guo F, Zhou YR, Gu T X 2007 Physcia A: Statistical Mechanics and its Applications 375 483

    [21]

    Nolan J P 2009 Stable distributions (Math/Stat Department, American University) Manuscript, in preparation

    [22]

    Zeng L Z, Xu B H, Li J L 2007 Physics Letters A 455

    [23]

    Li Y J, Kang Y M 2010 Commun. Theor. Phys. 54 292

    [24]

    Kang Y M, Jiang Y L 2008 Chin. Phys. Lett. 25 3578

    [25]

    Zhang L, Song A, He J 2009 Phys. A: Math. Theor. 42 475003

    [26]

    Zhang W Y, Wang Z L, Zhang W D 2009 Control Engineering of China. 16(5) 638 (in Chinese) [张文英, 王自力, 张卫东 2009 控制工程 16 (5) 638]

    [27]

    Di PaolaM , Failla G 2005 Probabilist. Eng. Mech. 20 128

    [28]

    Gitterman M 2000 Phys. Rev. E 62 6065

    [29]

    Yang X L 2003 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese) [杨祥龙 2003 博士学位论文 (杭州: 浙江大学)]

    [30]

    Janicki A, Weron A 1994 Simulation and Chaotic Behavior of α Stable Stochastic Processes (New York: Marcel Dekker)

    [31]

    Nolan J P 2002 Stable Distributions (Boston: Birkhauser)

    [32]

    Dybiec B, Gudowska-Nowak E 2006 Acta Physica Polonica B 37 1479

    [33]

    Weron A, Weron R 1995 Lecture Notes in Physics 457 379

    [34]

    Weron R 1996 Statist. Prob. Lett 28 165

    [35]

    Weron R 1996 Research Report HSC Wroclaw University of Technology 1 1

    [36]

    Gong C, Wang Z L 2008 MATLAB language commonly used algorithm for assembly (Electronic Industry Press) (in Chinese) [龚纯, 王正林 2008 MATLAB语言常用算法程序集(电子工业出版社)]

    [37]

    Dybiec B, Gudowska-Nowak E 2004 Phys. Rev. E 69 016105

    [38]

    Dybiec B, Gudowska-Nowak E 2004 Fluct. Noise Lett. 4 L273

    [39]

    Gudowska-Nowak E, Dybiec B, Flyvbjerg H 2004 Proc SPIE 5467 223

    [40]

    Bulsara A R, Inchiosa M E, Gammaitoni L 1996 Phys. Rev. Lett. 77 2162

    [41]

    Mitaim S, Kosko B 2004 IEEE Trans. Neural Netw. 15 1526

    [42]

    Hu G 1994 Stochastic Forces and Nonlinear Systems (Shanghai: Shanghai Scientific and Technological Education Publishing House) (in Chinese) [胡岗 1994 随机力与非线性系统 (上海: 上海科技教育出版社)]

  • [1]

    Benzi R, Sutera A, Vulpiani A 1981 Phys. A 14 453

    [2]

    Gammaitoni L, Hanggi P, Marchesoni F 1998 Rev. Mod. Phys. 70 223

    [3]

    Kang Y M 2004 Ph. D. Dissertation (Xian: Xi’an Jiaotong University) (in Chinese) [康艳梅 2004 博士学位论文 (西安: 西安交通大学)]

    [4]

    Bartussek R, Hanggi P, Jung P 1994 Phys Rev. E 49 3939

    [5]

    Zhu G Q, Ding K, Zhang Y, Zhao Y 2010 Acta Phys. Sin. 59 3001 (in Chinese) [朱光起, 丁珂, 张宇, 赵远 2010 物理学报 59 3001]

    [6]

    Zhang L, Liu L, Cao L 2010 Acta Phys. Sin. 59 1494 (in Chinese) [张莉, 刘立, 曹力 2010 物理学报 59 1494]

    [7]

    Kang Y M, Xu J X, Xie Y 2003 Phys. Rev. E 68 036123

    [8]

    Wan P, Zhan Y J, Li X C, Wang Y H 2011 Acta Phys. Sin. 60 040502 (in Chinese) [万频, 詹宜巨, 李学聪, 王永华 2011 物理学报 60 040502]

    [9]

    Lin M, Meng Y 2010 Acta Phys. Sin. 59 3627 (in Chinese) [林敏, 孟莹 2010 物理学报 59 3627]

    [10]

    Zhang X Y, Xu W, Zhou B C 2011 Acta Phys. Sin. 60 060514 (in Chinese) [张晓燕, 徐伟, 周丙常 2011 物理学报 60 060514]

    [11]

    Anishchenko V S, Safonova M A, Chua L O 1993 Journal of Circuit, System and Computer 3 553

    [12]

    Anishchenko V S, Safonova M A, Chua L O 1992 International Journal of Bifurcation and Chaos 2(2) 397

    [13]

    Bulsara A R, Gammaitoni L 1996 Physics Today 3 39

    [14]

    Duan F, Xu B H 2003 Int. J. Bifurcation and Chaos 13 411

    [15]

    Xu B H, Duan F B 2004 Phys. Rev. E 69 061110

    [16]

    Xu B H, Zeng L Z, Li J L 2007 Sound and Vibration 303 255

    [17]

    Xu B H, Zhang H Q, Zeng L Z, Li J L, Wu X X, Jiang Z P 2007 Appl. Phys. Lett. 91 91908

    [18]

    Zhao Z K, Hui G H 2010 Advanced Materials Research 121-122 646

    [19]

    Yang Y B, Xu B H 2011 IUTAM Bookseries 29 229

    [20]

    Jiang S Q, Guo F, Zhou YR, Gu T X 2007 Physcia A: Statistical Mechanics and its Applications 375 483

    [21]

    Nolan J P 2009 Stable distributions (Math/Stat Department, American University) Manuscript, in preparation

    [22]

    Zeng L Z, Xu B H, Li J L 2007 Physics Letters A 455

    [23]

    Li Y J, Kang Y M 2010 Commun. Theor. Phys. 54 292

    [24]

    Kang Y M, Jiang Y L 2008 Chin. Phys. Lett. 25 3578

    [25]

    Zhang L, Song A, He J 2009 Phys. A: Math. Theor. 42 475003

    [26]

    Zhang W Y, Wang Z L, Zhang W D 2009 Control Engineering of China. 16(5) 638 (in Chinese) [张文英, 王自力, 张卫东 2009 控制工程 16 (5) 638]

    [27]

    Di PaolaM , Failla G 2005 Probabilist. Eng. Mech. 20 128

    [28]

    Gitterman M 2000 Phys. Rev. E 62 6065

    [29]

    Yang X L 2003 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese) [杨祥龙 2003 博士学位论文 (杭州: 浙江大学)]

    [30]

    Janicki A, Weron A 1994 Simulation and Chaotic Behavior of α Stable Stochastic Processes (New York: Marcel Dekker)

    [31]

    Nolan J P 2002 Stable Distributions (Boston: Birkhauser)

    [32]

    Dybiec B, Gudowska-Nowak E 2006 Acta Physica Polonica B 37 1479

    [33]

    Weron A, Weron R 1995 Lecture Notes in Physics 457 379

    [34]

    Weron R 1996 Statist. Prob. Lett 28 165

    [35]

    Weron R 1996 Research Report HSC Wroclaw University of Technology 1 1

    [36]

    Gong C, Wang Z L 2008 MATLAB language commonly used algorithm for assembly (Electronic Industry Press) (in Chinese) [龚纯, 王正林 2008 MATLAB语言常用算法程序集(电子工业出版社)]

    [37]

    Dybiec B, Gudowska-Nowak E 2004 Phys. Rev. E 69 016105

    [38]

    Dybiec B, Gudowska-Nowak E 2004 Fluct. Noise Lett. 4 L273

    [39]

    Gudowska-Nowak E, Dybiec B, Flyvbjerg H 2004 Proc SPIE 5467 223

    [40]

    Bulsara A R, Inchiosa M E, Gammaitoni L 1996 Phys. Rev. Lett. 77 2162

    [41]

    Mitaim S, Kosko B 2004 IEEE Trans. Neural Netw. 15 1526

    [42]

    Hu G 1994 Stochastic Forces and Nonlinear Systems (Shanghai: Shanghai Scientific and Technological Education Publishing House) (in Chinese) [胡岗 1994 随机力与非线性系统 (上海: 上海科技教育出版社)]

  • [1] 焦尚彬, 杨蓉, 张青, 谢国. α稳定噪声驱动的非对称双稳随机共振现象. 物理学报, 2015, 64(2): 020502. doi: 10.7498/aps.64.020502
    [2] 汪志云, 陈培杰, 张良英. 色关联噪声驱动下双模激光随机共振. 物理学报, 2014, 63(19): 194204. doi: 10.7498/aps.63.194204
    [3] 焦尚彬, 任超, 黄伟超, 梁炎明. 稳定噪声环境下多频微弱信号检测的参数诱导随机共振现象. 物理学报, 2013, 62(21): 210501. doi: 10.7498/aps.62.210501
    [4] 张莉, 元秀华, 武力. 脉冲信号被噪声调制的单模激光随机共振. 物理学报, 2012, 61(11): 110501. doi: 10.7498/aps.61.110501
    [5] 高仕龙, 钟苏川, 韦鹍, 马洪. 基于混沌和随机共振的微弱信号检测. 物理学报, 2012, 61(18): 180501. doi: 10.7498/aps.61.180501
    [6] 朱光起, 丁珂, 张宇, 赵远. 基于随机共振进行弱信号探测的实验研究. 物理学报, 2010, 59(5): 3001-3006. doi: 10.7498/aps.59.3001
    [7] 宁丽娟, 徐伟. 信号调制下分段噪声驱动的线性系统的随机共振. 物理学报, 2009, 58(5): 2889-2894. doi: 10.7498/aps.58.2889
    [8] 周丙常, 徐 伟. 关联噪声驱动的非对称双稳系统的随机共振. 物理学报, 2008, 57(4): 2035-2040. doi: 10.7498/aps.57.2035
    [9] 张良英, 曹 力, 金国祥. 色噪声驱动下调幅波的单模激光随机共振. 物理学报, 2007, 56(9): 5093-5097. doi: 10.7498/aps.56.5093
    [10] 金国祥, 曹 力, 张良英. 偏置调幅波调制噪声的单模激光随机共振. 物理学报, 2007, 56(7): 3739-3743. doi: 10.7498/aps.56.3739
    [11] 李 强, 王太勇, 冷永刚, 何改云, 何慧龙. 基于近似熵测度的自适应随机共振研究. 物理学报, 2007, 56(12): 6803-6808. doi: 10.7498/aps.56.6803
    [12] 周丙常, 徐 伟. 周期混合信号和噪声联合激励下的非对称双稳系统的随机共振. 物理学报, 2007, 56(10): 5623-5628. doi: 10.7498/aps.56.5623
    [13] 徐 伟, 靳艳飞, 徐 猛, 李 伟. 偏置信号调制下色关联噪声驱动的线性系统的随机共振. 物理学报, 2005, 54(11): 5027-5033. doi: 10.7498/aps.54.5027
    [14] 靳艳飞, 徐 伟, 李 伟, 徐 猛. 具有周期信号调制噪声的线性模型的随机共振. 物理学报, 2005, 54(6): 2562-2567. doi: 10.7498/aps.54.2562
    [15] 肖方红, 闫桂荣, 韩雨航. 双稳随机动力系统信号调制噪声效应的数值分析. 物理学报, 2004, 53(2): 396-400. doi: 10.7498/aps.53.396
    [16] 程庆华, 曹 力, 吴大进. 信号调制色泵噪声和实虚部间关联量子噪声驱动下单模激光的随机共振现象. 物理学报, 2004, 53(8): 2556-2562. doi: 10.7498/aps.53.2556
    [17] 韩立波, 曹 力, 吴大进, 王 俊. 信号直接调制下色关联噪声驱动的单模激光的随机共振. 物理学报, 2004, 53(7): 2127-2132. doi: 10.7498/aps.53.2127
    [18] 祝恒江, 李 蓉, 温孝东. 利用随机共振在强噪声下提取信息信号. 物理学报, 2003, 52(10): 2404-2408. doi: 10.7498/aps.52.2404
    [19] 康艳梅, 徐健学, 谢 勇. 弱噪声极限下二维布朗运动的随机共振现象. 物理学报, 2003, 52(4): 802-808. doi: 10.7498/aps.52.802
    [20] 冷永刚, 王太勇. 二次采样用于随机共振从强噪声中提取弱信号的数值研究. 物理学报, 2003, 52(10): 2432-2437. doi: 10.7498/aps.52.2432
计量
  • 文章访问数:  4300
  • PDF下载量:  1044
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-03
  • 修回日期:  2011-06-15
  • 刊出日期:  2012-02-05

稳定噪声环境下过阻尼系统中的参数诱导随机共振现象

  • 1. 西安交通大学理学院应用数学系, 西安 710049
    基金项目: 国家自然科学基金(批准号: 11072182)资助的课题

摘要: 本文采用随机模拟方法, 研究了过阻尼振子系统在稳定噪声环境下的参数诱导随机共振现象. 结果表明, 在噪声环境下, 调节系统参数能够诱导随机共振现象; 而且调节非线性项参数时, 随机共振效果随稳定噪声的指数的减小而减弱, 但当调节线性项参数时, 随机共振效果则随着稳定噪声的特征指数的减小而增强. 本文的结论在稳定噪声环境下, 利用参数诱导随机共振原理进行弱信号检测方面具有重要的理论意义, 并有助于理解不同稳定噪声对一般随机共振系统的共振效果的影响.

English Abstract

参考文献 (42)

目录

    /

    返回文章
    返回