搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CuPc/MoS2范德瓦耳斯异质结荧光特性

孔宇晗 王蓉 徐明生

引用本文:
Citation:

CuPc/MoS2范德瓦耳斯异质结荧光特性

孔宇晗, 王蓉, 徐明生

Photoluminescence properties of CuPc/MoS2 van der Waals heterostructure

Kong Yu-Han, Wang Rong, Xu Ming-Sheng
PDF
HTML
导出引用
  • 在众多二维材料中, 过渡金属硫族化合物由于其具有独特的光电特性深受广大研究者喜爱. 近年来, 由二维过渡金属硫族化合物材料与有机半导体结合构建的范德瓦耳斯异质结受到极大的关注. 这种异质结可以利用两者的优势对光电特性等性能进行调控, 为许多基础物理和功能器件的构建提供了研究思路. 本文构建了酞菁铜/二硫化钼(CuPc/MoS2)范德瓦耳斯异质结, 并对其荧光特性进行了表征和分析. 与单层MoS2相比较发现, 引入有机半导体CuPc后, 异质结当中发生了明显的荧光淬灭现象. 通过荧光分析, 该现象可以用引入CuPc后异质结中负三激子与中性激子之比增加来解释. 此外, 通过第一性原理计算分析发现, 引入CuPc会在MoS2的禁带中引入中间带隙态, 使得CuPc与MoS2之间产生非辐射复合, 这同样会导致荧光淬灭的发生. CuPc/MoS2异质结的荧光淬灭现象可以为同类型范德瓦耳斯异质结的光电特性调控研究提供参考和思路.
    Among two-dimensional (2D) materials, transition metal chalcogenides (TMDs) have attracted much attention due to their unique photoelectric properties. On the other hand, organic molecules have the characteristics of flexibility, wide source, easy fabrication and low cost. The van der Waals heterostructure constructed by the combination of 2D TMDs and organic semiconductors has attracted enormous attention in recent years. When organic semiconductors combine with TMDs to form van der Waals heterostructure, the hybridization of organic molecules could improve the photoelectric properties and other properties by taking the advantages of these two materials, Therefore, the combination of organic semiconductor molecules and TMDs can provide a research platform for designing many basic physics and functional devices and interesting optoelectronic applications. In this work, CuPc/MoS2 van der Waals heterostructure is built, and its photoluminescence (PL) properties are investigated. It is observed that after introducing CuPc, a significant PL quenching phenomenon occurs in the heterostructure compared with the single layer MoS2 and pure CuPc only. After fitting the PL of CuPc/MoS2 heterostructure system and monolayer MoS2 only, the ratio of trion to neutral exciton is clearly increased in the heterostructure. Furthermore, it is found that two mid-gap states D1 and D2 related to the CuPc are introduced into the band gap of MoS2 by first principle calculation. Through the charge density analysis, we find that the D1 state originates from the sp2 bonding state of the C-C bond while the D2 state comes from the anti-bonding state of the N-Cu bond. Meanwhile, the valence band maximum (VBM) and conduction band minimum (CBM) of CuPc/MoS2 heterostructure are derived from the bonding and anti-bonding states of MoS2, respectively. The charge transfer occurs between the mid-gap states of CuPc and MoS2. However, owing to different positions of charge density distribution of CBM, D2, D1 and VBM, the charge pathway is dominated by non-radiation recombination, which cannot give new PL peak in heterostructure. However, this process reduces the number of carriers involved in the direct recombination of MoS2, which leads PL to quench in the heterostructure. This work would be applied to the manipulation of photoelectric characteristics and the design of TMD/organic-based photovoltaic applications.
      通信作者: 王蓉, rong_wang@zju.edu.cn ; 徐明生, msxu@zju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62090030, 62090031, 51872257, 51672244)和浙江省自然科学基金(批准号: LZ20F040001)资助的课题
      Corresponding author: Wang Rong, rong_wang@zju.edu.cn ; Xu Ming-Sheng, msxu@zju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62090030, 62090031, 51872257, 51672244) and the Natural Science Foundation of Zhejiang Pvovince, China (Grant No. LZ20F040001).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [3]

    Fabbri F, Rotunno E, Cinquanta E, et al. 2016 Nat. Commun. 7 13044Google Scholar

    [4]

    Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A, Baillargeat D 2012 Adv. Funct. Mater. 22 1385Google Scholar

    [5]

    Amani M, Lien D H, Kiriya D, et al. 2015 Science 350 1065Google Scholar

    [6]

    Xu M S, Liang T, Shi M M, Chen H Z 2013 Chem. Rev. 113 3766Google Scholar

    [7]

    Song I, Park C, Choi H C 2015 Rsc. Adv. 5 7495Google Scholar

    [8]

    Huang Y L, Zheng Y J, Song Z B, Chi D Z, Wee A T S, Quek S Y 2018 Chem. Soc. Rev. 47 3241Google Scholar

    [9]

    Zhang X N, de Oteyza D G, Wakayama Y, Dosch H 2009 Surf. Sci. 603 3179Google Scholar

    [10]

    Fan Q P, Li M, Yang P G, Liu Y, Xiao M J, Wang X D, Tan H, Wang Y F, Yang R Q, Zhu W G 2015 Dyes Pigments 116 13Google Scholar

    [11]

    Li Q F, Liu S, Chen H Z, Li H Y 2016 Chin. Chem. Lett. 27 1421Google Scholar

    [12]

    Gehring P, Thijssen J M, van der Zant H S J 2019 Nat. Rev. Phys. 1 381Google Scholar

    [13]

    Aradhya S V, Venkataraman L 2013 Nat. Nanotechnol. 8 399Google Scholar

    [14]

    Choi J, Zhang H Y, Choi J H 2016 Acs Nano 10 1671Google Scholar

    [15]

    Zhao H J, Zhao Y B, Song Y X, et al. 2019 Nat. Commun. 10 5589Google Scholar

    [16]

    Obaidulla S M, Habib M R, Khan Y, Kong Y H, Liang T, Xu M S 2020 Adv. Mater. Interfaces 7 1901197Google Scholar

    [17]

    Wang S Y, Chen C S, Yu Z H, He Y L, Chen X Y, Wan Q, Shi Y, Zhang D W, Zhou H, Wang X R, Zhou P 2019 Adv. Mater. 31 1806227Google Scholar

    [18]

    Huang Y, Zhuge F W, Hou J X, Lv L, Luo P, Zhou N, Gan L, Zhai T Y 2018 Acs Nano 12 4062Google Scholar

    [19]

    Homan S B, Sangwan V K, Balla I, Bergeron H, Weiss E A, Hersam M C 2017 Nano Lett. 17 164Google Scholar

    [20]

    Park C J, Park H J, Lee J Y, Kim J, Lee C H, Joo J 2018 Acs Appl. Mater. Inter. 10 29848Google Scholar

    [21]

    Habib M R, Li H F, Kong Y H, Liang T, Obaidulla S M, Xie S, Wang S P, Ma X Y, Su H X, Xu M S 2018 Nanoscale 10 16107Google Scholar

    [22]

    Khan Y, Obaidulla S M, Habib M R, Kong Y H, Xu M S 2020 Appl. Sur. Sci. 530 147213Google Scholar

    [23]

    Mouri S, Miyauchi Y, Matsuda K 2013 Nano. Lett. 13 5944Google Scholar

    [24]

    Kresse G, Furthmuller J 1996 Comp. Mater. Sci. 6 15Google Scholar

    [25]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [26]

    Choudhury P, Ravavarapu L, Dekle R, Chowdhury S 2017 J. Phys. Chem. C 121 2959Google Scholar

  • 图 1  制备MoS2单晶的CVD装置图

    Fig. 1.  Schematic illustration of the growth of monolayer MoS2 by CVD.

    图 2  CuPc/MoS2异质结的形貌表征 (a)单层MoS2的AFM图; (b) CuPc/MoS2异质结的SEM图

    Fig. 2.  Morphology characterization of CuPc/MoS2 heterostructure system: (a) AFM image of monolayer MoS2; (b) SEM image of CuPc/MoS2 heterostructure.

    图 3  CuPc与单层MoS2复合前后的拉曼散射图谱

    Fig. 3.  Raman scattering spectra of CuPc and monolayer MoS2 (ML-MoS2) before and after recombination.

    图 4  CuPc/MoS2异质结的荧光发光图谱 (a) CuPc与单层MoS2复合前后的荧光发光图谱; (b) CuPc/MoS2异质结的荧光面扫描图; (c)单层MoS2的荧光面扫描图

    Fig. 4.  PL spectra of CuPc/MoS2 heterostructure system: (a) PL spectra of CuPc and monolayer MoS2 before and after recombination; (b) PL mapping image of CuPc/MoS2 heterostructure; (c) PL mapping image of ML-MoS2.

    图 5  (a) CuPc/MoS2异质结和(b)单层MoS2的荧光分峰拟合曲线, 其中负三激子A位置约为1.84 eV, 中性激子A位置约为1.88 eV, B激子位置约为2.01 eV

    Fig. 5.  PL fitting of (a) CuPc/MoS2 heterostructure and (b) ML-MoS2, where the negative trions A site is about 1.84 eV, the neutral exciton A site is about 1.88 eV, and the B exciton site is about 2.01 eV.

    图 6  (a) CuPc/MoS2异质结的分波态密度图; (b)—(e)分别为VBM, D1, D2, CBM的电荷密度分布图

    Fig. 6.  (a) Partial density of states of CuPc/MoS2 heterostructure; (b)–(e) charge density distribution of VBM, D1, D2, CBM, respectively.

    图 7  CuPc/MoS2异质结体系的荧光淬灭示意图 (实心及空心圆分别代表电子及空穴)

    Fig. 7.  Schematic diagram of PL quenching of CuPc/MoS2 heterostructure system (Solid and hollow circles represent electrons and holes respectively).

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [3]

    Fabbri F, Rotunno E, Cinquanta E, et al. 2016 Nat. Commun. 7 13044Google Scholar

    [4]

    Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A, Baillargeat D 2012 Adv. Funct. Mater. 22 1385Google Scholar

    [5]

    Amani M, Lien D H, Kiriya D, et al. 2015 Science 350 1065Google Scholar

    [6]

    Xu M S, Liang T, Shi M M, Chen H Z 2013 Chem. Rev. 113 3766Google Scholar

    [7]

    Song I, Park C, Choi H C 2015 Rsc. Adv. 5 7495Google Scholar

    [8]

    Huang Y L, Zheng Y J, Song Z B, Chi D Z, Wee A T S, Quek S Y 2018 Chem. Soc. Rev. 47 3241Google Scholar

    [9]

    Zhang X N, de Oteyza D G, Wakayama Y, Dosch H 2009 Surf. Sci. 603 3179Google Scholar

    [10]

    Fan Q P, Li M, Yang P G, Liu Y, Xiao M J, Wang X D, Tan H, Wang Y F, Yang R Q, Zhu W G 2015 Dyes Pigments 116 13Google Scholar

    [11]

    Li Q F, Liu S, Chen H Z, Li H Y 2016 Chin. Chem. Lett. 27 1421Google Scholar

    [12]

    Gehring P, Thijssen J M, van der Zant H S J 2019 Nat. Rev. Phys. 1 381Google Scholar

    [13]

    Aradhya S V, Venkataraman L 2013 Nat. Nanotechnol. 8 399Google Scholar

    [14]

    Choi J, Zhang H Y, Choi J H 2016 Acs Nano 10 1671Google Scholar

    [15]

    Zhao H J, Zhao Y B, Song Y X, et al. 2019 Nat. Commun. 10 5589Google Scholar

    [16]

    Obaidulla S M, Habib M R, Khan Y, Kong Y H, Liang T, Xu M S 2020 Adv. Mater. Interfaces 7 1901197Google Scholar

    [17]

    Wang S Y, Chen C S, Yu Z H, He Y L, Chen X Y, Wan Q, Shi Y, Zhang D W, Zhou H, Wang X R, Zhou P 2019 Adv. Mater. 31 1806227Google Scholar

    [18]

    Huang Y, Zhuge F W, Hou J X, Lv L, Luo P, Zhou N, Gan L, Zhai T Y 2018 Acs Nano 12 4062Google Scholar

    [19]

    Homan S B, Sangwan V K, Balla I, Bergeron H, Weiss E A, Hersam M C 2017 Nano Lett. 17 164Google Scholar

    [20]

    Park C J, Park H J, Lee J Y, Kim J, Lee C H, Joo J 2018 Acs Appl. Mater. Inter. 10 29848Google Scholar

    [21]

    Habib M R, Li H F, Kong Y H, Liang T, Obaidulla S M, Xie S, Wang S P, Ma X Y, Su H X, Xu M S 2018 Nanoscale 10 16107Google Scholar

    [22]

    Khan Y, Obaidulla S M, Habib M R, Kong Y H, Xu M S 2020 Appl. Sur. Sci. 530 147213Google Scholar

    [23]

    Mouri S, Miyauchi Y, Matsuda K 2013 Nano. Lett. 13 5944Google Scholar

    [24]

    Kresse G, Furthmuller J 1996 Comp. Mater. Sci. 6 15Google Scholar

    [25]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [26]

    Choudhury P, Ravavarapu L, Dekle R, Chowdhury S 2017 J. Phys. Chem. C 121 2959Google Scholar

  • [1] 汪帆帆, 陈栋, 袁军, 张珠峰, 姜涛, 周骏. Sb/SnC范德瓦耳斯异质结光电性质的层间转角依赖性及其应用. 物理学报, 2024, 73(22): 227101. doi: 10.7498/aps.73.20241138
    [2] 段聪, 刘俊杰, 陈永杰, 左慧玲, 董健生, 欧阳钢. MoS2/SiO2界面黏附性能的尺寸和温度效应. 物理学报, 2024, 73(5): 056801. doi: 10.7498/aps.73.20231648
    [3] 武鹏, 谈论, 李炜, 曹立伟, 赵俊博, 曲尧, 李昂. 大面积单层二硫化钼的制备及其光电性能. 物理学报, 2023, 72(11): 118101. doi: 10.7498/aps.72.20230273
    [4] 黄敏, 李占海, 程芳. 石墨烯/C3N范德瓦耳斯异质结的可调电子特性和界面接触. 物理学报, 2023, 72(14): 147302. doi: 10.7498/aps.72.20230318
    [5] 孙婷钰, 吴量, 何贤娟, 姜楠, 周文哲, 欧阳方平. 应变和电场对Ga2SeTe/In2Se3异质结电子结构和光学性质的影响. 物理学报, 2023, 72(7): 076301. doi: 10.7498/aps.72.20222250
    [6] 王婉玉, 石凯熙, 李金华, 楚学影, 方铉, 匡尚奇, 徐国华. MoO3覆盖层对MoS2基光伏型光电探测器性能的影响. 物理学报, 2023, 72(14): 147301. doi: 10.7498/aps.72.20230464
    [7] 王月, 马杰. MoS2中S原子空位形成的非绝热动力学研究. 物理学报, 2023, 72(22): 226101. doi: 10.7498/aps.72.20230787
    [8] 汤家鑫, 李占海, 邓小清, 张振华. GaN/VSe2范德瓦耳斯异质结电接触特性及调控效应. 物理学报, 2023, 72(16): 167101. doi: 10.7498/aps.72.20230191
    [9] 费翔, 张秀梅, 付泉桂, 蔡正阳, 南海燕, 顾晓峰, 肖少庆. 基于熔融玻璃的预沉积法生长毫米级单晶MoS2及WS2-MoS2异质结. 物理学报, 2022, 71(4): 048101. doi: 10.7498/aps.71.20211735
    [10] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波. 氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究. 物理学报, 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [11] 张仑, 陈红丽, 义钰, 张振华. As/HfS2范德瓦耳斯异质结电子光学特性及量子调控效应. 物理学报, 2022, 71(17): 177304. doi: 10.7498/aps.71.20220371
    [12] 吴甜, 姚梦丽, 龙孟秋. 钙钛矿CsPbX3(X=Cl, Br, I)与五环石墨烯范德瓦耳斯异质结的界面相互作用和光电性能的第一性原理研究. 物理学报, 2021, 70(5): 056301. doi: 10.7498/aps.70.20201246
    [13] 邓文, 汪礼胜, 刘嘉宁, 余雪玲, 陈凤翔. 光电协控多层MoS2记忆晶体管的阻变行为与机理研究. 物理学报, 2021, 70(21): 217302. doi: 10.7498/aps.70.20210750
    [14] 马腾宇, 李万俊, 何先旺, 胡慧, 黄利娟, 张红, 熊元强, 李泓霖, 叶利娟, 孔春阳. β-Ga2O3纳米材料的尺寸调控与光致发光特性. 物理学报, 2020, 69(10): 108102. doi: 10.7498/aps.69.20200158
    [15] 黄静雯, 罗利琼, 金波, 楚士晋, 彭汝芳. 六角星形MoSe2双层纳米片的制备及其光致发光性能. 物理学报, 2017, 66(13): 137801. doi: 10.7498/aps.66.137801
    [16] 彭智伟, 王玲玲, 刘晃清, 黄维清, 邹炳锁. Gd2O3:Eu3+纳米晶的燃烧合成及光致发光性质. 物理学报, 2007, 56(2): 1162-1166. doi: 10.7498/aps.56.1162
    [17] 冯先进, 马 瑾, 葛松华, 计 峰, 王永利, 杨 帆, 马洪磊. 蓝宝石衬底SnO2:Sb薄膜的制备及结构和光致发光性质. 物理学报, 2007, 56(8): 4872-4876. doi: 10.7498/aps.56.4872
    [18] 朱振华, 雷明凯. Er3+掺杂SiO2复合的Al2O3粉末结构及光致发光特性. 物理学报, 2006, 55(9): 4956-4961. doi: 10.7498/aps.55.4956
    [19] 王玉恒, 马 瑾, 计 峰, 余旭浒, 张锡健, 马洪磊. 射频磁控溅射法制备SnO2:Sb薄膜的结构和光致发光性质研究. 物理学报, 2005, 54(4): 1731-1735. doi: 10.7498/aps.54.1731
    [20] 马忠元, 黄信凡, 朱 达, 李 伟, 陈坤基, 冯 端. 原位等离子体逐层氧化a-Si:H/SiO2多层膜的光致发光研究. 物理学报, 2004, 53(8): 2746-2750. doi: 10.7498/aps.53.2746
计量
  • 文章访问数:  5867
  • PDF下载量:  195
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-18
  • 修回日期:  2022-04-13
  • 上网日期:  2022-06-08
  • 刊出日期:  2022-06-20

/

返回文章
返回