搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe原子吸附的锑烯/WS2异质结的磁电子性质及调控效应

何鑫 李鑫焱 李景辉 张振华

引用本文:
Citation:

Fe原子吸附的锑烯/WS2异质结的磁电子性质及调控效应

何鑫, 李鑫焱, 李景辉, 张振华

Magneto-electronic properties and manipulation effects of Fe-adsorbed Sb/WS2 heterostructure

He Xin, Li Xin-Yan, Li Jing-Hui, Zhang Zhen-Hua
PDF
HTML
导出引用
  • 为研究非磁性二维范德瓦耳斯异质结吸附磁性原子的诱发磁性机理及磁电子特性, 构键了锑烯(Sb)/WS2异质结, 并考虑Fe 原子的多种吸附. 计算的吸附能表明: TW, TS_m及VSb吸附方式是Fe原子分别吸附于异质结下方、层间以及上方的最可能吸附位置, 产生的磁性与Fe原子被吸附后其电子构型(VEC)扩展以及电荷转移使得电子自旋重排有关. TW, TS_m吸附使无磁半导体性的异质结成为半-半导体(HSC), 而VSb吸附对应双极化磁性半导体(BMS). 特别是, 计算的磁化能表明: 层间TS_m吸附使异质结具有最高的磁稳定性, 足以抵抗常温热起伏对磁性的影响. 量子调控能使异质结产生丰富的磁性, 特别是磁相的灵活改变, 如施加外加电场可使异质结实现HSC, HM(半金属)及BMS等磁相转换, 而垂直应变则可使异质结发生HSC, HM及MM(磁金属)等磁相的转换. 这一研究表明利用异质结能增加过渡金属原子的吸附区域(下方、层间以及上方), 从而产生丰富的磁性, 特别是层间吸附过渡金属, 其磁性的温度稳定性能显著提高.
    To study the induced magnetism mechanism and magneto-electronic properties of non-magnetic two-dimensional van der Waals heterostructure adsorbing magnetic atoms, we construct Sb/WS2 heterostructure, and consider its adsorbed Fe atoms. The calculated adsorption energy shows that TW, VSb adsorption are the most likely positions for Fe atom adsorbed below and above the heterostructure, respectively, and TS_M adsorption is the most likely position for Fe atom adsorbed between two monolayers. The induced magnetism is due to the electron-spin rearrangement caused by the expansion of valence electronic configuration (VEC) and charge transfer after Fe atoms have been adsorbed. The TW adsorption and the TS_M adsorption make the nonmagnetic semiconducting heterostructure become a half-semiconductor (HSC), while VSb adsorption turns the heterostructure into a bipolar magnetic semiconductor (BMS). In particular, the calculated magnetized energy indicates that the interlayer TS_M adsorption leads the heterostructure to holding the highest magnetic stability, which is enough to resist the influence of thermal fluctuation at room temperature. Quantum manipulation can cause the heterostructure to produce abundant magnetism, especially the flexible change of magnetic phase. For example, the application of external electric field can give rise to the magnetic phase transition among HSC, HM (half-metal) and BMS for the heterostructure, and the vertical strain can make the heterostructure realize the magnetic phase transition among HSC, HM and MM (magnetic metal). This study shows that the heterostructure can increase the adsorption region of transition metal atoms (below, interlayer and above), so as to produce rich magnetism, especially for the interlayer adsorption of transition metals, its magnetic stability against temperature is significantly enhanced.
      通信作者: 张振华, zhzhang@csust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61771076)、湖南省自然科学基金(批准号: 2020JJ4625)和湖南省教育厅科研项目(批准号: 19A029)资助的课题.
      Corresponding author: Zhang Zhen-Hua, zhzhang@csust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61771076), the Natural Science Foundation of Hunan Province, China (Grant No. 2020JJ4625), and the Scientific Research Fund of Education Department of Hunan Province, China (Grant No. 19A029).
    [1]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [2]

    Li X M, Tao L, Chen Z F, Fang H, Li X S, Wang X R, Xu J B, Zhu H W 2017 Appl. Phys. Rev. 4 021306Google Scholar

    [3]

    Novoselov K S, Mishchenko A, Carvalho A, Neto A H C 2016 Science 353 aac9439Google Scholar

    [4]

    Shang J M, Pan L F, Wang X T, Li J B, Deng H X, Wei Z M 2018 J. Mater. Chem. C 6 7201Google Scholar

    [5]

    Idrees M, Fawad M, Bilal M, Saeed Y, Nguyen C, Amin B 2020 RSC Adv. 10 25801Google Scholar

    [6]

    Ozcelik V O, Azadani J G, Yang C, Koester S J, Low T 2016 Phys. Rev. B 94 035125Google Scholar

    [7]

    Liu C H, Clark G, Fryett T, Wu S F, Zheng J J, Hatami F, Xu X D, Majumdar A 2017 Nano Lett. 17 200Google Scholar

    [8]

    Binder J, Withers F, Molas M R, Faugeras C, Nogajewski K, Watanabe K, Taniguchi T, Kozikov A, Geim A K, Novoselov K S, Potemski M 2017 Nano Lett. 17 1425Google Scholar

    [9]

    He X, Deng X Q, Sun L, Zhang Z H, Fan Z Q 2022 Appl. Surf. Sci. 578 151844Google Scholar

    [10]

    Huang L, Huo N J, Li Y, Chen H, Yang J H, Wei Z M, Li J B, Li S S 2015 J. Phys. Chem. Lett. 6 2483Google Scholar

    [11]

    Xiao W Z, Xu L, Rong Q Y, Dai X Y, Cheng C P, Wang L L 2020 Appl. Surf. Sci. 504 144425Google Scholar

    [12]

    Huang L, Li Y, Wei Z M, Li J B 2015 Sci. Rep. 5 16448Google Scholar

    [13]

    Lei C G, Ma Y D, Xu X L, Zhang T, Huang B B, Dai Y 2019 J. Phys. Chem. C 123 23089Google Scholar

    [14]

    Yan R S, Fathipour S, Han Y M, Song B, Xiao S D, Li M D, Ma N, Protasenko V, Muller D A, Jena D, Xing H G 2015 Nano Lett. 15 5791Google Scholar

    [15]

    Shim J, Oh S, Kang D H, Jo S H, Ali M H, Choi W Y, Heo K, Jeon J, Lee S, Kim M, Song Y J, Park J H 2016 Nat. Commun. 7 13413Google Scholar

    [16]

    Xia C X, Du J, Li M, Li X P, Zhao X, Wang T X, Li J B 2018 Phy. Rev. A 10 054064Google Scholar

    [17]

    Wu Y B, Huang Z Y, Liu H T, He C Y, Xue L, Qi X, Zhong J X 2018 Phys. Chem. Chem. Phys. 20 17387Google Scholar

    [18]

    Bian H, Duan H, Li J, Chen F, Cao B, Long M 2019 AIP Adv. 9 065207Google Scholar

    [19]

    Kundu S, Naik M H, Jain M 2020 Phy. Rev. Mater. 4 054004Google Scholar

    [20]

    Luo M, Xu Y E, Song Y X 2018 J. Supercond. Novel Magn. 31 449Google Scholar

    [21]

    Ding Y M, Shi J J, Zhang M, Zhu Y H, Wu M, Wang H, Cen Y L, Guo W H, Pan S H 2018 Physica E 101 245Google Scholar

    [22]

    Chen HL, Han J N, Deng X Q, Fan Z Q, Sun L, Zhang Z H 2022 Appl. Surf. Sci. 598 153756Google Scholar

    [23]

    Han J N, Zhang Z H, Fan Z Q, Zhou R L 2020 Nanotechnology 31 315206Google Scholar

    [24]

    Hu R, Wang D, Fan Z Q, Zhang Z H 2018 Phys. Chem. Chem. Phys. 20 13574Google Scholar

    [25]

    Chen H L, Zhang L, Deng X Q, Sun L, Zhang Z H, Fan Z Q 2021 J. Mater. Chem. C 9 12904Google Scholar

    [26]

    Zhao T, Fan Z Q, Zhang Z H, Zhou R L 2019 J. Phys. D: Appl. Phys. 52 475301Google Scholar

    [27]

    Hu R, Li Y H, Zhang Z H, Fan Z Q, Sun L 2019 J. Mater. Chem. C 7 7745Google Scholar

    [28]

    Dong Q X, Hu R, Fan Z Q, Zhang Z H 2018 Carbon 130 206Google Scholar

    [29]

    Hu J K, Zhang Z H, Fan Z Q, Zhou R L 2019 Nanotechnology 30 485703Google Scholar

    [30]

    Han J N, He X, Fan Z Q, Zhang Z H 2019 Phys. Chem. Chem. Phys. 21 1830Google Scholar

    [31]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [32]

    Yang Y Y, Gong P, Ma W D, Hao R, Fang X Y 2021 Chin. Phys. B 30 067803Google Scholar

    [33]

    Jia Y H, Gong P, Li S L, Ma W D, Fang X Y, Yang Y Y 2020 Phys. Lett. A 384 126106Google Scholar

    [34]

    吴甜, 姚梦丽, 龙孟秋 2021 物理学报 70 056301Google Scholar

    Wu T, Yao M L, Long M Q 2021 Acta Phys. Sin. 70 056301Google Scholar

    [35]

    Gong P, Yang Y Y, Ma W D, Fang X Y, Jing X L, Jia Y H, Cao M S 2021 Physica E 128 114578Google Scholar

    [36]

    Xie Z J, Zhang B, Ge Y Q, Zhu Y, Nie G H, Song Y F, Lim C K, Zhang H, Prasad P N 2021 Chem. Rev. 122 1127Google Scholar

    [37]

    He X, Fan Z Q, Zhang Z H 2020 Phys. Chem. Chem. Phys. 22 23665Google Scholar

  • 图 1  (a)—(d) 优化之后Sb/WS2异质结的四种堆垛方式的主视图和侧视图; (e) 优化后不同异质结的层间距与结合能; (f) 异质结单胞对应的布里渊区

    Fig. 1.  (a)–(d) Top and side views of the four stacking patterns of optimized Sb/WS2 heterostructures; (e) the binding energy and interlayer distance of the optimized heterostructures; (f) Brillouin zone corresponding to heterostructure unit-cell.

    图 2  PBE计算的(a) Sb单层、(b) WS2单层和(c) Sb/WS2异质结的能带结构; HSE06计算的(d) Sb单层、(e) WS2单层和(f) Sb/WS2异质结的能带结构

    Fig. 2.  Band structures by PBE calculation: (a) Sb monolayer; (b) WS2 monolayer; (c) Sb/WS2 heterostructure. The band structures by HSE06 calculation: (d) Sb monolayer; (e) WS2 monolayer; (f) Sb/WS2 heterostructure.

    图 3  过渡金属原子Fe吸附于Sb/WS2异质结的四个高对称位置 (a) 底层WS2下方; (b) 两单层层间; (c)上层Sb上方

    Fig. 3.  Four highly symmetrical adsorbed sites of Fe atom for Sb/WS2 heterostructure: (a) Bellow the bottom WS2 monolayer; (b) between two monolayers; (c) above the top Sb monolayer.

    图 4  FM态自旋极化密度分布, 对应的吸附方式分别为(a) TW, (b) TS_m, (c) VSb. 等值面取为0.002 e/A3

    Fig. 4.  Spin-polarized density (magnetic distribution) in the FM state, and corresponding adsorbed manners are: (a) TW; (b) TS_m; (c) VSb. The isosurface is set as 0.002 e/A3.

    图 5  对应最稳三种吸附位置的异质结能带结构、态密度以及投影态密度 (a)—(c) 能带结构; (d)—(f) 态密度和投影态密度

    Fig. 5.  Band structure, density of states and projected density of states of the heterostructures corresponding to three most stable adsorption sites: (a)–(c) Band structure; (d)–(f) density of states and projected density of states.

    图 6  (a) 外加电场示意图; (b) 电场能、带隙值及磁性随加电场变化; (c)—(j) Eext = –0.1, –0.3, –0.7, –1, 0.2, 0.5, 0.8 和1.0 V/Å时的能带结构, 其中图(d)中绿色区域代表该阴影部分的能带放大图

    Fig. 6.  (a) Schematic diagram of applied external electric field on heterostructure. (b) Electric field energy, band gap, and magnetic phase versus the external electric field. (c)–(j) The band structures for Eext = –0.1, –0.3, –0.7, –1, 0.2, 0.5, 0.8, and 1.0 V/Å, where the green region in panel (d) represents the enlarged partial band structure.

    图 7  (a)施加的拉力与压力示意图; (b) 应变能、带隙及磁相随应变变化; (c)—(f) ε = –0.3, 0.2, 0.35 和 0.4 Å时的能带结构, 其中图(e)与图(f)中绿色区域代表该部分的能带放大图

    Fig. 7.  (a) Schematic diagram of stretching and compressing heterostructure; (b) the strain energy, band gap and magnetic phase as versus strain; (c)–(f) band structure at ε = –0.3, 0.2, 0.35, and 0.4 Å, where the green region in panel (e) and (f) represent the enlarged partial band structure.

    表 1  磁矩、TM原子电子构型、电荷转移和磁化能. μ0 为孤立Fe原子的磁矩, μ为Fe原子吸附后磁矩, 括号中M为超元胞磁矩. VEC 为孤立Fe原子价电子构型(valence electron configuration), VEC*为Fe原子吸附后价电子构型. ΔQ为吸附之后Fe原子所转移的电荷, “–”代表 Fe原子失去电荷. EM为磁化能

    Table 1.  Magnetic moment, electron configuration of TM atom, charge transfer and magnetization energy. μ0 is the magnetic moment of isolated Fe atoms, μ is the magnetic moment after adsorption of Fe atoms, M in parentheses is the magnetic moment of the supercell. VEC is the valence electron configuration of isolated Fe atoms, and VEC* is the valence electron configuration of Fe atoms after adsorption. ΔQ is the charge transferred by Fe atom after adsorption, where “–” means that the Fe atom loses its charge. EM is the magnetization energy.

    Adsorbed siteμ0BμB (MB)VECVEC*ΔQ/|e|EM/meV
    TW42.002 (2.023)3d/4s
    6/2
    3d/4s/4p
    6.923/0.354/0.304
    –0.42375.3
    TS_m42.002 (2.290)3d/4s
    6/2
    3d/4s/4p
    7.011/0.568/0.304
    –0.119146.46
    VSb42.004 (2.313)3d/4s
    6/2
    3d/4s/4p
    7.030/0.577/0.330
    –0.06510.02
    下载: 导出CSV
  • [1]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [2]

    Li X M, Tao L, Chen Z F, Fang H, Li X S, Wang X R, Xu J B, Zhu H W 2017 Appl. Phys. Rev. 4 021306Google Scholar

    [3]

    Novoselov K S, Mishchenko A, Carvalho A, Neto A H C 2016 Science 353 aac9439Google Scholar

    [4]

    Shang J M, Pan L F, Wang X T, Li J B, Deng H X, Wei Z M 2018 J. Mater. Chem. C 6 7201Google Scholar

    [5]

    Idrees M, Fawad M, Bilal M, Saeed Y, Nguyen C, Amin B 2020 RSC Adv. 10 25801Google Scholar

    [6]

    Ozcelik V O, Azadani J G, Yang C, Koester S J, Low T 2016 Phys. Rev. B 94 035125Google Scholar

    [7]

    Liu C H, Clark G, Fryett T, Wu S F, Zheng J J, Hatami F, Xu X D, Majumdar A 2017 Nano Lett. 17 200Google Scholar

    [8]

    Binder J, Withers F, Molas M R, Faugeras C, Nogajewski K, Watanabe K, Taniguchi T, Kozikov A, Geim A K, Novoselov K S, Potemski M 2017 Nano Lett. 17 1425Google Scholar

    [9]

    He X, Deng X Q, Sun L, Zhang Z H, Fan Z Q 2022 Appl. Surf. Sci. 578 151844Google Scholar

    [10]

    Huang L, Huo N J, Li Y, Chen H, Yang J H, Wei Z M, Li J B, Li S S 2015 J. Phys. Chem. Lett. 6 2483Google Scholar

    [11]

    Xiao W Z, Xu L, Rong Q Y, Dai X Y, Cheng C P, Wang L L 2020 Appl. Surf. Sci. 504 144425Google Scholar

    [12]

    Huang L, Li Y, Wei Z M, Li J B 2015 Sci. Rep. 5 16448Google Scholar

    [13]

    Lei C G, Ma Y D, Xu X L, Zhang T, Huang B B, Dai Y 2019 J. Phys. Chem. C 123 23089Google Scholar

    [14]

    Yan R S, Fathipour S, Han Y M, Song B, Xiao S D, Li M D, Ma N, Protasenko V, Muller D A, Jena D, Xing H G 2015 Nano Lett. 15 5791Google Scholar

    [15]

    Shim J, Oh S, Kang D H, Jo S H, Ali M H, Choi W Y, Heo K, Jeon J, Lee S, Kim M, Song Y J, Park J H 2016 Nat. Commun. 7 13413Google Scholar

    [16]

    Xia C X, Du J, Li M, Li X P, Zhao X, Wang T X, Li J B 2018 Phy. Rev. A 10 054064Google Scholar

    [17]

    Wu Y B, Huang Z Y, Liu H T, He C Y, Xue L, Qi X, Zhong J X 2018 Phys. Chem. Chem. Phys. 20 17387Google Scholar

    [18]

    Bian H, Duan H, Li J, Chen F, Cao B, Long M 2019 AIP Adv. 9 065207Google Scholar

    [19]

    Kundu S, Naik M H, Jain M 2020 Phy. Rev. Mater. 4 054004Google Scholar

    [20]

    Luo M, Xu Y E, Song Y X 2018 J. Supercond. Novel Magn. 31 449Google Scholar

    [21]

    Ding Y M, Shi J J, Zhang M, Zhu Y H, Wu M, Wang H, Cen Y L, Guo W H, Pan S H 2018 Physica E 101 245Google Scholar

    [22]

    Chen HL, Han J N, Deng X Q, Fan Z Q, Sun L, Zhang Z H 2022 Appl. Surf. Sci. 598 153756Google Scholar

    [23]

    Han J N, Zhang Z H, Fan Z Q, Zhou R L 2020 Nanotechnology 31 315206Google Scholar

    [24]

    Hu R, Wang D, Fan Z Q, Zhang Z H 2018 Phys. Chem. Chem. Phys. 20 13574Google Scholar

    [25]

    Chen H L, Zhang L, Deng X Q, Sun L, Zhang Z H, Fan Z Q 2021 J. Mater. Chem. C 9 12904Google Scholar

    [26]

    Zhao T, Fan Z Q, Zhang Z H, Zhou R L 2019 J. Phys. D: Appl. Phys. 52 475301Google Scholar

    [27]

    Hu R, Li Y H, Zhang Z H, Fan Z Q, Sun L 2019 J. Mater. Chem. C 7 7745Google Scholar

    [28]

    Dong Q X, Hu R, Fan Z Q, Zhang Z H 2018 Carbon 130 206Google Scholar

    [29]

    Hu J K, Zhang Z H, Fan Z Q, Zhou R L 2019 Nanotechnology 30 485703Google Scholar

    [30]

    Han J N, He X, Fan Z Q, Zhang Z H 2019 Phys. Chem. Chem. Phys. 21 1830Google Scholar

    [31]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [32]

    Yang Y Y, Gong P, Ma W D, Hao R, Fang X Y 2021 Chin. Phys. B 30 067803Google Scholar

    [33]

    Jia Y H, Gong P, Li S L, Ma W D, Fang X Y, Yang Y Y 2020 Phys. Lett. A 384 126106Google Scholar

    [34]

    吴甜, 姚梦丽, 龙孟秋 2021 物理学报 70 056301Google Scholar

    Wu T, Yao M L, Long M Q 2021 Acta Phys. Sin. 70 056301Google Scholar

    [35]

    Gong P, Yang Y Y, Ma W D, Fang X Y, Jing X L, Jia Y H, Cao M S 2021 Physica E 128 114578Google Scholar

    [36]

    Xie Z J, Zhang B, Ge Y Q, Zhu Y, Nie G H, Song Y F, Lim C K, Zhang H, Prasad P N 2021 Chem. Rev. 122 1127Google Scholar

    [37]

    He X, Fan Z Q, Zhang Z H 2020 Phys. Chem. Chem. Phys. 22 23665Google Scholar

  • [1] 黄敏, 李占海, 程芳. 石墨烯/C3N范德瓦耳斯异质结的可调电子特性和界面接触. 物理学报, 2023, 72(14): 147302. doi: 10.7498/aps.72.20230318
    [2] 肖聪, 姚望. 范德瓦耳斯体系中的量子层电子学. 物理学报, 2023, 72(23): 237302. doi: 10.7498/aps.72.20231323
    [3] 汤家鑫, 李占海, 邓小清, 张振华. GaN/VSe2范德瓦耳斯异质结电接触特性及调控效应. 物理学报, 2023, 72(16): 167101. doi: 10.7498/aps.72.20230191
    [4] 郭牧城, 汪福东, 胡肇高, 任苗苗, 孙伟业, 肖婉婷, 刘书萍, 钟满金. 微纳尺度稀土掺杂晶体的量子相干性能及其应用研究进展. 物理学报, 2023, 72(12): 120302. doi: 10.7498/aps.72.20222166
    [5] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波. 氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究. 物理学报, 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [6] 孔宇晗, 王蓉, 徐明生. CuPc/MoS2范德瓦耳斯异质结荧光特性. 物理学报, 2022, 71(12): 128103. doi: 10.7498/aps.71.20220132
    [7] 黄佳贝, 廉富镯, 汪致远, 孙世涛, 李明, 张棣, 蔡晓凡, 马国栋, 麦志洪, Andy Shen, 王雷, 于葛亮. 二维范德瓦耳斯材料的超导物性研究及性能调控. 物理学报, 2022, 71(18): 187401. doi: 10.7498/aps.71.20220638
    [8] 王晨, 夏威, 索鹏, 王伟, 林贤, 郭艳峰, 马国宏. 准二维范德瓦耳斯本征铁磁半导体CrGeTe3的THz光谱. 物理学报, 2022, 71(23): 237303. doi: 10.7498/aps.71.20221586
    [9] 张仑, 陈红丽, 义钰, 张振华. As/HfS2范德瓦耳斯异质结电子光学特性及量子调控效应. 物理学报, 2022, 71(17): 177304. doi: 10.7498/aps.71.20220371
    [10] 黄玉昊, 张贵涛, 王如倩, 陈乾, 王金兰. 二维双金属铁磁半导体CrMoI6的电子结构与稳定性. 物理学报, 2021, 70(20): 207301. doi: 10.7498/aps.70.20210949
    [11] 邢海英, 郑智健, 张子涵, 吴文静, 郭志英. 应力调控BlueP/X Te2 (X = Mo, W)范德瓦耳斯异质结电子结构及光学性质理论研究. 物理学报, 2021, 70(6): 067101. doi: 10.7498/aps.70.20201728
    [12] 张芳, 贾利群, 孙现亭, 戴宪起, 黄奇祥, 李伟. 电场对graphene/InSe范德瓦耳斯异质结肖特基势垒的调控. 物理学报, 2020, 69(15): 157302. doi: 10.7498/aps.69.20191987
    [13] 谢武, 沈斌, 张勇军, 郭春煜, 许嘉诚, 路欣, 袁辉球. 重费米子材料与物理. 物理学报, 2019, 68(17): 177101. doi: 10.7498/aps.68.20190801
    [14] 姚洪斌, 蒋相站, 曹长虹, 李文亮. HD+分子的强场光解离动力学及其量子调控的理论研究. 物理学报, 2019, 68(17): 178201. doi: 10.7498/aps.68.20190400
    [15] 张斯淇, 陆景彬, 刘晓静, 刘继平, 李宏, 梁禺, 张晓茹, 刘晗, 吴向尧, 郭义庆. 运用理想光子禁带模型实现对激发态原子系统演化的调控. 物理学报, 2018, 67(9): 094205. doi: 10.7498/aps.67.20172050
    [16] 王文彬, 朱银燕, 殷立峰, 沈健. 复杂氧化物中电子相分离的量子调控. 物理学报, 2018, 67(22): 227502. doi: 10.7498/aps.67.20182007
    [17] 杨增强, 张力达. 红外激光载波包络相位对氦原子的极紫外光(XUV)吸收谱的量子调控研究. 物理学报, 2015, 64(13): 133203. doi: 10.7498/aps.64.133203
    [18] 姚洪斌, 李文亮, 张季, 彭敏. K2分子在强激光场下的量子调控:缀饰态选择性分布. 物理学报, 2014, 63(17): 178201. doi: 10.7498/aps.63.178201
    [19] 黄仙山, 刘海莲. 运用动态腔环境实现对原子自发辐射过程的调控. 物理学报, 2011, 60(3): 034205. doi: 10.7498/aps.60.034205
    [20] 黄仙山, 刘海莲, 羊亚平, 石云龙. 运用动态Lorentz库实现对激发态原子动力学特性的调控. 物理学报, 2011, 60(2): 024205. doi: 10.7498/aps.60.024205
计量
  • 文章访问数:  2471
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-13
  • 修回日期:  2022-07-05
  • 上网日期:  2022-10-25
  • 刊出日期:  2022-11-05

/

返回文章
返回