搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于悬浮式双芯多孔光纤的太赫兹偏振分离器

李珊珊 常胜江 张昊 白晋军 刘伟伟

引用本文:
Citation:

基于悬浮式双芯多孔光纤的太赫兹偏振分离器

李珊珊, 常胜江, 张昊, 白晋军, 刘伟伟

A THz polarization splitter made from suspended dual-core porous fiber

Li Shan-Shan, Chang Sheng-Jiang, Zhang Hao, Bai Jin-Jun, Liu Wei-Wei
PDF
导出引用
  • 提出了一种基于悬浮式双芯多孔光纤的低损耗、宽带太赫兹偏振分离器. 通过纤芯的多孔结构实现器件的低损耗特性,利用两个纤芯微结构的正交关系实现宽带的单偏振模式匹配. 结构参数设计采用折射率反转匹配耦合法;数值计算采用全矢量有限元法;光纤基底材料选择太赫兹波段低损耗环烯烃共聚物COC. 首先对单芯高双折射悬浮式多孔光纤的色散、模式双折射、基模在空气中的能量分数、以及损耗等特性进行了分析,在此基础上,对悬浮式双芯多孔光纤偏振分离器的特性进行了详细研究. 发现该偏振分离器的工作带宽超过1.5 THz(0.8 THz到2.3 THz). 其偏振分离长度和吸收损耗随频率的增大而增大,在1 THz,分离长度仅为0.66 cm;x,y两偏振的消光比分别为-14.64 dB和-14.84 dB,两偏振模式的实际吸收损耗均小于0.12 dB. 相对于其他双芯光纤偏振分离器设计,该结构具有宽带、低损耗、设计简单、拉制容易、以及抗环境干扰等优点.
    A low loss broadband THz polarization splitter made from suspended dual-core porous fiber is proposed. The property of low loss is due to the porous structure of the fiber, and the match of single polarization mode is achieved by the orthogonal relationship of the microstructure in the two fiber cores. Structure of the fiber is designed by using index converse matching coupling method. Numerical simulation is carried out by employing full vector finite element method. The background material is cyclo olefin polymer COC with low loss property in THz region. Firstly, the properties of a suspended porous fiber with a single core has been analyzed in detail, including the effective refractive index, birefringence, fraction of modal power in air, and material absorption loss in the fundamental mode. Moreover, the properties of THz polarization splitter made from suspended dual-core porous fibers have been investigated theoretically. Numerical simulation results show that the operation bandwidth is 1.5 THz (from 0.8 THz to 2.3 THz). At 1 THz, the splitting length is only 0.66 cm. The extinction ratios for x and y polarization modes can reach -14.64 dB and -14.84 dB, respectively. The practical material absorption loss is less than 0.12 dB for both x and y polarization modes. Compared with other dual-core-PCF-based polarization splitters, the dual-core porous fiber has several advantages such as simplicity for structure designing, ease of fabrication, better feasibility in practical applications, low transmission loss, and wide operation frequency bandwidth.
    • 基金项目: 国家重点基础研究发展计划(973项目)(批准号:2014CB339800)、国家高技术研究发展计划(863)(批准号:2011AA010205,2013AA014201)、国家自然科学基金(批准号:61171027,11274182,11004110)、天津市科技计划项目(批准号:13RCGFGX01127)和天津市高等学校科技发展基金计划项目(项目编号:20120706)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2014CB339800), the National High Technology Research and Development Program of China (Grant Nos. 2011AA010205, 2013AA014201), the National Natural Science Foundation of China (Grant Nos. 61171027, 11274182, 11004110), the Science and Technology Program of Tianjin, China (Grant No. 13RCGFGX01127), and the Tianjin City High School Science & Technology Fund Planning Project, China (Grant No. 20120706).
    [1]

    Li J, Mao Y, Lu C, Tam H Y, Wai P 2011 Photonics Technology Letters, IEEE 23 1358

    [2]

    Saulnier J, Ramus C, Huet F, Carre M 1991 Photonics Technology Letters, IEEE 3 926

    [3]

    Li M Y, Gu P F 2005 Acta Phys. Sin. 54 2363 (in Chinese) [李明宇, 顾培夫 2005 物理学报 54 2363]

    [4]

    Li Y Y, Gu P F, Li M Y 2005 Acta Phys. Sin. 54 3893 (in Chinese) [厉以宇, 顾培夫, 李明宇 2005 物理学报 54 3893]

    [5]

    Lou S Q, Ren G B, Yan F P, Jian S S 2005 Acta Phys. Sin. 54 1229 (in Chinese) [娄淑琴, 任国斌, 延凤平, 简水生 2005 物理学报 54 1229]

    [6]

    Zhang B, Tan X L, Xue R Q, Yan J, Pan B, Jiang W X 2012 Infrared and Laser Engineering 41 745 (in Chinese)[张斌, 谭晓玲, 薛睿秋, 严俊, 潘播, 蒋文晓 2012 红外与激光工程 41 745]

    [7]

    Li S, Zhang H, Hou Y, Bai J, Liu W, Chang S 2013 Appl. Opt. 52 3305

    [8]

    Ferguson B, Zhang X C 2003 Physics 32 286 (in Chinese) [Ferguson B, 张希成 2003 物理 32 286]

    [9]

    Deng Y Q, Lang L Y, Xing Q R, Cao S Y, Yu J, Xu T, Li J, Xiong L M, Wang Q Y, Zhang Z G 2008 Acta Phys. Sin. 57 7747 (in Chinese) [邓玉强, 郎利影, 邢岐荣, 曹士英, 靖于, 涛徐 2008 物理学报 57 7747]

    [10]

    Liu J L, Zhang X C 2010 Physics 39 6 (in Chinese)[刘晶乐, 张希成 2010 物理 39 6]

    [11]

    Zhang X B, Shi W 2008 Acta Phys. Sin. 57 4984 (in Chinese) [张显斌, 卫施 2008 物理学报 57 4984]

    [12]

    Atakaramians S, Afshar Vahid S, Fischer B M, Abbott D, Monro T M 2008 Optics Express 16 8845

    [13]

    Hassani A, Dupuis A, Skorobogatiy M 2008 Applied Physics Letters 92 071101

    [14]

    Dupuis A, Allard J F, Morris D, Stoeffler K, Dubois C, Skorobogatiy M 2009 Opt. Express 17 8012

    [15]

    Dupuis A, Mazhorova A, Desevedavy F, Skorobogatiy M 2010 35th Internatial Cference on

    [16]

    Li M J, Shi Z D, Lin J Q, Ge Q 2010 Acta Optica Sinica 30 1950 (in Chinese) [李铭佳, 石志东, 林建强, 葛泉 2010 光学学报 30 1950]

    [17]

    Wang D, Wang L 2011 Optics Communications 284 5568

    [18]

    Chen N N, Liang J, Ren L Y 2013 Applied Optics 52 5297

    [19]

    Wang D, Zheng Y 2013 Acta Optica Sinica 33 0806005 (in Chinese) [王丹, 郑义 2013 光学学报 33 0806005]

    [20]

    Cunningham P D, Valdes N N, Vallejo F A, Hayden L M, Polishak B, Zhou X H, Luo J, Jen A K Y, Williams J C, Twieg R J 2011 Journal of Applied Physics 109 043505

    [21]

    Emiliyanov G, Jensen J B, Bang O, Hoiby P E, Pedersen L H, Kjær E M, Lindvold L 2006 Presented at Optical Fiber Sensors

    [22]

    Nielsen K, Rasmussen H K, Adam A J, Planken P C, Bang O, Jepsen P U 2009 Optics Express 17 8592

    [23]

    Snyder A W, Love J D 2000 Optical Waveguide Theory (Section 11-22) (Kluwer Academic Publishers) p232

  • [1]

    Li J, Mao Y, Lu C, Tam H Y, Wai P 2011 Photonics Technology Letters, IEEE 23 1358

    [2]

    Saulnier J, Ramus C, Huet F, Carre M 1991 Photonics Technology Letters, IEEE 3 926

    [3]

    Li M Y, Gu P F 2005 Acta Phys. Sin. 54 2363 (in Chinese) [李明宇, 顾培夫 2005 物理学报 54 2363]

    [4]

    Li Y Y, Gu P F, Li M Y 2005 Acta Phys. Sin. 54 3893 (in Chinese) [厉以宇, 顾培夫, 李明宇 2005 物理学报 54 3893]

    [5]

    Lou S Q, Ren G B, Yan F P, Jian S S 2005 Acta Phys. Sin. 54 1229 (in Chinese) [娄淑琴, 任国斌, 延凤平, 简水生 2005 物理学报 54 1229]

    [6]

    Zhang B, Tan X L, Xue R Q, Yan J, Pan B, Jiang W X 2012 Infrared and Laser Engineering 41 745 (in Chinese)[张斌, 谭晓玲, 薛睿秋, 严俊, 潘播, 蒋文晓 2012 红外与激光工程 41 745]

    [7]

    Li S, Zhang H, Hou Y, Bai J, Liu W, Chang S 2013 Appl. Opt. 52 3305

    [8]

    Ferguson B, Zhang X C 2003 Physics 32 286 (in Chinese) [Ferguson B, 张希成 2003 物理 32 286]

    [9]

    Deng Y Q, Lang L Y, Xing Q R, Cao S Y, Yu J, Xu T, Li J, Xiong L M, Wang Q Y, Zhang Z G 2008 Acta Phys. Sin. 57 7747 (in Chinese) [邓玉强, 郎利影, 邢岐荣, 曹士英, 靖于, 涛徐 2008 物理学报 57 7747]

    [10]

    Liu J L, Zhang X C 2010 Physics 39 6 (in Chinese)[刘晶乐, 张希成 2010 物理 39 6]

    [11]

    Zhang X B, Shi W 2008 Acta Phys. Sin. 57 4984 (in Chinese) [张显斌, 卫施 2008 物理学报 57 4984]

    [12]

    Atakaramians S, Afshar Vahid S, Fischer B M, Abbott D, Monro T M 2008 Optics Express 16 8845

    [13]

    Hassani A, Dupuis A, Skorobogatiy M 2008 Applied Physics Letters 92 071101

    [14]

    Dupuis A, Allard J F, Morris D, Stoeffler K, Dubois C, Skorobogatiy M 2009 Opt. Express 17 8012

    [15]

    Dupuis A, Mazhorova A, Desevedavy F, Skorobogatiy M 2010 35th Internatial Cference on

    [16]

    Li M J, Shi Z D, Lin J Q, Ge Q 2010 Acta Optica Sinica 30 1950 (in Chinese) [李铭佳, 石志东, 林建强, 葛泉 2010 光学学报 30 1950]

    [17]

    Wang D, Wang L 2011 Optics Communications 284 5568

    [18]

    Chen N N, Liang J, Ren L Y 2013 Applied Optics 52 5297

    [19]

    Wang D, Zheng Y 2013 Acta Optica Sinica 33 0806005 (in Chinese) [王丹, 郑义 2013 光学学报 33 0806005]

    [20]

    Cunningham P D, Valdes N N, Vallejo F A, Hayden L M, Polishak B, Zhou X H, Luo J, Jen A K Y, Williams J C, Twieg R J 2011 Journal of Applied Physics 109 043505

    [21]

    Emiliyanov G, Jensen J B, Bang O, Hoiby P E, Pedersen L H, Kjær E M, Lindvold L 2006 Presented at Optical Fiber Sensors

    [22]

    Nielsen K, Rasmussen H K, Adam A J, Planken P C, Bang O, Jepsen P U 2009 Optics Express 17 8592

    [23]

    Snyder A W, Love J D 2000 Optical Waveguide Theory (Section 11-22) (Kluwer Academic Publishers) p232

  • [1] 朱照照, 冯正, 蔡建旺. 基于IrMn/Fe/Pt交换偏置结构的无场自旋太赫兹源. 物理学报, 2022, 71(4): 048703. doi: 10.7498/aps.71.20211831
    [2] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212400
    [3] 惠战强, 高黎明, 刘瑞华, 韩冬冬, 汪伟. 低损耗大带宽双芯负曲率太赫兹光纤偏振分束器. 物理学报, 2022, 71(4): 048702. doi: 10.7498/aps.71.20211650
    [4] 闫忠宝, 孙帅, 张帅, 张尧, 史伟, 盛泉, 史朝督, 张钧翔, 张贵忠, 姚建铨. 二氧化钒相变对太赫兹反谐振光纤谐振特性的影响及其应用. 物理学报, 2021, 70(16): 168701. doi: 10.7498/aps.70.20210084
    [5] 朱照照, 冯正, 蔡建旺. 基于IrMn/Fe/Pt交换偏置结构的无场自旋太赫兹源. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211831
    [6] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [7] 惠战强. 低损耗大带宽双芯负曲率太赫兹光纤偏振分束器. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211650
    [8] 张尧, 孙帅, 闫忠宝, 张果, 史伟, 盛泉, 房强, 张钧翔, 史朝督, 张贵忠, 姚建铨. 太赫兹双芯反谐振光纤的设计及其耦合特性. 物理学报, 2020, 69(20): 208703. doi: 10.7498/aps.69.20200662
    [9] 付亚男, 张新群, 赵国忠, 李永花, 于佳怡. 基于谐振环的太赫兹宽带偏振转换器件研究. 物理学报, 2017, 66(18): 180701. doi: 10.7498/aps.66.180701
    [10] 汪静丽, 刘洋, 钟凯. 基于领结型多孔光纤的双芯太赫兹偏振分束器. 物理学报, 2017, 66(2): 024209. doi: 10.7498/aps.66.024209
    [11] 谷文浩, 常胜江, 范飞, 张选洲. 基于锑化铟亚波长阵列结构的太赫兹聚焦器件. 物理学报, 2016, 65(1): 010701. doi: 10.7498/aps.65.010701
    [12] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器. 物理学报, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [13] 李珊珊, 张昊, 白晋军, 刘伟伟, 常胜江. 隔行分层填充的太赫兹超高双折射多孔光纤. 物理学报, 2015, 64(15): 154201. doi: 10.7498/aps.64.154201
    [14] 姜子伟, 白晋军, 侯宇, 王湘晖, 常胜江. 太赫兹双空芯光纤定向耦合器. 物理学报, 2013, 62(2): 028702. doi: 10.7498/aps.62.028702
    [15] 戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁. 太赫兹波段谐振频率可调的开口谐振环结构. 物理学报, 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [16] 刘建丰, 周庆莉, 施宇蕾, 李磊, 赵冬梅, 张存林. 基底对亚波长金属双环结构太赫兹透射性质的影响. 物理学报, 2012, 61(4): 048101. doi: 10.7498/aps.61.048101
    [17] 白晋军, 王昌辉, 侯宇, 范飞, 常胜江. 太赫兹双芯光子带隙光纤定向耦合器. 物理学报, 2012, 61(10): 108701. doi: 10.7498/aps.61.108701
    [18] 白晋军, 王昌辉, 霍丙忠, 王湘晖, 常胜江. 低损宽频高双折射太赫兹光子带隙光纤. 物理学报, 2011, 60(9): 098702. doi: 10.7498/aps.60.098702
    [19] 范飞, 郭展, 白晋军, 王湘晖, 常胜江. 多功能磁光子晶体太赫兹可调偏振控制器件. 物理学报, 2011, 60(8): 084219. doi: 10.7498/aps.60.084219
    [20] 孟田华, 赵国忠, 张存林. 亚波长分形结构太赫兹透射增强的机理研究. 物理学报, 2008, 57(6): 3846-3852. doi: 10.7498/aps.57.3846
计量
  • 文章访问数:  3376
  • PDF下载量:  806
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-30
  • 修回日期:  2014-02-21
  • 刊出日期:  2014-06-05

基于悬浮式双芯多孔光纤的太赫兹偏振分离器

  • 1. 南开大学, 现代光学研究所, 天津 300071;
  • 2. 天津工业大学, 电子与信息工程学院, 天津 300387
    基金项目: 国家重点基础研究发展计划(973项目)(批准号:2014CB339800)、国家高技术研究发展计划(863)(批准号:2011AA010205,2013AA014201)、国家自然科学基金(批准号:61171027,11274182,11004110)、天津市科技计划项目(批准号:13RCGFGX01127)和天津市高等学校科技发展基金计划项目(项目编号:20120706)资助的课题.

摘要: 提出了一种基于悬浮式双芯多孔光纤的低损耗、宽带太赫兹偏振分离器. 通过纤芯的多孔结构实现器件的低损耗特性,利用两个纤芯微结构的正交关系实现宽带的单偏振模式匹配. 结构参数设计采用折射率反转匹配耦合法;数值计算采用全矢量有限元法;光纤基底材料选择太赫兹波段低损耗环烯烃共聚物COC. 首先对单芯高双折射悬浮式多孔光纤的色散、模式双折射、基模在空气中的能量分数、以及损耗等特性进行了分析,在此基础上,对悬浮式双芯多孔光纤偏振分离器的特性进行了详细研究. 发现该偏振分离器的工作带宽超过1.5 THz(0.8 THz到2.3 THz). 其偏振分离长度和吸收损耗随频率的增大而增大,在1 THz,分离长度仅为0.66 cm;x,y两偏振的消光比分别为-14.64 dB和-14.84 dB,两偏振模式的实际吸收损耗均小于0.12 dB. 相对于其他双芯光纤偏振分离器设计,该结构具有宽带、低损耗、设计简单、拉制容易、以及抗环境干扰等优点.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回