搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光场调控的活性粒子体系的动态自组装

郭思航 杨光宇 孟国庆 王英英 潘俊星 张进军

引用本文:
Citation:

光场调控的活性粒子体系的动态自组装

郭思航, 杨光宇, 孟国庆, 王英英, 潘俊星, 张进军

Dynamic Self-Assembly of Active Particle Systems Controlled by Light Fields

Guo Si-Hang, Yang Guang-Yu, Meng Guo-Qing, Wang Ying-Ying, Pan Jun-Xing, Zhang JinJun
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 活性粒子体系是一类由自驱动布朗粒子组成的非平衡系统,体系粒子之间通过相互作用可以表现出众多奇特的集体行为.本文基于布朗动力学模拟,研究了光场调控的活性粒子体系有序结构的形成和转变机制.研究发现,活性粒子在光场调控下发生了大尺度的相分离行为,形成了特定的有序结构,并实现了多种有序结构的动态转变.本文系统探讨了光场对这一动态相转变的影响和调控机制.研究结果为活性体系群体结构的精确调控以及微纳米智能器件的制造提供了重要参考.
    Active particle systems are nonequilibrium systems composed of selfpropelled Brownian particles, where interactions between particles can give rise to various collective behaviors. This study, based on Brownian dynamics simulations, explores the effects of light intensity, rotational diffusion coefficient, and the width and spacing of illuminated regions on the aggregation structures of the system. First, this study examines the influence of light intensity on aggregation structures under different rotational diffusion coefficients, finding that as the rotational diffusion coefficient increases, the system gradually stabilizes. This stabilization is attributed to the reduced collision effects among particles at higher diffusion coefficients. Under suitable rotational diffusion coefficients, gradually increasing the ratio of longitudinal to transverse light-induced self-propulsion forces leads to a transition in the system's aggregation structure from a transverse stripe structure configuration to a tic-tac-toe structure, ultimately resulting in a longitudinal stripe structure. This indicates that the system's aggregation structure can be effectively controlled by varying the relative light intensities of the longitudinal and transverse illumination. From a dynamical perspective, unstable structures consistently exhibit a super-diffusive behavior throughout the simulations, while stable structures transition from initial super-diffusion to normal diffusion, indicating that under steady state conditions, particles aggregate in the shaded regions, exhibiting Brownian motion. To further investigate the influence of light fields on collective particle behavior, this study systematically varied the width of the illuminated regions and the spacing between adjacent illuminated regions, finding that the overall trends were consistent with previous conclusions. It was also observed that wider illuminated regions with narrower spacing facilitate the formation of tictac-toe structures, while narrower illuminated regions with wider spacing tend to lead to the emergence of a novel structure—checkerboard structures. This study investigates the phase separation behavior of particles in complex optical field environments, providing valuable insights for controlling aggregation states in active particle systems.
  • [1]

    Ramaswamy S 2017 J. Stat. Phys 5054002

    [2]

    Ramaswamy S 2010 Annu Rev Conden Ma P 1323

    [3]

    Tailleur J, Cates M E 2008 Phys Rev Lett 100218103

    [4]

    Martinez R, Alarcon F, Rodriguez D R, Aragones J L, Valeriani C 2018 Eur Phys J E 4191

    [5]

    Vladescu I D, Marsden E J, Schwarz-Linek J, Martinez V A, Arlt J, Morozov A N, Marenduzzo D, Cates M E, Poon W C 2014 Phys Rev Lett. 113268101

    [6]

    Schweitzer F, Tilch B, Ebeling W 2000 Eur Phys J B 14157

    [7]

    Erdmann U, Ebeling W, Schimansky-Geier L, Schweitzer F 2000 Eur Phys J B 15105

    [8]

    Schweitzer F, Ebeling W, Tilch B 1998 Phys. Rev. Lett 805044

    [9]

    Yang X, Manning M L, Marchetti M C 2014 Soft matter 106477

    [10]

    Stenhammar J,Tiribocchi A, Allen R J, Marenduzzo D, Cates M E 2013 Phys Rev Lett 111145702

    [11]

    Stenhammar J; Wittkowski R, Marenduzzo D, Cates M E 2015 Phys Rev Lett 114018301

    [12]

    Dolai P, Simha A, Mishra S 2017 Soft matter 146137

    [13]

    Gao Y W, Wang Y, Tian W D, Chen K 2022 Acta Physica Sinica 71240501

    [14]

    Vutukuri H R, Lisicki M, Lauga E, Vermant J 2020 Nat. Commun 112628

    [15]

    Hernández R J, Sevilla F J, Mazzulla A, Pagliusi P, Pellizzi N, Cipparrone G 2020 Soft Matter 167704

    [16]

    Zhang J, Guo J, Mou F, Guan J 2018 Micromachines 988

    [17]

    Bäuerle T, Fischer A, Speck T, Bechinger C 2018 Nat. Commun. 93232

    [18]

    Wang G, Phan T V, Li S, Wombacher M, Qu J, Peng Y, Chen G, Goldman D I, Levin S A, Austin R H, Liu L Y 2021 Phys Rev Lett 126108002

    [19]

    Liu Y P, Wang G, Wang P L, Yuan D M, Hou S X, Jin Y K, Wang J, Liu L Y 2023 Chin. Phys. B 3268701

    [20]

    Humphrey W, Dalke A, Schulten K 1996 Journal of Molecular Graphics 1433

    [21]

    Ning H P, Zhang Y, Zhu H, Ingham A, Huang G S, Mei Y F, Solovev A A 2018 Micromachines 975

    [22]

    Chen H,Zhao Q,Du X 2018 Micromachines 941

    [23]

    Xu L L,Mou F Z,Gong H T,Luo M,Guan J G 2017 Chem. Soc.Rev 466905

    [24]

    Wang W,Duan W T,Ahmed S,Sen A,Mallouk T E 2015 Acc. Chem. Res 481938

    [25]

    Chen C R, Mou F Z, Xu L L, Wang S F, Guan J G, Feng Z P, Wang Q W, Kong L, Li W, Wang J, Zhang Q J 2017 Adv. Mater 293

    [26]

    Tang S S,Zhang F Y,Zhao J,Talaat W,Soto F,Karshalev E,Chen C R,Hu Z H,Lu X L,Li J X,Lin Z H,Dong H F,Zhang X J,Nourhani A,Wang J 2019 Adv. Funct. 2923

    [27]

    Sun Y, Liu Y, Zhang D, Zhang H, Jiang J, Duan R, Xiao J, Xing J, Zhang D, Dong B 2019 ACS Appl Mater Interfaces 1140533

    [28]

    Singh D P, Choudhury U, Fischer P, Mark A G 2017 Adv Mater. 2932

    [29]

    Lin Z, Si T, Wu Z, Gao C, Lin X, He Q 2017 Angew Chem Int Ed Engl 5613517

    [30]

    Wang Y, Shen Z L, Xia Y Q, Feng G Q, Tian W D 2020 Chinese Physics B 29053103

    [31]

    Pan J X,Wei H,Qi M J,Wang H F,Zhang J J,Tian W D,Chen K 2020 Soft matter 165545

    [32]

    Ye S M, Liu P, Wei Z X, Ye F F, Yang M C, Chen K 2020 Chinese Physics B 294655

    [33]

    Zhou X L, Wang Y Z,Xu B J,Liu Y P,Lu D,Luo J,Yang Z Y 2023 AIP Advances 13065332

    [34]

    Chen J M, Zhou X L, Zhang L X 2018 Chinese Physics B 27118701

    [35]

    Quillen A C,Smucker J P,Peshkov A 2020 Physical review. E 101052618

    [36]

    Liu P,Ye S M,Ye F F,Chen K,Yang M C 2020 Phys. Rev. Lett 124158001

    [37]

    Das S, Ghosh S, Chelakkot R 2020 Phys Rev E. 102032619

    [38]

    Das S, Chelakkot R 2020 Soft Matter. 167250

    [39]

    Miloš K,Knežević M,Stark H 2020 New J. Phys 22113025

    [40]

    Chen X G, Lin L H, Li Z C, Sun H J 2022 Adv. Funct. Mater. 322104649

    [41]

    Volpe G, Buttinoni I, Vogt D, Kuemmerer H J, Bechinger C 2011 Soft Matter. 78810

    [42]

    Jahanshahi S, Lozano C, Liebchen B, Löwen H, Bechinger C 2020 Commun Phys 3127

    [43]

    Palacci J, Sacanna S, Steinberg A P, Pine D J, Chaikin P M 2013 Science 339936

    [44]

    Fernandez-Rodriguez M A, Grillo F, Alvarez L, Rathlef M, Buttinoni L, Volpe G, Isa L 2020 Nat Commun 114223

    [45]

    Xia Y Q,Shen Z L,Tian W D,Chen K 2019 J. Chem. Phys. 150154903

    [46]

    Wang C,Li H S,Ma Y Q,Tian W D,Chen K 2018 J. Chem. Phys. 149164902

    [47]

    Shan W J,Zhang F,Tian W D,Chen K 2019 Soft matter 154761

    [48]

    Shi Z X, Jing Y, Jing Y Y, Tian W D, Zhang T H, Chen K 2024 Acta Phys. Sin. 7332(in Chinese)[石子璇,金燕,金奕扬,田文得,张天辉,陈康2024物理学报7332]

    [49]

    Wang J, Jiao Y, Tian W D, Chen K 2023 Acta Phys. Sin. 727(in Chinese)[王晶,焦阳,田文得,陈康2023物理学报727]

    [50]

    Tiwari C,Singh P S 2024 Soft matter 204816

    [51]

    Shen Y F,Hu H X,Luo M B 2024 Soft matter 20621

    [52]

    E. Cates M, Tailleur J 2015 Annu. Rev. Condens. Matter Phys. 6219

    [53]

    Gomez-Solano J R, Samin S, Lozano C, Ruedas-Batuecas P, van Roij R, Bechinger C 2017 Sci Rep. 714891

    [54]

    Caprini L, Marini Bettolo Marconi U, Wittmann R, Löwen H 2022 soft matter 81412

    [55]

    Takatori S C,Yan W, Brady J F 2014 Phys Rev Lett. 113028103

    [56]

    Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G, Volpe G 2016 Rev. Mod. Phys. 88, 045006

    [57]

    Palacci J, Sacanna S, Steinberg A P, Pine D J, Chaikin P M 2013 Science. 339936

  • [1] 周雄峰, 陈彬, 刘坤. 氩气等离子体射流特性: 电压、气流、外磁场的综合影响. 物理学报, doi: 10.7498/aps.73.20241166
    [2] 陆万利. 锥角调制的圆艾里涡旋光束构建光学针. 物理学报, doi: 10.7498/aps.73.20240878
    [3] 李晨璞, 吴魏霞, 张礼刚, 胡金江, 谢革英, 郑志刚. 具有不同扩散系数的活性手征粒子分离. 物理学报, doi: 10.7498/aps.73.20240686
    [4] 刘坤, 项红甫, 周雄峰, 夏昊天, 李华. 固定功率下大气压交流氩气等离子体射流的光谱特性. 物理学报, doi: 10.7498/aps.72.20230307
    [5] 赵立芬, 哈静, 王非凡, 李庆, 何寿杰. 氧气空心阴极放电模拟. 物理学报, doi: 10.7498/aps.71.20211150
    [6] 王晓雷, 赵洁惠, 李淼, 姜光科, 胡晓雪, 张楠, 翟宏琛, 刘伟伟. 基于人工表面等离激元探针实现太赫兹波的紧聚焦和场增强. 物理学报, doi: 10.7498/aps.69.20191531
    [7] 廖晶晶, 蔺福军. 混合手征活性粒子在时间延迟反馈下的扩散和分离. 物理学报, doi: 10.7498/aps.69.20200505
    [8] 陈卫军, 宋德, 李野, 王新, 秦旭磊, 刘春阳. 竞争型非线性介质中艾里-高斯光束交互作用的调控. 物理学报, doi: 10.7498/aps.68.20190042
    [9] 郭宇琦, 潘俊星, 张进军, 孙敏娜, 王宝凤, 武海顺. 在光敏性三元聚合物混合物中构造 多尺度有序图案. 物理学报, doi: 10.7498/aps.65.056401
    [10] 何建平, 吕文中, 汪小红. Ba0.5Sr0.5TiO3有序构型的第一性原理研究. 物理学报, doi: 10.7498/aps.60.097102
    [11] 孙转兰, 张晓青, 曹功勋, 王学文, 夏钟福. 有序结构氟聚合物压电驻极体的制备和压电性研究. 物理学报, doi: 10.7498/aps.59.5061
    [12] 曹功勋, 张晓青, 孙转兰, 王学文, 娄可行, 夏钟福. 人工调控微结构压电驻极体的热稳定性和电荷动态特性. 物理学报, doi: 10.7498/aps.59.6514
    [13] 宋庆功, 姜恩永, 裴海林, 康建海, 郭 英. 插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究. 物理学报, doi: 10.7498/aps.56.4817
    [14] 张永炬, 余森江, 葛洪良, 邬良能, 崔玉建. 硅油基底表面铁薄膜的生长机理及表面有序结构. 物理学报, doi: 10.7498/aps.55.5444
    [15] 张永炬, 余森江. 准自由支撑铝薄膜中有序表面结构的自组织生长. 物理学报, doi: 10.7498/aps.54.4867
    [16] 夏阿根, 杨 波, 金进生, 张亦文, 汤 凡, 叶高翔. 液体基底表面金薄膜中的有序结构和自组装现象. 物理学报, doi: 10.7498/aps.54.302
    [17] 胡隐樵. 强迫耗散系统的有序结构和系统的发展(Ⅱ),广义能量极小值原理和系统的发展. 物理学报, doi: 10.7498/aps.52.1354
    [18] 胡隐樵. 强迫耗散系统的有序结构和系统的发展(Ⅰ),最小熵产生原理和有序结构. 物理学报, doi: 10.7498/aps.52.1379
    [19] 宋庆功, 丛选忠, 张庆军, 莫文玲, 戴占海. 六角蜂窝晶格的有序结构. 物理学报, doi: 10.7498/aps.49.2011
    [20] 宋庆功, 戴占海, 丛选忠, 魏 环, 张庆军. 六方密堆二元合金的有序结构. 物理学报, doi: 10.7498/aps.49.2201
计量
  • 文章访问数:  57
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-03-06

/

返回文章
返回