搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蚕丝基可穿戴传感器的研究进展

李胜优 刘镓榕 文豪 刘向阳 郭文熹

引用本文:
Citation:

蚕丝基可穿戴传感器的研究进展

李胜优, 刘镓榕, 文豪, 刘向阳, 郭文熹

Recent advances in silk-based wearable sensors

Li Sheng-You, Liu Jia-Rong, Wen Hao, Liu Xiang-Yang, Guo Wen-Xi
PDF
HTML
导出引用
  • 近年来, 可穿戴电子产品得到了广泛的研究, 为健康监测、人类疾病诊断和治疗以及智能机器人提供了新的机会. 传感器是可穿戴电子产品的关键组成部分之一. 蚕丝(bombyx mori)材料具有高产量、优异的拉伸强度(0.5—1.3 GPa)和韧性(6 × 104—16 × 104 J/kg)、良好的生物相容性、可降解性以及易加工性等特征. 随着生物材料和相关制造技术的快速发展, 蚕丝基先进材料被研究应用在可穿戴传感器中. 本文首先介绍了蚕丝自下而上的层结构以及蚕丝基先进材料的形态和特点, 随后综述了近年来蚕丝在可穿戴传感领域的研究进展, 包括机械(应力、应变)传感器、电生理传感器、温度传感器及湿度传感器等. 讨论和总结了不同传感器的工作机制、结构和性能, 蚕丝蛋白在其中的作用以及它们在健康监测中的应用. 最后, 提出蚕丝基可穿戴传感器在实际应用中所面临的挑战和未来展望.
    In recent years, wearable electronics has received extensive attention, providing new opportunities for implementing health monitoring, human disease diagnosis and treatment, and intelligent robotics. Sensor is one of the key components of wearable electronics. Silk (Bombyx Mori) material shows unique features including high yield, excellent tensile strength (0.5–1.3 GPa) and toughness ((6–16) × 104 J/kg), good biocompatibility, programmable/controllable biodegradability, novel dielectric properties, and various material formats. With the rapid development of biomaterials and related manufacturing technologies, advanced silk-based materials have been studied and applied to wearable sensors. Here, we firstly introduce the five-level structure of silk fibroin from bottom to top and characteristics of silk-based advanced materials, and then review the research progress of silk-based advanced materials in wearable sensors in recent years, including mechanical sensors, electrophysiological sensors, temperature sensors and humidity sensors. The working mechanism, structure and performance of different sensors, the role of silk proteins in them, and their applications in health monitoring are discussed and summarized. Finally, the challenges and future prospects of silk-based wearable sensors in practical applications are put forward.
      通信作者: 郭文熹, wxguo@xmu.edu.cn
    • 基金项目: 国家级-国家自然科学基金(51502253)
      Corresponding author: Guo Wen-Xi, wxguo@xmu.edu.cn
    [1]

    Wu J, Li M, Chen W Q, Kim D H, Kim Y S, Huang Y G, Hwang K C, Kang Z, Rogers J A 2010 Acta Mech. Sin. 26 881Google Scholar

    [2]

    Yu C, Zhang Y, Cheng D, Li X, Huang Y, Rogers J A 2014 Small 10 1266Google Scholar

    [3]

    Kim D H, Kim Y S, Amsden J, Panilaitis B, Kaplan D L, Omenetto F G, Zakin M R, Rogers J A 2009 Appl. Phys. Lett. 95 133701Google Scholar

    [4]

    Christian M, Mahiar H, Roger K, Ronnie J, Rebeca M, My H, Olle I S 2011 Adv. Mater. 23 898Google Scholar

    [5]

    Hwang S W, Rogers J A 2012 Science 337 1640Google Scholar

    [6]

    Hsieh C Y, Hwang J C, Chang T H, Li J Y, Chen S H, Mao L K, Tsai L S, Chueh Y L, Lyu P C, Hsu S S H 2013 Appl. Phys. Lett. 103 023303Google Scholar

    [7]

    Irimia V M, Troshin P A, Reisinger M, Shmygleva L, Kanbur Y, Schwabegger G, Bodea M, Schwödiauer R, Mumyatov A, Fergus J W 2010 Adv. Funct. Mater. 20 4069Google Scholar

    [8]

    Yumusak C, Singh T B, Sariciftci N S, Grote J G 2009 Appl. Phys. Lett. 95 341

    [9]

    Hagen J A, Li W, Steckl A J, Grote J G 2006 Appl. Phys. Lett. 88 1772

    [10]

    Wang Z, Tammela P, Zhang P, Stromme M, Nyholm L 2014 J. Mater. Chem. A 2 16761Google Scholar

    [11]

    Bettinger C J, Zhenan B 2010 Adv. Mater. 22 651Google Scholar

    [12]

    Irimia V M, Sariciftci N S, Bauer S 2011 J. Mater. Chem. 21 1350Google Scholar

    [13]

    Bettinger C J, Bao Z 2010 Polym. Int. 59 563

    [14]

    Vepari C, Kaplan D L 2007 Prog. Polym. Sci. 32 991Google Scholar

    [15]

    Rui F P P, Silva M M, Bermudez V D Z 2016 Macromol. Mater. Eng. 300 1171

    [16]

    Kundu B, Rajkhowa R, Kundu S C, Wang X 2013 Adv. Drug Delivery Rev. 65 457Google Scholar

    [17]

    Cebe P, Hu X, Kaplan D L, Zhuravlev E, Wurm A, Arbeiter D, Schick C 2013 Sci. Rep. 3 1130Google Scholar

    [18]

    Altman G H, Diaz F, Jakuba C, Calabro T, Horan R L, Chen J, Lu H, Richmond J, Kaplan D L 2003 Biomaterials 24 401Google Scholar

    [19]

    Liu Y, Sun Q, Wang S, Long R, Fan J, Chen A, Wu W 2016 Sci. Adv. Mater. 8 1045Google Scholar

    [20]

    Li X, Qin J, Ma J 2015 Regen. Biomater. 2 97Google Scholar

    [21]

    Kim D H, Viventi J, Amsden J J, Xiao J, Vigeland L, Kim Y S, Blanco J A, Panilaitis B, Frechette E S, Contreras D, Kaplan D L, Omenetto F G, Huang Y, Hwang K C, Zakin M R, Litt B, Rogers J A 2010 Nat. Mater. 9 511Google Scholar

    [22]

    Hwang S W, Tao H, Kim D H, Cheng H, Song J K, Rill E, Brenckle M A, Panilaitis B, Sang M W, Kim Y S 2011 Science 337 1640

    [23]

    Hota M K, Bera M K, Kundu B, Kundu S C, Maiti C K 2012 Adv. Funct. Mater. 22 4493Google Scholar

    [24]

    Jung S, Kim J H, Kim J, Choi S, Lee J, Park I, Hyeon T, Kim D H 2014 Adv. Mater. 26 4825Google Scholar

    [25]

    Jeong J W, Yeo W H, Akhtar A, Norton J J S, Kwack Y J, Li S, Jung S Y, Su Y, Lee W, Xia J, Cheng H, Huang Y, Choi W S, Bretl T, Rogers J A 2013 Adv. Mater. 25 6839Google Scholar

    [26]

    He X, Zi Y, Yu H, Zhang S L, Wang J, Ding W, Zou H, Zhang W, Lu C, Wang Z L 2017 Nano Energy 39 328Google Scholar

    [27]

    Wang X, Liu Z, Zhang T 2017 Small 13 1602790Google Scholar

    [28]

    Cheng Y, Lu X, Chan K H, Wang R, Cao Z, Sun J, Ho G W 2017 Nano Energy 41 511Google Scholar

    [29]

    Dubal D P, Chodankar N R, Kim D H, Gomezromero P 2018 Chem. Soc. Rev. 47 2065Google Scholar

    [30]

    Mannoor M S, Tao H, Clayton J D, Sengupta A, Kaplan D L, Naik R R, Verma N, Omenetto F G, McAlpine M C 2012 Nat. Commun. 3 763Google Scholar

    [31]

    Liu Y, Qi N, Song T, Jia M, Xia Z, Yuan Z, Yuan W, Zhang K Q, Sun B 2014 ACS Appl. Mater. Interfaces 6 20670Google Scholar

    [32]

    Kim H J, Kim J H, Jun K W, Kim J H, Seung W C, Kwon O H, Park J Y, Kim S W, Oh I K 2016 Adv. Energy Mater. 6 1502329Google Scholar

    [33]

    Wang H, Du Y, Li Y, Zhu B, Wan R L, Li Y, Pan J, Tao W, Chen X 2015 Adv. Funct. Mater. 25 3825Google Scholar

    [34]

    Zhang M, Wang C, Wang Q, Jian M, Zhang Y 2016 ACS Appl. Mater. Interfaces 8 20894Google Scholar

    [35]

    Qi W, Jian M, Wang C, Zhang Y 2017 Adv. Funct. Mater. 27 1605657Google Scholar

    [36]

    Chen G, Matsuhisa N, Liu Z, Qi D, Cai P, Jiang Y, Wan C, Cui Y, Leow W R, Liu Z 2018 Adv. Mater. 30 1800129Google Scholar

    [37]

    Hou C, Xu Z, Qiu W, Wu R, Wang Y, Xu Q, Liu X Y, Guo W 2019 Small 15 1805084Google Scholar

    [38]

    Wu R H, Ma L Y, Patil A, Hou C, Zhu S H, Fan X W, Lin H Z, Yu W D, Guo W X, Liu X Y 2019 ACS Appl. Mater. Interfaces 11 33336Google Scholar

    [39]

    Huang J, Xu Z, Qiu W, Chen F, Meng Z, Hou C, Guo W, Liu X Y 2020 Adv. Funct. Mater. 30 1910547Google Scholar

    [40]

    Acharya C, Ghosh S K, Kundu S C 2009 Acta Biomater. 5 429Google Scholar

    [41]

    Zhou C Z, Confalonieri F, Jacquet M, Perasso R, Li Z G, Janin J 2010 Proteins 44 119

    [42]

    Willcox P J, Gido S P, Muller W, Kaplan D L 1996 Macromolecules 29 11

    [43]

    Vollrath F, Porter D 2009 Polymer 50 5623Google Scholar

    [44]

    Foo C W P, Bini E, Hensman J, Knight D P, Lewis R V, Kaplan D L 2006 Appl. Phys. A 82 223Google Scholar

    [45]

    Jin H J, Kaplan D L 2003 Nature 424 1057Google Scholar

    [46]

    Qiu W, Patil A, Hu F, Liu X Y 2019 Small 15 1903948Google Scholar

    [47]

    Zhang C, Zhang Y, Shao H, Hu X 2016 ACS Appl. Mater. Interfaces 8 3349Google Scholar

    [48]

    Liu Y, Tao L Q, Wang D Y, Zhang T Y, Yang Y, Ren T L 2017 Appl. Phys. Lett. 110 123508Google Scholar

    [49]

    Rockwood D N, Preda R C, Yücel T, Wang X, Lovett M L, Kaplan D L 2011 Nat. Protoc. 6 1612Google Scholar

    [50]

    Min T S, Xiao H, Hronik Tupaj M, Tien L W, Whalen M J, Omenetto F G, Kaplan D L 2014 Adv. Funct. Mater. 24 1938Google Scholar

    [51]

    Koh L D, Cheng Y, Teng C P, Khin Y W, Loh X J, Tee S Y, Low M, Ye E, Yu H D, Zhang Y W 2015 Prog. Polym. Sci. 46 86Google Scholar

    [52]

    Kim D H, Viventi J, Amsden J J, Xiao J, Vigeland L, Kim Y S, Blanco J A, Panilaitis B, Frechette E S, Contreras D 2016 Nat. Mater. 9 511

    [53]

    Muskovich M, Bettinger C J 2012 Adv. Healthc. Mater. 1 248Google Scholar

    [54]

    Pan C, Xie Q, Hu Z, Yang M, Zhu L 2015 Fibers Polym. 16 1781Google Scholar

    [55]

    Lv L, Han X, Zong L, Li M, You J, Wu X, Li C 2017 ACS Nano 11 8178Google Scholar

    [56]

    Huang X, Fan S, Altayp A I M, Zhang Y, Shao H, Hu X, Xie M, Xu Y 2014 J. Nanomater. 2014 7

    [57]

    Musameh M M, Dunn C J, Uddin M H, Sutherland T D, Rapson T D 2017 Biosens. Bioelectron. 103 26

    [58]

    Lan Y, Cheng H, Mao S, Haasch R, Liu Y, Xu X, Hwang S W, Jain H, Kang S K, Su Y 2014 Adv. Funct. Mater. 24 644Google Scholar

    [59]

    Hwang S W, Kim D H, Tao H, Kim T I, Kim S, Yu K J, Panilaitis B, Jeong J W, Song J K, Omenetto F G 2013 Adv. Funct. Mater. 23 4087Google Scholar

    [60]

    Hwang S W, Song J K, Xian H, Cheng H, Kang S K, Kim B H, Kim J H, Yu S, Huang Y, Rogers J A 2014 Adv. Mater. 26 3905Google Scholar

    [61]

    Guo Y, Zhang X S, Wang Y, Gong W, Zhang Q, Wang H, Brugger J 2018 Nano Energy 48 152Google Scholar

    [62]

    Yong J K, Abe Y, Yanagiura T, Park K C, Shimizu M, Iwazaki T, Nakagawa S, Endo M, Dresselhaus M S 2007 Carbon 45 2116Google Scholar

    [63]

    Sahu V, Grover S, Tulachan B, Sharma M, Srivastava G, Roy M, Saxena M, Sethy N, Bhargava K, Philip D 2015 Electrochim. Acta 160 244Google Scholar

    [64]

    Cho S Y, Yun Y S, Lee S, Jang D, Park K Y, Kim J K, Kim B H, Kang K, Kaplan D L, Jin H J 2015 Nat. Commun. 6 7145Google Scholar

    [65]

    Wang C, Li X, Gao E, Jian M, Xia K, Wang Q, Xu Z, Ren T, Zhang Y 2016 Adv. Mater. 28 6640Google Scholar

    [66]

    Farcau C, Sangeetha N M, Moreira H, Viallet B, Grisolia J, Ciuculescupradines D, Ressier L 2011 ACS Nano 5 7137Google Scholar

    [67]

    Yang N, Qi P, Ren J, Yu H, Liu S, Li J, Chen W, Kaplan D L, Ling S 2019 ACS Appl. Mater. Interfaces 11 23632Google Scholar

    [68]

    Gogurla N, Roy B, Park J Y, Kim S 2019 Nano Energy 62 674Google Scholar

    [69]

    Wu R, Ma L, Hou C, Meng Z, Guo W, Yu W, Yu R, Hu F, Liu X Y 2019 Small 15 1901558Google Scholar

    [70]

    Symeonidou E, Nordin A D, Hairston W D, Ferris D P 2018 Sensors 18 1073Google Scholar

    [71]

    Zeng S, Li R, Freire S G, Vmm G, Huang E Y, Smith A T, Hu C, Wrt T, Bian Z, Zheng G 2017 Adv. Mater. 29 1700828Google Scholar

    [72]

    Seo J W, Kim H, Kim K, Choi S Q, Lee H J 2018 Adv. Funct. Mater. 28 1800802Google Scholar

    [73]

    Jo M, Min K, Roy B, Kim S, Lee S, Park J Y, Kim S 2018 ACS Nano 12 5637Google Scholar

    [74]

    Wang C, Xia K, Zhang M, Jian M, Zhang Y 2017 ACS Appl. Mater. Interfaces 9 39484Google Scholar

    [75]

    Wang Q, Ling S, Liang X, Wang H, Lu H, Zhang Y 2019 Adv. Funct. Mater. 29 1808695Google Scholar

    [76]

    Erande M B, Pawar M S, Late D J 2016 ACS Appl. Mater. Interfaces 8 11548Google Scholar

    [77]

    Zhao J, Li N, Yu H, Wei Z, Liao M, Chen P, Wang S, Shi D, Sun Q, Zhang G 2017 Adv. Mater. 29 1702076Google Scholar

    [78]

    Borini S, White R, Wei D, Astley M, Haque S, Spigone E, Harris N, Kivioja J, Ryhanen T 2013 ACS Nano 7 11166Google Scholar

    [79]

    Katz A K, Glusker J P, Beebe S A, Bock C W 1996 J. Am. Chem. Soc. 118 5752Google Scholar

    [80]

    Ling S, Qin Z, Li C, Huang W, Kaplan D L, Buehler M J 2017 Nat. Commun. 8 1387Google Scholar

    [81]

    Luo Y, Pei Y C, Feng X M, Zhang H, Lu B H, Wang L 2020 Mater. Lett. 260 126945Google Scholar

    [82]

    Fan S, Zhang Y, Huang X, Geng L, Shao H, Hu X, Zhang Y 2019 Sci. China Ser. E: Technol. Sci. 62 903Google Scholar

  • 图 1  蚕丝基先进材料应用于柔性电子领域的时间发展线 生物可吸收电子[3](2009); 超共形电子[21](2010); 柔性OTFTs[22](2011); 瞬态电子[5](2012); 共形无线生物传感器[30](2012); 柔性太阳能电池[31](2014); 生物摩擦发电机[32](2015); 生物忆阻器[33](2015); 碳化丝织物(CSF)可穿戴应变传感器[34](2016); 蚕丝衍生的碳基电子皮肤[35](2017年); 皮肤可拉伸电极[36](2018); 基于生物可降解和可拉伸蛋白质的传感器[37](2019); 全纺织电子皮肤[38](2019); 可调温度的电子皮肤[39] (2020)

    Fig. 1.  The timeline of the development of silk-based advanced materials for soft electronics: Bioresorbable electronics[3] (2009); ultraconformal bioelectronics[21](2010); flexible OTFTs[22] (2011); transient electronics[22](2012); conformal wireless biosensors[22](2012); flexible solar cells[31] (2014); bio-triboelectric generator[31] (2015); bio-memristor[33] (2015); carbonized silk fabric (CSF) wearable strain sensors[34] (2016); silk-derived carbon based E-skins[35] (2017); on-skin stretchable electrodes[36] (2018); biodegradable and stretchable protein-based sensor[37] (2019); all-textile electronic skin[38] (2019); electronic skin for human thermoregulation[39] (2020).

    图 2  SF纤维和非纤维材料的层级网络结构示意图[46] Lv1: 氨基酸序列; Lv2: α-螺旋和β-折叠; Lv3: β-微晶; Lv4: β-晶体网络; Lv5: 纳米纤维网络

    Fig. 2.  Schema of the hierarchical network structures of SF fibers and none-fiber silk materials[46]. Lv1: the amino acid sequence; Lv2: α-helix & β-sheet; Lv3: β-crystallites; Lv4: crystal network; Lv5: nanofibrils network.

    图 3  蚕丝基材料的介观功能化 (a) SF和GO之间的键合[47]; (b) 热处理下β片和无规则卷曲之间可调控的结构变化[17]; (c) 一种蚕丝基忆阻器[33]; (d) 用于生物摩擦发电机的蚕丝纳米纤维膜[32]; (e) β-折叠衍生的碳结构的基本示意图[64]

    Fig. 3.  Mesoscopic functionalization of silk-based materials: (a) The chemical bonding between SF and GO[47]; (b) the revisable structure changes of β-sheets and random coils under high thermal treatment[17]; (c) a silk-based memristor[33]; (d) silk nanofiber membrane for bio-triboelectric generator[32]; (e) schematic of β-sheet-derived carbon basic structural units[64].

    图 4  蚕丝基应变传感器的设计 (a)一种皮芯结构的石墨/蚕丝柔性应变传感器[34]; (b)一种基于碳化蚕丝织物的可穿戴应变传感器[65]; (c)一种用于监测人体运动的RSF基水凝胶[67]; (d)一种RSF基的单电极TENG和应变传感器整合平台[68]

    Fig. 4.  Design of silk-based strain sensor: (a) A graphite/silk flexible strain sensor with sheath-core structure[34]; (b) a wearable strain sensor based on carbonized silk fabric[65]; (c) an RSF-based hydrogel for monitoring human movement[67]; (d) an RSF-based single electrode TENG and strain sensor integrated platform[68].

    图 5  蚕丝基压力传感器的设计 (a)一种RSF基的生物相容和可降解压力传感器[37]; (b)一种蚕丝包裹的纤维基压力传感器[69]; (c)一种基于蚕丝织物的无线压力传感器[38]

    Fig. 5.  Design of silk-based pressure sensor: (a) An RSF-based biocompatible and degradable pressure sensor[37]; (b) a silk fiber wrapped fibrous pressure sensors[69]; (c) an wireless pressure sensor based on silk fabric[38].

    图 6  RSF基电生理传感器的设计 (a)一种用于EMG监测的RSF塑化电极[36]; (b)一种Ca2+改性的RSF胶粘剂[72]; (c)一种用于ECG监测的可穿戴Ag NW/RSF电极[73]

    Fig. 6.  Design of RSF-based electrophysiological sensors: (a) An RSF plasticized electrode for EMG monitoring[36]; (b) a Ca2+ modified RSF adhesive[72]; (c) a wearable Ag NW/RSF electrode for ECG monitoring[73].

    图 7  蚕丝基温度和湿度传感器的设计 (a)一种蚕丝衍生的可穿戴温度和压力传感器[74]; (b)一种可监测温度和压力蚕丝基电子织物[69]; (c)一种基于RSF的可自愈的多功能电子纹身[75]; (d)一种可控温的RSF基耐热电子皮肤[39]

    Fig. 7.  Design of silk-based temperature and humidity sensor: (a) A silk-derived wearable temperature and pressure sensor[74]; (b) a silk-based electronic fabric for temperature and pressure sensing[69]; (c) a self-healable multifunctional electronic tattoos based on RSF[75]; (d) an RSF-based heat-resistant electronic skin for thermoregulation[39].

    表 1  蚕丝基可穿戴传感器的材料特性和功能总结

    Table 1.  Summary of properties and functions of silk-based wearable sensors.

    传感器类型传感材料基底材料信号应用文献
    应变蚕丝纤维和GrEcoflex电阻关节运动[34]
    应变碳化的丝织物Ecoflex电阻人体运动[65]
    应变PSBPSB电阻手指运动[67]
    应变Ag NWsRSF膜电流人体运动[68]
    压力CSFMPDMS电流脉搏运动[35]
    应变+压力Ag NFs和EcoflexRSF膜电容手臂运动[37]
    压力蚕丝纤维和Ag NWsEcoflex电容智能织物[69]
    压力rGO蚕丝织物电阻脉搏运动[48]
    压力Ag NWs蚕丝织物电容手臂运动[38]
    电生理AuRSF膜电阻肌电图[36]
    电生理Ag/AgClRSF水凝胶电压心电图[72]
    电生理Ag NWsRSF水凝胶电压心电图[73]
    温度+压力碳化的丝纤维PET电阻电子皮肤[74]
    温度离子液体和丝纤维Ecoflex电阻智能织物[69]
    温度+加热器Ag NFs + PtRSF膜电阻电子皮肤[39]
    湿度GrRSF膜电阻表皮电子[75]
    应变+湿度+温度IDE (Ag NWs)RSF膜电容呼吸监测[81]
    下载: 导出CSV
  • [1]

    Wu J, Li M, Chen W Q, Kim D H, Kim Y S, Huang Y G, Hwang K C, Kang Z, Rogers J A 2010 Acta Mech. Sin. 26 881Google Scholar

    [2]

    Yu C, Zhang Y, Cheng D, Li X, Huang Y, Rogers J A 2014 Small 10 1266Google Scholar

    [3]

    Kim D H, Kim Y S, Amsden J, Panilaitis B, Kaplan D L, Omenetto F G, Zakin M R, Rogers J A 2009 Appl. Phys. Lett. 95 133701Google Scholar

    [4]

    Christian M, Mahiar H, Roger K, Ronnie J, Rebeca M, My H, Olle I S 2011 Adv. Mater. 23 898Google Scholar

    [5]

    Hwang S W, Rogers J A 2012 Science 337 1640Google Scholar

    [6]

    Hsieh C Y, Hwang J C, Chang T H, Li J Y, Chen S H, Mao L K, Tsai L S, Chueh Y L, Lyu P C, Hsu S S H 2013 Appl. Phys. Lett. 103 023303Google Scholar

    [7]

    Irimia V M, Troshin P A, Reisinger M, Shmygleva L, Kanbur Y, Schwabegger G, Bodea M, Schwödiauer R, Mumyatov A, Fergus J W 2010 Adv. Funct. Mater. 20 4069Google Scholar

    [8]

    Yumusak C, Singh T B, Sariciftci N S, Grote J G 2009 Appl. Phys. Lett. 95 341

    [9]

    Hagen J A, Li W, Steckl A J, Grote J G 2006 Appl. Phys. Lett. 88 1772

    [10]

    Wang Z, Tammela P, Zhang P, Stromme M, Nyholm L 2014 J. Mater. Chem. A 2 16761Google Scholar

    [11]

    Bettinger C J, Zhenan B 2010 Adv. Mater. 22 651Google Scholar

    [12]

    Irimia V M, Sariciftci N S, Bauer S 2011 J. Mater. Chem. 21 1350Google Scholar

    [13]

    Bettinger C J, Bao Z 2010 Polym. Int. 59 563

    [14]

    Vepari C, Kaplan D L 2007 Prog. Polym. Sci. 32 991Google Scholar

    [15]

    Rui F P P, Silva M M, Bermudez V D Z 2016 Macromol. Mater. Eng. 300 1171

    [16]

    Kundu B, Rajkhowa R, Kundu S C, Wang X 2013 Adv. Drug Delivery Rev. 65 457Google Scholar

    [17]

    Cebe P, Hu X, Kaplan D L, Zhuravlev E, Wurm A, Arbeiter D, Schick C 2013 Sci. Rep. 3 1130Google Scholar

    [18]

    Altman G H, Diaz F, Jakuba C, Calabro T, Horan R L, Chen J, Lu H, Richmond J, Kaplan D L 2003 Biomaterials 24 401Google Scholar

    [19]

    Liu Y, Sun Q, Wang S, Long R, Fan J, Chen A, Wu W 2016 Sci. Adv. Mater. 8 1045Google Scholar

    [20]

    Li X, Qin J, Ma J 2015 Regen. Biomater. 2 97Google Scholar

    [21]

    Kim D H, Viventi J, Amsden J J, Xiao J, Vigeland L, Kim Y S, Blanco J A, Panilaitis B, Frechette E S, Contreras D, Kaplan D L, Omenetto F G, Huang Y, Hwang K C, Zakin M R, Litt B, Rogers J A 2010 Nat. Mater. 9 511Google Scholar

    [22]

    Hwang S W, Tao H, Kim D H, Cheng H, Song J K, Rill E, Brenckle M A, Panilaitis B, Sang M W, Kim Y S 2011 Science 337 1640

    [23]

    Hota M K, Bera M K, Kundu B, Kundu S C, Maiti C K 2012 Adv. Funct. Mater. 22 4493Google Scholar

    [24]

    Jung S, Kim J H, Kim J, Choi S, Lee J, Park I, Hyeon T, Kim D H 2014 Adv. Mater. 26 4825Google Scholar

    [25]

    Jeong J W, Yeo W H, Akhtar A, Norton J J S, Kwack Y J, Li S, Jung S Y, Su Y, Lee W, Xia J, Cheng H, Huang Y, Choi W S, Bretl T, Rogers J A 2013 Adv. Mater. 25 6839Google Scholar

    [26]

    He X, Zi Y, Yu H, Zhang S L, Wang J, Ding W, Zou H, Zhang W, Lu C, Wang Z L 2017 Nano Energy 39 328Google Scholar

    [27]

    Wang X, Liu Z, Zhang T 2017 Small 13 1602790Google Scholar

    [28]

    Cheng Y, Lu X, Chan K H, Wang R, Cao Z, Sun J, Ho G W 2017 Nano Energy 41 511Google Scholar

    [29]

    Dubal D P, Chodankar N R, Kim D H, Gomezromero P 2018 Chem. Soc. Rev. 47 2065Google Scholar

    [30]

    Mannoor M S, Tao H, Clayton J D, Sengupta A, Kaplan D L, Naik R R, Verma N, Omenetto F G, McAlpine M C 2012 Nat. Commun. 3 763Google Scholar

    [31]

    Liu Y, Qi N, Song T, Jia M, Xia Z, Yuan Z, Yuan W, Zhang K Q, Sun B 2014 ACS Appl. Mater. Interfaces 6 20670Google Scholar

    [32]

    Kim H J, Kim J H, Jun K W, Kim J H, Seung W C, Kwon O H, Park J Y, Kim S W, Oh I K 2016 Adv. Energy Mater. 6 1502329Google Scholar

    [33]

    Wang H, Du Y, Li Y, Zhu B, Wan R L, Li Y, Pan J, Tao W, Chen X 2015 Adv. Funct. Mater. 25 3825Google Scholar

    [34]

    Zhang M, Wang C, Wang Q, Jian M, Zhang Y 2016 ACS Appl. Mater. Interfaces 8 20894Google Scholar

    [35]

    Qi W, Jian M, Wang C, Zhang Y 2017 Adv. Funct. Mater. 27 1605657Google Scholar

    [36]

    Chen G, Matsuhisa N, Liu Z, Qi D, Cai P, Jiang Y, Wan C, Cui Y, Leow W R, Liu Z 2018 Adv. Mater. 30 1800129Google Scholar

    [37]

    Hou C, Xu Z, Qiu W, Wu R, Wang Y, Xu Q, Liu X Y, Guo W 2019 Small 15 1805084Google Scholar

    [38]

    Wu R H, Ma L Y, Patil A, Hou C, Zhu S H, Fan X W, Lin H Z, Yu W D, Guo W X, Liu X Y 2019 ACS Appl. Mater. Interfaces 11 33336Google Scholar

    [39]

    Huang J, Xu Z, Qiu W, Chen F, Meng Z, Hou C, Guo W, Liu X Y 2020 Adv. Funct. Mater. 30 1910547Google Scholar

    [40]

    Acharya C, Ghosh S K, Kundu S C 2009 Acta Biomater. 5 429Google Scholar

    [41]

    Zhou C Z, Confalonieri F, Jacquet M, Perasso R, Li Z G, Janin J 2010 Proteins 44 119

    [42]

    Willcox P J, Gido S P, Muller W, Kaplan D L 1996 Macromolecules 29 11

    [43]

    Vollrath F, Porter D 2009 Polymer 50 5623Google Scholar

    [44]

    Foo C W P, Bini E, Hensman J, Knight D P, Lewis R V, Kaplan D L 2006 Appl. Phys. A 82 223Google Scholar

    [45]

    Jin H J, Kaplan D L 2003 Nature 424 1057Google Scholar

    [46]

    Qiu W, Patil A, Hu F, Liu X Y 2019 Small 15 1903948Google Scholar

    [47]

    Zhang C, Zhang Y, Shao H, Hu X 2016 ACS Appl. Mater. Interfaces 8 3349Google Scholar

    [48]

    Liu Y, Tao L Q, Wang D Y, Zhang T Y, Yang Y, Ren T L 2017 Appl. Phys. Lett. 110 123508Google Scholar

    [49]

    Rockwood D N, Preda R C, Yücel T, Wang X, Lovett M L, Kaplan D L 2011 Nat. Protoc. 6 1612Google Scholar

    [50]

    Min T S, Xiao H, Hronik Tupaj M, Tien L W, Whalen M J, Omenetto F G, Kaplan D L 2014 Adv. Funct. Mater. 24 1938Google Scholar

    [51]

    Koh L D, Cheng Y, Teng C P, Khin Y W, Loh X J, Tee S Y, Low M, Ye E, Yu H D, Zhang Y W 2015 Prog. Polym. Sci. 46 86Google Scholar

    [52]

    Kim D H, Viventi J, Amsden J J, Xiao J, Vigeland L, Kim Y S, Blanco J A, Panilaitis B, Frechette E S, Contreras D 2016 Nat. Mater. 9 511

    [53]

    Muskovich M, Bettinger C J 2012 Adv. Healthc. Mater. 1 248Google Scholar

    [54]

    Pan C, Xie Q, Hu Z, Yang M, Zhu L 2015 Fibers Polym. 16 1781Google Scholar

    [55]

    Lv L, Han X, Zong L, Li M, You J, Wu X, Li C 2017 ACS Nano 11 8178Google Scholar

    [56]

    Huang X, Fan S, Altayp A I M, Zhang Y, Shao H, Hu X, Xie M, Xu Y 2014 J. Nanomater. 2014 7

    [57]

    Musameh M M, Dunn C J, Uddin M H, Sutherland T D, Rapson T D 2017 Biosens. Bioelectron. 103 26

    [58]

    Lan Y, Cheng H, Mao S, Haasch R, Liu Y, Xu X, Hwang S W, Jain H, Kang S K, Su Y 2014 Adv. Funct. Mater. 24 644Google Scholar

    [59]

    Hwang S W, Kim D H, Tao H, Kim T I, Kim S, Yu K J, Panilaitis B, Jeong J W, Song J K, Omenetto F G 2013 Adv. Funct. Mater. 23 4087Google Scholar

    [60]

    Hwang S W, Song J K, Xian H, Cheng H, Kang S K, Kim B H, Kim J H, Yu S, Huang Y, Rogers J A 2014 Adv. Mater. 26 3905Google Scholar

    [61]

    Guo Y, Zhang X S, Wang Y, Gong W, Zhang Q, Wang H, Brugger J 2018 Nano Energy 48 152Google Scholar

    [62]

    Yong J K, Abe Y, Yanagiura T, Park K C, Shimizu M, Iwazaki T, Nakagawa S, Endo M, Dresselhaus M S 2007 Carbon 45 2116Google Scholar

    [63]

    Sahu V, Grover S, Tulachan B, Sharma M, Srivastava G, Roy M, Saxena M, Sethy N, Bhargava K, Philip D 2015 Electrochim. Acta 160 244Google Scholar

    [64]

    Cho S Y, Yun Y S, Lee S, Jang D, Park K Y, Kim J K, Kim B H, Kang K, Kaplan D L, Jin H J 2015 Nat. Commun. 6 7145Google Scholar

    [65]

    Wang C, Li X, Gao E, Jian M, Xia K, Wang Q, Xu Z, Ren T, Zhang Y 2016 Adv. Mater. 28 6640Google Scholar

    [66]

    Farcau C, Sangeetha N M, Moreira H, Viallet B, Grisolia J, Ciuculescupradines D, Ressier L 2011 ACS Nano 5 7137Google Scholar

    [67]

    Yang N, Qi P, Ren J, Yu H, Liu S, Li J, Chen W, Kaplan D L, Ling S 2019 ACS Appl. Mater. Interfaces 11 23632Google Scholar

    [68]

    Gogurla N, Roy B, Park J Y, Kim S 2019 Nano Energy 62 674Google Scholar

    [69]

    Wu R, Ma L, Hou C, Meng Z, Guo W, Yu W, Yu R, Hu F, Liu X Y 2019 Small 15 1901558Google Scholar

    [70]

    Symeonidou E, Nordin A D, Hairston W D, Ferris D P 2018 Sensors 18 1073Google Scholar

    [71]

    Zeng S, Li R, Freire S G, Vmm G, Huang E Y, Smith A T, Hu C, Wrt T, Bian Z, Zheng G 2017 Adv. Mater. 29 1700828Google Scholar

    [72]

    Seo J W, Kim H, Kim K, Choi S Q, Lee H J 2018 Adv. Funct. Mater. 28 1800802Google Scholar

    [73]

    Jo M, Min K, Roy B, Kim S, Lee S, Park J Y, Kim S 2018 ACS Nano 12 5637Google Scholar

    [74]

    Wang C, Xia K, Zhang M, Jian M, Zhang Y 2017 ACS Appl. Mater. Interfaces 9 39484Google Scholar

    [75]

    Wang Q, Ling S, Liang X, Wang H, Lu H, Zhang Y 2019 Adv. Funct. Mater. 29 1808695Google Scholar

    [76]

    Erande M B, Pawar M S, Late D J 2016 ACS Appl. Mater. Interfaces 8 11548Google Scholar

    [77]

    Zhao J, Li N, Yu H, Wei Z, Liao M, Chen P, Wang S, Shi D, Sun Q, Zhang G 2017 Adv. Mater. 29 1702076Google Scholar

    [78]

    Borini S, White R, Wei D, Astley M, Haque S, Spigone E, Harris N, Kivioja J, Ryhanen T 2013 ACS Nano 7 11166Google Scholar

    [79]

    Katz A K, Glusker J P, Beebe S A, Bock C W 1996 J. Am. Chem. Soc. 118 5752Google Scholar

    [80]

    Ling S, Qin Z, Li C, Huang W, Kaplan D L, Buehler M J 2017 Nat. Commun. 8 1387Google Scholar

    [81]

    Luo Y, Pei Y C, Feng X M, Zhang H, Lu B H, Wang L 2020 Mater. Lett. 260 126945Google Scholar

    [82]

    Fan S, Zhang Y, Huang X, Geng L, Shao H, Hu X, Zhang Y 2019 Sci. China Ser. E: Technol. Sci. 62 903Google Scholar

  • [1] 高裕昆, 赵洁, 周晶晶, 周静. 压电纤维复合材料智能传感器的有限元预测与器件性能研究. 物理学报, 2025, 74(5): . doi: 10.7498/aps.74.20241379
    [2] 胡剑, 张森, 娄钦. 电场和加热器特性对饱和池沸腾传热影响的介观数值方法研究. 物理学报, 2023, 72(17): 176401. doi: 10.7498/aps.72.20230341
    [3] 王闯, 鲍容容, 潘曹峰. 基于纳米发电机的触觉传感在柔性可穿戴电子设备中的研究与应用. 物理学报, 2021, 70(10): 100705. doi: 10.7498/aps.70.20202157
    [4] 史晨阳, 闵光宗, 刘向阳. 蛋白质基忆阻器研究进展. 物理学报, 2020, 69(17): 178702. doi: 10.7498/aps.69.20200617
    [5] 丁亚飞, 陈翔宇. 基于摩擦纳米发电机的可穿戴能源器件. 物理学报, 2020, 69(17): 170202. doi: 10.7498/aps.69.20200867
    [6] 廖意, 蔡昆, 张元, 王晓冰. 高浓度纤维增强材料介电特性计算方法. 物理学报, 2016, 65(2): 024102. doi: 10.7498/aps.65.024102
    [7] 林乃波, 林友辉, 黄巧玲, 刘向阳. 超分子凝胶与介观结构. 物理学报, 2016, 65(17): 174702. doi: 10.7498/aps.65.174702
    [8] 郭坤琨, 谢仪. 肌动蛋白纤维的组装动力学. 物理学报, 2016, 65(17): 178702. doi: 10.7498/aps.65.178702
    [9] 范洪义, 何锐. 介观RLC电路的密度矩阵的量子耗散. 物理学报, 2014, 63(11): 110301. doi: 10.7498/aps.63.110301
    [10] 耿读艳, 谢红娟, 万晓伟, 徐桂芝. 基于DNA损伤的蛋白调控网络研究. 物理学报, 2014, 63(1): 018702. doi: 10.7498/aps.63.018702
    [11] 史良马, 刘连忠, 王向贤, 朱仁义. 介观薄圆环中的间隙性超导. 物理学报, 2012, 61(15): 157401. doi: 10.7498/aps.61.157401
    [12] 何锐. 基于超导量子干涉仪与介观LC共振器耦合电路的量子通信. 物理学报, 2012, 61(3): 030303. doi: 10.7498/aps.61.030303
    [13] 周小方. 介观LC电路零状态响应的完全解. 物理学报, 2007, 56(10): 6019-6022. doi: 10.7498/aps.56.6019
    [14] 安兴涛, 李玉现, 刘建军. 介观物理系统中的噪声. 物理学报, 2007, 56(7): 4105-4112. doi: 10.7498/aps.56.4105
    [15] 邱深玉, 蔡绍洪. 耗散介观电容耦合电路的量子效应. 物理学报, 2006, 55(2): 816-819. doi: 10.7498/aps.55.816
    [16] 阮 文, 雷敏生, 嵇英华, 谢安东. 热克尔态下介观LC电路的量子涨落. 物理学报, 2005, 54(5): 2291-2295. doi: 10.7498/aps.54.2291
    [17] 龙超云. 介观并联RLC电路的量子涨落. 物理学报, 2003, 52(8): 2033-2036. doi: 10.7498/aps.52.2033
    [18] 王继锁, 韩保存, 孙长勇. 介观电容耦合电路的量子涨落. 物理学报, 1998, 47(7): 1187-1192. doi: 10.7498/aps.47.1187
    [19] 陈斌, 李有泉, 沙健, 张其瑞. 介观电路中电荷的量子效应. 物理学报, 1997, 46(1): 129-133. doi: 10.7498/aps.46.129
    [20] 高守恩, 陈斌, 焦正宽. 低温下介观电路的量子涨落. 物理学报, 1995, 44(9): 1480-1483. doi: 10.7498/aps.44.1480
计量
  • 文章访问数:  13421
  • PDF下载量:  525
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-31
  • 修回日期:  2020-06-30
  • 上网日期:  2020-09-05
  • 刊出日期:  2020-09-05

/

返回文章
返回