搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肌动蛋白纤维的组装动力学

郭坤琨 谢仪

引用本文:
Citation:

肌动蛋白纤维的组装动力学

郭坤琨, 谢仪

Dynamics of actin monomers assembled into long filaments

Guo Kun-Kun, Yi Xie
PDF
导出引用
  • 以细胞骨架中肌动蛋白纤维为例,针对肌动蛋白亚基结合核苷酸状态简化为单态和双态两种模型,介绍了肌动蛋白纤维的组装动力学,并着重阐述了肌动蛋白纤维稳态时出现的踏车现象和长度扩散行为.
    We investigate the dynamics of actin monomers that are assembled into long filaments via the particle-based Brownian dynamics simulations. In order to study the dynamics of long filaments containing up to several hundred protomers, a coarse-grained model for actin polymerization involving several simplifications is used. In order to overcome the large separation of time scales between the diffusive motion of the free monomers and the relatively slow polymerized and depolymerized processes at the two ends of the filaments, all polymerized and depolymerized rates are rescaled by a dimensionless parameter. Actin protomers within a filament generally possess three nucleotide states corresponding to a bound adenosine triphosphate (ATP), adenosine diphosphate with inorganic phosphate (ADP. Pi), and ADP molecules in the presence of ATP hydrolysis. Here in this paper, single nucleotide state and two nucleotide states of actin protomers are described by the simplified theoretical model, giving the dependence of the growth rate on actin concentration. The simplest case where all protomers are identical, is provided by the assembly of ADP-actins. In the simulations, the growth rate is found to increase linearly with free monomer concentration, which agrees quantitatively with in vitro experimental result. These surprised phenomena observed in the experiments, such as treadmilling processes and length diffusion of actin filaments at the steady state, are presented in detail by Brownian dynamics simulations. For free actin concentrations close to the critical concentration, cT ccr, T, the filaments undergo treadmilling, that is, they grow at the barbed end and shrink at the pointed end, leading to the directed translational motion of the filament. In the absence of ATP hydrolysis, the functional dependence of a length diffusion constant on ADP-actin monomer concentration implies that a length diffusion constant is found to increase linearly with ADP-actin monomer concentration. With the coupling of ATP hydrolysis, a peak of the filament length diffusion as a function of ATP-actin monomer concentration is observed i. e. , the length diffusion coefficient is peaked near to 35 mon2/s below the critical concentration and recovers to the expected estimate of 1 mon2/s above the critical concentration. These obtained results are well consistent with the experimental results and stochastic theoretical analysis. Furthermore, several other quantities and relations that are difficult to study experimentally but provide nontrivial crosschecks on the consistency of our simulations, are investigated in the particle-based simulations. The particle-based simulations developed in our studies would easily extend to study a variety of more complex systems, such as the assembly process of other dynamic cytoskeletons
      通信作者: 郭坤琨, kunkunguo@hnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:21274038)资助的课题.
      Corresponding author: Guo Kun-Kun, kunkunguo@hnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21274038).
    [1]

    Bray D 2001 Cell Movements (Garland: Garland Science) pp138-145

    [2]

    Alberts B 2014 Molecular Biology of the Cell (Garland: Garland Science) pp216-217

    [3]

    Lodish H 2012 Molecular Cell Biology (Freeman: W. H. Freeman Company) pp89-93

    [4]

    Phillips R 2012 Physical Biology of the Cell (Garland: Garland Publishing) pp320-324

    [5]

    Oudenaarden A V, Theriot J A 1999 Nat. Cell Biol. 1 493

    [6]

    Jasper V D G, Ewa P, Julie P, Ccile S 2005 PNAS 102 7847

    [7]

    Vavylonis D, Yang Q B, Shaughnessy B O 2005 PNAS 102 8543

    [8]

    Ohm T, Wegner A 1987 Biochim. Biophys. Acta 120 8

    [9]

    Pantaloni D, Carlier M F, Korn E D 1985 J. Biol. Chem 260 6572

    [10]

    Fujiwara I, Takahashi S, Ishiwata 2002 Nat. Cell Biol. 4 666

    [11]

    Mogilner A, Oster G 1996 Biophys. J 84 1591

    [12]

    Bindschadler M, Osborn E A, McGrath J L 2004 Biophys. J 86 2720

    [13]

    Fass J, Pak C, Bamburg J, Mogilner A 2008 J. Theor. Biol 252 173

    [14]

    Sept D, Mccammon J A 2001 Biophys. J. 81 667

    [15]

    Guo K K, Shillcock C J, Lipowsky R 2009 J. Chem. Phys. 131 120

    [16]

    Guo K K, Shillcock C J, Lipowsky R 2010 J. Chem. Phys. 133 155105

    [17]

    Guo K K, Qiu D 2011 J. Chem. Phys. 135 105101

    [18]

    Guo K K, Han W C 2011 Acta Chim. Sin. 69 145 (in Chinese) [郭坤琨, 韩文驰 2011 化学学报 69 145]

    [19]

    Pollard T D 1986 J. Cell Biol. 103 2747

    [20]

    Pollard T D 1984 J. Cell Biol. 99 769

    [21]

    Didry D, Carlier M F, Pantaloni D 1998 J. Biol. Chem. 273 25602

    [22]

    Van Kampen N G 1992 Stochastic Processes in Physics and Chemistry (New York: Elsevier) pp351-356

    [23]

    Wang J, Gen Y, Liu F 2015 Acta Phys. Sin. 64 58707

  • [1]

    Bray D 2001 Cell Movements (Garland: Garland Science) pp138-145

    [2]

    Alberts B 2014 Molecular Biology of the Cell (Garland: Garland Science) pp216-217

    [3]

    Lodish H 2012 Molecular Cell Biology (Freeman: W. H. Freeman Company) pp89-93

    [4]

    Phillips R 2012 Physical Biology of the Cell (Garland: Garland Publishing) pp320-324

    [5]

    Oudenaarden A V, Theriot J A 1999 Nat. Cell Biol. 1 493

    [6]

    Jasper V D G, Ewa P, Julie P, Ccile S 2005 PNAS 102 7847

    [7]

    Vavylonis D, Yang Q B, Shaughnessy B O 2005 PNAS 102 8543

    [8]

    Ohm T, Wegner A 1987 Biochim. Biophys. Acta 120 8

    [9]

    Pantaloni D, Carlier M F, Korn E D 1985 J. Biol. Chem 260 6572

    [10]

    Fujiwara I, Takahashi S, Ishiwata 2002 Nat. Cell Biol. 4 666

    [11]

    Mogilner A, Oster G 1996 Biophys. J 84 1591

    [12]

    Bindschadler M, Osborn E A, McGrath J L 2004 Biophys. J 86 2720

    [13]

    Fass J, Pak C, Bamburg J, Mogilner A 2008 J. Theor. Biol 252 173

    [14]

    Sept D, Mccammon J A 2001 Biophys. J. 81 667

    [15]

    Guo K K, Shillcock C J, Lipowsky R 2009 J. Chem. Phys. 131 120

    [16]

    Guo K K, Shillcock C J, Lipowsky R 2010 J. Chem. Phys. 133 155105

    [17]

    Guo K K, Qiu D 2011 J. Chem. Phys. 135 105101

    [18]

    Guo K K, Han W C 2011 Acta Chim. Sin. 69 145 (in Chinese) [郭坤琨, 韩文驰 2011 化学学报 69 145]

    [19]

    Pollard T D 1986 J. Cell Biol. 103 2747

    [20]

    Pollard T D 1984 J. Cell Biol. 99 769

    [21]

    Didry D, Carlier M F, Pantaloni D 1998 J. Biol. Chem. 273 25602

    [22]

    Van Kampen N G 1992 Stochastic Processes in Physics and Chemistry (New York: Elsevier) pp351-356

    [23]

    Wang J, Gen Y, Liu F 2015 Acta Phys. Sin. 64 58707

  • [1] 冯妍卉, 冯黛丽, 褚福强, 邱琳, 孙方远, 林林, 张欣欣. 纳米组装相变储热材料的热设计前沿. 物理学报, 2022, 71(1): 016501. doi: 10.7498/aps.71.20211776
    [2] 夏懿, 库晓珂, 沈苏华. 布朗运动和湍流扩散作用下槽流中纤维悬浮流动特性的研究. 物理学报, 2016, 65(19): 194702. doi: 10.7498/aps.65.194702
    [3] 林乃波, 林友辉, 黄巧玲, 刘向阳. 超分子凝胶与介观结构. 物理学报, 2016, 65(17): 174702. doi: 10.7498/aps.65.174702
    [4] 张然, 肖鑫泽, 吕超, 骆杨, 徐颖. 金纳米棒的飞秒激光组装研究. 物理学报, 2014, 63(1): 014206. doi: 10.7498/aps.63.014206
    [5] 张然, 吕超, 肖鑫泽, 骆杨, 何艳, 徐颖. 金电极的激光组装制备研究. 物理学报, 2014, 63(7): 074205. doi: 10.7498/aps.63.074205
    [6] 李龙, 王鸣, 倪海彬, 沈添怿. 采用溶胶凝胶协同自组装与光刻相结合的方法在反蛋白石结构薄膜中引入二维缺陷. 物理学报, 2014, 63(5): 054206. doi: 10.7498/aps.63.054206
    [7] 李晨璞, 韩英荣, 展永, 胡金江, 张礼刚, 曲蛟. 肌球蛋白Ⅵ分子马达周期势场下的弹性扩散模型. 物理学报, 2013, 62(23): 230501. doi: 10.7498/aps.62.230501
    [8] 马莹, 王苍龙, 王文元, 杨阳, 马云云, 蒙红娟, 段文山. 费米-费米散射长度对费米超流气体在幺正极限区域的隧穿现象影响. 物理学报, 2012, 61(18): 180303. doi: 10.7498/aps.61.180303
    [9] 倪海彬, 王鸣, 陈威. 采用溶胶凝胶协同自组装方法制备SiO2反蛋白石结构薄膜及其光学性质研究. 物理学报, 2012, 61(8): 084211. doi: 10.7498/aps.61.084211
    [10] 殷菲, 胡伟达, 全知觉, 张波, 胡晓宁, 李志锋, 陈效双, 陆卫. 激光束诱导电流法提取HgCdTe光伏探测器的电子扩散长度. 物理学报, 2009, 58(11): 7884-7890. doi: 10.7498/aps.58.7884
    [11] 王晓冬, 董 鹏, 陈胜利, 仪桂云. 亚微米聚苯乙烯微球在气-液界面组装的机理研究. 物理学报, 2007, 56(5): 3017-3021. doi: 10.7498/aps.56.3017
    [12] 王晓冬, 董 鹏, 陈胜利, 仪桂云. 亚微米聚苯乙烯微球在气-液界面组装的机理研究. 物理学报, 2007, 56(3): 1831-1836. doi: 10.7498/aps.56.1831
    [13] 胡海龙, 张 琨, 王振兴, 孔 涛, 胡 颖, 王晓平. 硫醇自组装分子膜末端基团对其电荷输运特性的影响. 物理学报, 2007, 56(3): 1674-1679. doi: 10.7498/aps.56.1674
    [14] 胡海龙, 张 琨, 王振兴, 王晓平. 自组装硫醇分子膜电输运特性的导电原子力显微镜研究. 物理学报, 2006, 55(3): 1430-1434. doi: 10.7498/aps.55.1430
    [15] 王 浩, 曾谷城, 廖常俊, 蔡继业, 郑树文, 范广涵, 陈 勇, 刘颂豪. GaxIn1-xP缓冲层组分对InP自组装形貌影响的研究. 物理学报, 2005, 54(4): 1726-1730. doi: 10.7498/aps.54.1726
    [16] 王 音, 李 鹏, 宁西京. C36团簇自组装的分子动力学研究. 物理学报, 2005, 54(6): 2847-2852. doi: 10.7498/aps.54.2847
    [17] 夏阿根, 杨 波, 金进生, 张亦文, 汤 凡, 叶高翔. 液体基底表面金薄膜中的有序结构和自组装现象. 物理学报, 2005, 54(1): 302-306. doi: 10.7498/aps.54.302
    [18] 申承民, 苏轶坤, 杨海涛, 杨天中, 汪裕萍, 高鸿钧. 磁性钴纳米晶的二维自组装. 物理学报, 2003, 52(2): 483-486. doi: 10.7498/aps.52.483
    [19] 詹杰民, 李毓湘. 温盐双扩散均衡场中的振荡现象. 物理学报, 2002, 51(4): 828-834. doi: 10.7498/aps.51.828
    [20] 唐璞山, 贺明霞, 陈佐禹, 王楚. 用面垒探测器测定n型硅中少数载流子的扩散长度. 物理学报, 1963, 19(7): 448-455. doi: 10.7498/aps.19.448
计量
  • 文章访问数:  7869
  • PDF下载量:  250
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-21
  • 修回日期:  2016-05-16
  • 刊出日期:  2016-09-05

/

返回文章
返回