搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内孤立波沿缓坡地形传播特性的实验研究

杜辉 魏岗 张原铭 徐小辉

引用本文:
Citation:

内孤立波沿缓坡地形传播特性的实验研究

杜辉, 魏岗, 张原铭, 徐小辉

Experimental investigations on the propagation characteristics of internal solitary waves over a gentle slope

Du Hui, Wei Gang, Zhang Yuan-Ming, Xu Xiao-Hui
PDF
导出引用
  • 以南中国海东北部海域底部缓坡地形为背景, 在大型重力式分层流水槽中模拟了下凹型内孤立波沿缓坡地形传播过程中的浅化、破碎、分裂等现象, 利用分层染色标识方法和多点组合探头阵列技术对内孤立波沿缓坡地形演化特征进行了定性分析和定量测量. 实验表明: 浅化效应使内孤立波传播速度减小, 对大振幅内孤立波具有抑制作用, 对小振幅波具有放大效应; 浅化效应可导致内孤立波的剪切失稳及破碎, 还可导致大振幅内孤立波的分裂. 利用Miles稳定性理论可定性描述内孤立波沿缓坡地形传播时发生不稳定状态的位置, 实验结果与理论分析相符合.
    In a stratified fluid tank, experiments on the propagating, shoaling and breaking of the internal solitary waves over a gentle slope similar to the topography in the northeast of the South China Sea are conducted. The qualitative analysis on the evolving characteristics of the internal solitary waves is accomplished by use of the dye-tracing technique, and their quantitative measurement is carried out by using the multi-channel conductivity-probe arrays. It is shown that due to the shoaling effect the internal solitary waves with large amplitude are restrained, but the waves with small amplitude are magnified. The shoaling effect will also lead to the decrease of the propagation velocity of the internal solitary waves. Further, the shoaling effect will bring about strong shear flow instability, and then makes the internal solitary wave broken. The breaking wave will result in the fission from one large amplitude wave into several small amplitude waves with the same polarity. By means of the Mile's stability theory, the instable happening-location of the internal solitary wave over the gentle slope can be described through the Richardson number. The experimental results accord well with the theoretical analyses.
    • 基金项目: 国家自然科学基金(批准号: 11072267)、国家高技术研究发展计划(批准号: 2008AA09Z316)和 解放军理工大学预研基金(批准号: KYLYZLXY1202)资助的课题.
    • Funds: Project supported by the National Science Foundation of China (Grant No. 11072267), the National High Technology Research and Development Program of China (Grant No. 2008AA09Z316), Pre-Research Foundation of PLA University of Science and Technology, China (Grant No. KYLYZL XY 1202).
    [1]

    Cai S Q, Xie J S, He J L 2012 Surv. Geophys. 33 927

    [2]

    Liu A K 1988 J. Geophys. Res. 93 12317

    [3]

    Holloway P E, Pelinovasky E, Talipova T 1999 J. Geophys. Res. 104 18333

    [4]

    Djordjevic Y D, L G Redekopp 1978 J. Phys. Oceanogr. 6 1016

    [5]

    Cai S Q, Xie J S 2010 J. Geophys. Res. 115 1

    [6]

    Meng J M, Zhang Z L 2001 J. Hydrodyn. 3 88

    [7]

    Su X B, Wei G, Dai S Q 2005 Appl. Math. Mech. 26 1143

    [8]

    Lombard P N, J J Riley 1996 Dyn. Atmos. Oceans 24 345

    [9]

    Garrett C 2001 J. Phys. Oceanogr. 31 962

    [10]

    Legg S, Aderoft A 2003 J. Phys. Oceanogr. 33 2224

    [11]

    Shrira V I, Voronov V V, Sazonov I A 2000 J. Fluid Mech. 425 187

    [12]

    Kao T W, Pan P S, Renouard D 1985 J. Fluid Mech. 195 19

    [13]

    Helfrich K R, Melvilie W K 1984 J. Fluid Mech. 149 305

    [14]

    Wallace B C, Wilkinson D L 1988 J. Fluid Mech. 191 419

    [15]

    Helfrich K R 1992 J. Fluid Mech. 243 133

    [16]

    Chen C Y, Hsu J R C, Chen H H, Kuo C F, Cheng M H 2007 Ocean Eng. 34 157

    [17]

    Fructus D, Carr M, Grue J, Jensen A, Davies P A 2009 J. Fluid Mech. 620 1

    [18]

    Wei G, Wu N, Xu X H, Su X B, You Y X 2011 Acta Phys. Sin 60 044704 (in Chinese) [魏岗, 吴宁, 徐小辉, 苏晓冰, 尤云祥 2011 物理学报 60 044704]

    [19]

    Wei G, Su X B, Yang J G, Wang Q H Chinese Patent 201010103635.6 [2012-02-01]

    [20]

    Whitham G B 1974 Linear and Nonlinear Waves (New York: John Wiely and Sons, Inc)

    [21]

    Fang X H, Du T 2004 Fundamental of Oceanic Internal Waves and Internal Waves in the China Seas (Qingdao: China Ocean University Press) p300 (in Chinese) [方欣华, 杜涛 2004 海洋内波基础和中国海内波(青岛: 中国海洋大学出版社)第300页]

    [22]

    Cai S Q, Gan Z J 1995 Tropic Oceanology 14 2229 (in Chinese) [蔡树群, 甘子钧 1995 热带海洋 14 2229]

    [23]

    Miles J W 1961 J. Fluid Mech. 10 496

    [24]

    Li Q 2008 Ph. D. Dissertation (Qingdao: China Ocean University) (in Chinese) [李群 2008 博士学位论文(青岛: 中国海洋大学)]

    [25]

    Miles J W 1963 J. Fluid Mech. 16 209

  • [1]

    Cai S Q, Xie J S, He J L 2012 Surv. Geophys. 33 927

    [2]

    Liu A K 1988 J. Geophys. Res. 93 12317

    [3]

    Holloway P E, Pelinovasky E, Talipova T 1999 J. Geophys. Res. 104 18333

    [4]

    Djordjevic Y D, L G Redekopp 1978 J. Phys. Oceanogr. 6 1016

    [5]

    Cai S Q, Xie J S 2010 J. Geophys. Res. 115 1

    [6]

    Meng J M, Zhang Z L 2001 J. Hydrodyn. 3 88

    [7]

    Su X B, Wei G, Dai S Q 2005 Appl. Math. Mech. 26 1143

    [8]

    Lombard P N, J J Riley 1996 Dyn. Atmos. Oceans 24 345

    [9]

    Garrett C 2001 J. Phys. Oceanogr. 31 962

    [10]

    Legg S, Aderoft A 2003 J. Phys. Oceanogr. 33 2224

    [11]

    Shrira V I, Voronov V V, Sazonov I A 2000 J. Fluid Mech. 425 187

    [12]

    Kao T W, Pan P S, Renouard D 1985 J. Fluid Mech. 195 19

    [13]

    Helfrich K R, Melvilie W K 1984 J. Fluid Mech. 149 305

    [14]

    Wallace B C, Wilkinson D L 1988 J. Fluid Mech. 191 419

    [15]

    Helfrich K R 1992 J. Fluid Mech. 243 133

    [16]

    Chen C Y, Hsu J R C, Chen H H, Kuo C F, Cheng M H 2007 Ocean Eng. 34 157

    [17]

    Fructus D, Carr M, Grue J, Jensen A, Davies P A 2009 J. Fluid Mech. 620 1

    [18]

    Wei G, Wu N, Xu X H, Su X B, You Y X 2011 Acta Phys. Sin 60 044704 (in Chinese) [魏岗, 吴宁, 徐小辉, 苏晓冰, 尤云祥 2011 物理学报 60 044704]

    [19]

    Wei G, Su X B, Yang J G, Wang Q H Chinese Patent 201010103635.6 [2012-02-01]

    [20]

    Whitham G B 1974 Linear and Nonlinear Waves (New York: John Wiely and Sons, Inc)

    [21]

    Fang X H, Du T 2004 Fundamental of Oceanic Internal Waves and Internal Waves in the China Seas (Qingdao: China Ocean University Press) p300 (in Chinese) [方欣华, 杜涛 2004 海洋内波基础和中国海内波(青岛: 中国海洋大学出版社)第300页]

    [22]

    Cai S Q, Gan Z J 1995 Tropic Oceanology 14 2229 (in Chinese) [蔡树群, 甘子钧 1995 热带海洋 14 2229]

    [23]

    Miles J W 1961 J. Fluid Mech. 10 496

    [24]

    Li Q 2008 Ph. D. Dissertation (Qingdao: China Ocean University) (in Chinese) [李群 2008 博士学位论文(青岛: 中国海洋大学)]

    [25]

    Miles J W 1963 J. Fluid Mech. 16 209

  • [1] 李沁然, 孙超, 谢磊. 浅海内孤立波动态传播过程中声波模态强度起伏规律. 物理学报, 2022, 71(2): 024302. doi: 10.7498/aps.71.20211132
    [2] 郅长红, 徐双东, 韩盼盼, 陈科, 尤云祥. 高阶单向传播内孤立波理论模型适用性研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220411
    [3] 李沁然, 孙超, 谢磊. 浅海内孤立波动态传播过程中声波模态强度起伏规律研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211132
    [4] 段亮, 刘冲, 赵立臣, 杨战营. 基本非线性波与调制不稳定性的精确对应. 物理学报, 2020, 69(1): 010501. doi: 10.7498/aps.69.20191385
    [5] 张鹏飞, 乔春红, 冯晓星, 黄童, 李南, 范承玉, 王英俭. Non-Kolmogorov湍流大气中小尺度热晕效应线性理论. 物理学报, 2017, 66(24): 244210. doi: 10.7498/aps.66.244210
    [6] 王鹏, 薛纭, 楼智美. 黏性流体中超细长弹性杆的动力学不稳定性. 物理学报, 2017, 66(9): 094501. doi: 10.7498/aps.66.094501
    [7] 刘军, 冯其京, 周海兵. 柱面内爆驱动金属界面不稳定性的数值模拟研究. 物理学报, 2014, 63(15): 155201. doi: 10.7498/aps.63.155201
    [8] 黄文昊, 尤云祥, 王旭, 胡天群. 有限深两层流体中内孤立波造波实验及其理论模型. 物理学报, 2013, 62(8): 084705. doi: 10.7498/aps.62.084705
    [9] 张恒, 段文山. 二维玻色-爱因斯坦凝聚中孤立波的调制不稳定性. 物理学报, 2013, 62(4): 044703. doi: 10.7498/aps.62.044703
    [10] 魏琪, 鄂文汲. 薄膜去湿不稳定性的热力学分析. 物理学报, 2012, 61(16): 160508. doi: 10.7498/aps.61.160508
    [11] 王振宇, 唐昌建. 离子通道摇摆电子束流激发的纵向慢波不稳定性. 物理学报, 2011, 60(5): 055204. doi: 10.7498/aps.60.055204
    [12] 魏岗, 吴宁, 徐小辉, 苏晓冰, 尤云祥. 线性密度分层流体中半球体运动生成内波的实验研究. 物理学报, 2011, 60(4): 044704. doi: 10.7498/aps.60.044704
    [13] 王光昶, 郑志坚, 谷渝秋, 陈 涛, 张 婷. 利用渡越辐射研究超热电子在固体靶中的输运过程. 物理学报, 2007, 56(2): 982-987. doi: 10.7498/aps.56.982
    [14] 简广德, 董家齐. 托卡马克等离子体中动力剪切阿尔芬波不稳定性的数值研究. 物理学报, 2005, 54(4): 1641-1647. doi: 10.7498/aps.54.1641
    [15] 魏新华, 周国成, 曹晋滨, 李柳元. 无碰撞电流片低频电磁模不稳定性:MHD模型. 物理学报, 2005, 54(7): 3228-3235. doi: 10.7498/aps.54.3228
    [16] 张介秋, 梁昌洪, 王耕国, 朱家珍. 阿尔芬高斯波包演化为阿尔芬孤波的条件及阿尔芬波的调制不稳定性判据. 物理学报, 2003, 52(4): 890-895. doi: 10.7498/aps.52.890
    [17] 黄朝松, 李均, M. C. KELLEY. 电离层等离子体交换不稳定性与大气重力波的耦合. 物理学报, 1994, 43(2): 239-247. doi: 10.7498/aps.43.239
    [18] 张有霆, 陈明. 垂直泵的结构对YIG单晶薄膜的第二级自旋波不稳定性临界场的影响. 物理学报, 1991, 40(6): 1017-1024. doi: 10.7498/aps.40.1017
    [19] 陆全康. 关于等离子体的电磁波不稳定性(Ⅱ). 物理学报, 1981, 30(2): 266-270. doi: 10.7498/aps.30.266
    [20] 陆全康. 关于等离子体的电磁波不稳定性. 物理学报, 1964, 20(4): 289-296. doi: 10.7498/aps.20.289
计量
  • 文章访问数:  3501
  • PDF下载量:  883
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-20
  • 修回日期:  2012-09-20
  • 刊出日期:  2013-03-05

内孤立波沿缓坡地形传播特性的实验研究

  • 1. 解放军理工大学气象海洋学院, 南京 211101
    基金项目: 国家自然科学基金(批准号: 11072267)、国家高技术研究发展计划(批准号: 2008AA09Z316)和 解放军理工大学预研基金(批准号: KYLYZLXY1202)资助的课题.

摘要: 以南中国海东北部海域底部缓坡地形为背景, 在大型重力式分层流水槽中模拟了下凹型内孤立波沿缓坡地形传播过程中的浅化、破碎、分裂等现象, 利用分层染色标识方法和多点组合探头阵列技术对内孤立波沿缓坡地形演化特征进行了定性分析和定量测量. 实验表明: 浅化效应使内孤立波传播速度减小, 对大振幅内孤立波具有抑制作用, 对小振幅波具有放大效应; 浅化效应可导致内孤立波的剪切失稳及破碎, 还可导致大振幅内孤立波的分裂. 利用Miles稳定性理论可定性描述内孤立波沿缓坡地形传播时发生不稳定状态的位置, 实验结果与理论分析相符合.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回