搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合手征活性粒子在时间延迟反馈下的扩散和分离

廖晶晶 蔺福军

引用本文:
Citation:

混合手征活性粒子在时间延迟反馈下的扩散和分离

廖晶晶, 蔺福军

Diffusion and separation of binary mixtures of chiral active particles driven by time-delayed feedback

Liao Jing-Jing, Lin Fu-Jun
PDF
HTML
导出引用
  • 在二维空间内, 考虑周期性边界条件, 提出了一种用时间延迟反馈分离混合手征活性粒子的新方法. 当系统引入时间延迟反馈时, 手征活性粒子动力学特征发生明显改变. 通过调节外加时间延迟反馈的强度和反馈时间可以控制逆时针旋转(counterclockwise, CCW)粒子扩散受到顺时针旋转(clockwise, CW)粒子扩散的影响程度. 当时间延迟反馈强度和反馈时间较大且系统参数取最优值时, CCW粒子加快旋转角速度, 扩散完全由粒子相互作用决定, 而CW粒子的扩散由自身参数和粒子相互作用共同决定, 在此情况下, CCW粒子容易聚集形成团簇, 而CW粒子加快扩散, 混合手征活性粒子实现分离.
    Considering the periodic boundary conditions, a new prescription for separating binary mixtures of chiral active particles by time-delayed feedback in a two-dimensional square box is proposed. We investigate the angular velocity, the feedback intensity, the delayed time, the rotational diffusion coefficient, the self-propelled speed and the packing fraction as functions of the effective diffusion coefficient and the separation coefficient numerically by the extensive Brownian dynamics simulations. It is found that mixed chiral active particles be separated without time-delayed feedback, but the dynamics of chiral active particles are different obviously and mixed chiral particles can be separated when the time-delayed feedback is introduced. The particle configuration (mixing or demixing) is determined by the dominant factor of particles’ diffusion. We can control the extent to which the diffusion of counterclockwise (CCW) active particles is affected by the diffusion of clockwise (CW) active particles adjusting the strength and the delayed time of the feedback. The response to the feedback for different chiral particles show different behaviors under different system parameters. When the feedback intensity is strong and the delayed time is long enough, the angular velocity of counterclockwise particles is accelerated and the diffusion of which is dominated by the interactions between particles completely. However, the angular speed of clockwise particles change little and the diffusion of which is determined by its parameters and particle interactions jointly. In this case, the counterclockwise particles aggregate to form clusters easily, and the clockwise particles diffuse quickly, therefore, the mixed chirality active particles are separated. When the feedback intensity is weak and the delayed time is short, the chirality difference between different chiral particles modulated by the feedback is smaller than the former case. The diffusions of counterclockwise particles and clockwise particles are both determined by their parameters and particle interactions, and the particles are mixed. Our findings provide novel strategies for the experimental pursuit of separating mixed chiral active particles and could be applied practically in many biological circle swimmers, such as autochemotactic particles, the bacteria in an external light field and sperm cells with vortex motion.
      通信作者: 蔺福军, fujun012@yeah.net
    • 基金项目: 国家自然科学基金(批准号: 11905086, 11804131)、江西省自然科学基金(批准号: 20192BAB212006)和江西省教育厅科技项目(批准号: GJJ191598, GJJ191599)资助的课题
      Corresponding author: Lin Fu-Jun, fujun012@yeah.net
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11905086, 11804131), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20192BAB212006), and the Foundation of Jiangxi Provincial Educationa Department, China (Grant Nos. GJJ191598, GJJ191599)
    [1]

    Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G 2016 Rev. Mod. Phys. 88 045006Google Scholar

    [2]

    Chen C, Liu S, Shi X, Chate H, Wu Y 2017 Nature 542 210Google Scholar

    [3]

    Reichhardt C J O, Reichhardt C 2017 Annu. Rev. Condens. Matter Phys. 8 51Google Scholar

    [4]

    Reichhardt C J O, Reichhardt C 2017 Nat. Phys. 13 10Google Scholar

    [5]

    夏益祺, 谌庄琳, 郭永坤 2019 物理学报 68 161101Google Scholar

    Xia Y Q, Zhan Z L, Guo Y K 2019 Acta Phys. Sin. 68 161101Google Scholar

    [6]

    张红, 宗奕吾, 杨明成, 赵坤 2019 物理学报 68 134702Google Scholar

    Zhang H, Zong Y W, Yang M C, Zhao K 2019 Acta Phys. Sin. 68 134702Google Scholar

    [7]

    Vale R D, Milligan R A 2000 Science 288 88Google Scholar

    [8]

    Leptos K C, Guasto J S, Gollub J P, Pesci A I, Goldstein R E 2009 Phys. Rev. Lett. 103 198103Google Scholar

    [9]

    Howse J, Jones R, Ryan A, Gough T, Vafabakhsh R, Golestanian R 2007 Phys. Rev. Lett. 99 048102Google Scholar

    [10]

    van Teeffelen S, Löwen H 2008 Phys. Rev. E 78 020101(RGoogle Scholar

    [11]

    Tjhung E, Cates M E, Marenduzzo D 2017 Proc. Natl. Acad. Sci. 114 4631Google Scholar

    [12]

    Friedrich B M, Jülicher F 2007 Proc. Natl. Acad. Sci. 104 13256Google Scholar

    [13]

    Leonardo R D, Dell'Arciprete D, Angelani L, Iebba V 2011 Phys. Rev. Lett. 106 038101Google Scholar

    [14]

    Shenoy V B, Tambe D T, Prasad A, Theriot J A 2007 Proc. Natl. Acad. Sci. 104 8229Google Scholar

    [15]

    Von Lospichl B, Klapp S H L 2018 Phys. Rev. E 98 042605Google Scholar

    [16]

    Lopez B J, Kuwada N J, Craig E M, Long B R, Linke H 2008 Phys. Rev. Lett. 101 220601Google Scholar

    [17]

    Gernert R, Klapp S H L 2015 Phys. Rev. E 92 022132Google Scholar

    [18]

    Popli P, Ganguly S, Sengupta S 2018 Soft Matter 14 104Google Scholar

    [19]

    Yang Y, Bevan M A 2018 ACS Nano 12 10712Google Scholar

    [20]

    Blickle V, Bechinger C 2011 Nat. Phys. 8 143Google Scholar

    [21]

    Hanes R D L, Jenkins M C, Egelhaaf S U 2009 Rev. Sci. Instrum. 80 083703Google Scholar

    [22]

    Evers F, Hanes R D L, Zunke C, Capellmann R F, Bewerunge J, Dalle-Ferrier C, Jenkins M C, Ladadwa I, Heuer A, Castaneda-Priego R, Egelhaaf S U 2013 Eur. Phys. J. Spec. Top. 222 2995Google Scholar

    [23]

    Bewerunge J, Egelhaaf S U 2016 Phys. Rev. A 93 013806Google Scholar

    [24]

    Bäuerle T, Fischer A, Speck T, Bechinger C 2018 Nat. Commun. 9 3232Google Scholar

    [25]

    Jones P, Marag O, Volpe G 2015 Optical Tweezers: Principles and Applications (Cambridge: Cambridge University Press)

    [26]

    Nishizawa K, Bremerich M, Ayade H, Schmidt C F, Ariga T, Mizuno D 2017 Sci. Adv. 3 e1700318Google Scholar

    [27]

    Leyman M, Ogemark F, Wehr J, Volpe G 2018 Phys. Rev. E 98 052606Google Scholar

    [28]

    Lavergne F A, Wendehenne H, Bäuerle T, Bechinger C 2019 Science 364 70Google Scholar

    [29]

    Adler J 1966 Science 153 708Google Scholar

    [30]

    Couzin I D, Franks N R 2003 Proc. R. Soc. London, Ser. B 270 139Google Scholar

    [31]

    Jin C, Hokmabad B V, Baldwin K A, Maass C C 2018 J. Phys. Condens. Matter 30 054003Google Scholar

    [32]

    Volpe G, Gigan S, Volpe G 2014 Am. J. Phys. 82 659Google Scholar

    [33]

    Kumari S, Nunes A S, Araújo N A M, Margarida M Telo da Gama 2017 J. Chem. Phys. 147 174702Google Scholar

    [34]

    Maggi C, Lepore A, Solari J, Rizzo A, Di Leonardo R 2013 Soft Matter 9 10885Google Scholar

    [35]

    Berdakin I, Jeyaram Y, Moshchalkov V V, Venken L, Dierckx S, Vanderleyden S J, Sil-hanek A V, Condat C A, Marconi V I 2013 Phys. Rev. E 87 052702Google Scholar

    [36]

    Yang W, Misko V R, Nelissen K, Kong M, Peeters F M 2012 Soft Matter 8 5175Google Scholar

    [37]

    Weber S N, Weber C A, Frey E 2016 Phys. Rev. Lett. 116 058301Google Scholar

    [38]

    Costanzo A, Elgeti J, Auth T, Gompper G, Ripoll M 2014 EPL 107 36003Google Scholar

    [39]

    Stenhammar J, Wittkowski R, Marenduzzo D, et al. 2015 Phys. Rev. Lett. 114 018301Google Scholar

    [40]

    Ma Z, Lei Q, Ni R 2017 Soft Matter 13 8940Google Scholar

    [41]

    McCandlish S R, Baskaran A, Hagan M F 2012 Soft Matter 8 2527Google Scholar

    [42]

    Smrek J, Kremer K 2017 Phys. Rev. Lett. 118 098002Google Scholar

    [43]

    Harder J, Cacciuto A 2018 Phys. Rev. E 97 022603Google Scholar

    [44]

    Nourhani A, Crespi V H, Lammert P E 2015 Phys. Rev. Lett. 115 118101Google Scholar

    [45]

    Mijalkov M, Volpe G 2013 Soft Matter 9 6376Google Scholar

    [46]

    Scholz C, Engel M, Pöschel T 2018 Nat. Commun. 9 1Google Scholar

    [47]

    Chen Q, Ai B 2015 J. Chem. Phys. 143 104113Google Scholar

    [48]

    Ai B, Shao Z, Zhong W 2018 Soft Matter 14 4388Google Scholar

    [49]

    Wysocki A, Winkler R G, Gompper G 2016 New J. Phys. 18 123030Google Scholar

    [50]

    Dolai P, Simha A, Mishra S 2018 Soft Matter 14 6137Google Scholar

    [51]

    Ai B 2016 Sci. Rep. 6 1Google Scholar

    [52]

    Nguyen N H P, Klotsa D, Engel M, Glotzer S C 2014 Phys. Rev. Lett. 112 075701Google Scholar

    [53]

    Agrawal A, Babu S B 2018 Phys. Rev. E 97 020401(RGoogle Scholar

    [54]

    Ai B, He Y, Zhong W 2015 Soft Matter 11 3852Google Scholar

    [55]

    Reichhardt C, Reichhardt C J O 2013 Phys. Rev. E 88 042306Google Scholar

    [56]

    DiLuzio W R, Turner L, Mayer M, Garstecki P, Weibel D B, Berg H C, Whitesides G M 2005 Nature 435 1271Google Scholar

    [57]

    Shin J, Cherstvy A G, Metzler R 2014 New J. Phys. 16 053047Google Scholar

    [58]

    Di Leonardo R, Dell’Arciprete D 2011 Physical Review Letters 106 038101

    [59]

    Cẽbers A 2011 J. Magn. Magn. Mater. 323 279Google Scholar

    [60]

    Hennig D 2009 Phys. Rev. E 79 041114Google Scholar

    [61]

    Yang X, Manning M L, Marchetti M C 2014 Soft Matter 10 6477Google Scholar

    [62]

    Cates M E, Tailleur J 2015 Annu. Rev. Condens. Matter Phys. 6 219Google Scholar

  • 图 1  时间延迟反馈示意图. 当$ \tau = 0 $时, $ {{\varOmega}}(t) = K_{\rm {fb}} $; 当$ \tau\rightarrow\infty $$\theta({t}\!-\!\tau ) > \theta(t)$时, $ {{\varOmega}}(t) = 0 $; 当$ \tau\rightarrow\infty $$\theta({t}\!-\!\tau ) < \theta(t)$时, $ {{\varOmega}}(t) = 2 K_{\rm {fb}} $

    Fig. 1.  Schematic diagram of time-delayed feedback. When $ \tau = 0 $, $ {{\varOmega}}(t) = K_{\rm {fb}} $; when $ \tau\rightarrow\infty $ and $ \theta({t}-\tau ) > \theta(t) $, $ {{\varOmega}}(t) = 0 $; when $ \tau\rightarrow\infty $ and $ \theta({t}-\tau ) < \theta(t) $, ${{\varOmega}}(t) = 2 K_{\rm {fb}}$.

    图 2  CCW粒子(红色)和CW粒子(蓝色)的混合物分布 (a)$K_{\rm {fb}} = 0, ~\omega = 0$; (b)$K_{\rm {fb}} = 10.0, ~ \tau = 10.0, ~\omega = 0$; (c)$K_{\rm {fb}} \!=\! 10.0, \tau \!=\! 10.0, \omega \!=\! 2.2$; (d)$K_{\rm {fb}} = 10.0,~ \tau = 10.0, ~\omega = 4.2$. 其他参数设置为$ v_0 = 2.5 $, $D_{\theta} = 0.001$, $ \phi = 0.5 $

    Fig. 2.  The snapshots of mixture of CCW particles (red) and CW particles (blue): (a)$ K_{\rm {fb}} = 0, \omega = 0 $; (b)$K_{\rm {fb}} = 10.0, \tau = 10.0, \omega = 0$; (c)$ K_{\rm {fb}} = 10.0, \tau = 10.0, \omega = 2.2 $; (d)$ K_{\rm {fb}} = 10.0, \tau = 10.0, \omega = 4.2 $. The other parameters are $ v_0 = 2.5 $, $ D_{\theta} = 0.001 $, and $ \phi = 0.5 $.

    图 3  (a) CW粒子和CCW粒子的最大团簇粒子数占各自总粒子数的比例P随角速度$ \omega $的变化. 图中a, b, c, d四点的构型图分别对应图2(a), 图2(b), 图2(c), 图2(d); (b)在不同$ \omega $下, $ t = 2\times10^4 $时, 相对径向分布函数$ g_{\rm {AB}}(r) $. 图中标注的圆圈为第一个零根, 代表单种粒子的团簇尺寸. 其他参数设置为$ v_0 = 2.5 $, $ D_{\theta} = 0.001 $, $ \phi = 0.5 $, $ K_{\rm {fb}} = 10.0 $, $ \tau = 10.0 $

    Fig. 3.  (a) The ratio of the particle number in maximum cluster of CW particles and CCW particles to the total number of particles respectively as a function of $ \omega $. The points a, b, c, d are corresponding to Fig. 2(a),Fig. 2(b),Fig. 2(c),Fig. 2(d), respectively; (b) relative radial distribution function $ g_{\rm {AB}}(r) $ for different value of $ \omega $ at $ t = 2\times10^4 $. The first non-trivial root (marked by circles) denotes the cluster size of the single particle species. The other parameters are $ v_0 = 2.5 $, $ D_{\theta} = 0.001 $, $ \phi = 0.5 $, $ K_{\rm {fb}} = 10.0 $, and $ \tau = 10.0 $.

    图 4  (a)在不同$ K_{\rm {fb}} $$ \tau $值下, CCW粒子和CW粒子的有效扩散系数D随角频率$ \omega $的变化; (b)在不同$ K_{\rm {fb}} $$ \tau $下, 分离系数S随角频率$ \omega $的变化. 其他参数设置为$ v_0 = 2.5 $, $ D_{\theta} = 0.001 $, $ \phi = 0.5 $

    Fig. 4.  (a) The effective diffusion coefficient D of CCW and CW particles as a function of $ \omega $ for different $ K_{\rm {fb}} $ and $ \tau $; (b) the separation coefficient S as a function of $ \omega $ for different $ K_{\rm {fb}} $ and $ \tau $. The other parameters are $ v_0 = 2.5 $, $ D_{\theta} = 0.001 $, and $ \phi = 0.5 $.

    图 10  (a)在不同填充率$ \phi $下, 分离系数S随时间t的变化; (b)在不同时间t下, $ \phi = 0.5 $时, 相对径向分布函数$ g_{\rm {AB}}(r) $. 图中标注的圆圈为第一个零根, 代表单种粒子的团簇尺寸. 其他参数设置为$ v_0 = 2.5 $, $ D_{\theta} = 0.001 $, $ \omega = 2.1 $, $ K_{\rm {fb}} = 10.0 $, $ \tau = 10.0 $

    Fig. 10.  (a) The separation S as a function of t for different $ \phi $; (b) the relative radial distribution function $ g_{\rm {AB}}(r) $ for different t at $ \phi = 0.5 $. The first non-trivial root (marked by circles) denotes the cluster size of the single particle species. The other parameters are $ v_0 = 2.5 $, $ D_{\theta} = 0.001 $, $ \omega = 2.1 $, $ K_{\rm {fb}} = 10.0 $, and $ \tau = 10.0 $.

    图 5  在 (a) $ \tau = 0.01 $, (b) $ \tau = 1.0 $, (c) $ \tau = 10.0 $时, CCW粒子和CW粒子的有效扩散系数D随反馈强度$ K_{\rm {fb}} $的变化; (d)在不同$ \tau $下, 分离系数S随反馈强度$ K_{\rm {fb}} $的变化. 其他参数设置为$ \omega = 2.1 $, $ v_0 = 2.5 $, $ D_{\theta} = 0.001 $, $ \phi = 0.5 $

    Fig. 5.  The effective diffusion coefficient D of CCW and CW particles as a function of $ K_{\rm {fb}} $ at (a) $ \tau = 0.01 $, (b) $ \tau = 1.0 $, and (c) $ \tau = 10.0 $; (d) the separation coefficient S as a function of $ K_{\rm {fb}} $ for different $ \tau $. The other parameters are $ \omega = 2.1 $, $ v_0 = 2.5 $, $ D_{\theta} = 0.001 $, and $ \phi = 0.5 $.

    图 6  在(a)$ K_{\rm {fb}} = 1.0 $, (b)$ K_{\rm {fb}} = 2.5 $, (c)$ K_{\rm {fb}} = 10.0 $时, CCW粒子和CW粒子的有效扩散系数D随反馈时间$ \tau $的变化; (d) 在不同$ K_{\rm {fb}} $下, 分离系数S随反馈时间$ \tau $的变化. 其他参数设置为$ \omega = 2.1 $, $ v_0 = 2.5 $, $ D_{\theta} = 0.001 $, $ \phi = 0.5 $

    Fig. 6.  The effective diffusion coefficient D of CCW and CW particles as a function of $ \tau $ at (a) $ K_{\rm {fb}} = 1.0 $, (b) $ K_{\rm {fb}} = 2.5 $, and (c) $ K_{\rm {fb}} = 10.0 $; (d) the separation coefficient S as a function of $ \tau $ for different $ K_{\rm {fb}} $. The other parameters are $ \omega = 2.1 $, $ v_0 = 2.5 $, $ D_{\theta} = 0.001 $, and $ \phi = 0.5 $.

    图 7  在(a)$ K_{\rm {fb}} = 0.0 $, (b)$ K_{\rm {fb}} = 2.5, \tau = 1.0 $, (c)$ K_{\rm {fb}} = 10.0, \tau = 10.0 $时, CCW粒子和CW粒子的有效扩散系数D随转动扩散系数$ D_{\theta} $的变化; (d) 在不同$ K_{\rm {fb}} $$ \tau $下, 分离系数S随转动扩散系数$ D_{\theta} $的变化. 其他参数设置为$ \omega = 2.1 $, $ v_0 = 2.5 $, $ \phi = 0.5 $

    Fig. 7.  The effective diffusion coefficient D of CCW and CW particles as a function of $ D_{\theta} $ at (a) $ K_{\rm {fb}} = 0.0 $, (b)$K_{\rm {fb}} = 2.5, \tau = 1.0$, and (c)$ K_{\rm {fb}} = 10.0, \tau = 10.0 $; (d) the separation coefficient S as a function of $ D_{\theta} $ for different $ K_{\rm {fb}} $ and $ \tau $. The other parameters are $ \omega = 2.1 $, $ v_0 = 2.5 $, and $ \phi = 0.5 $.

    图 8  (a)在$ K_{\rm {fb}} = 10.0 $, $ \tau = 10.0 $时, 不同自驱动速度$ v_0 $下, 均方位移MSD$ = \left\langle{{{\left| {\Delta {{{r}}_i}(t)} \right|}^2}}\right\rangle $随时间t的变化; (b)在不同$ K_{\rm {fb}} $$ \tau $下, 分离系数S随自驱动速度$ v_0 $的变化. 其他参数设置为$ \omega = 2.1 $, $ D_{\theta} = 0.001 $, $ \phi = 0.5 $

    Fig. 8.  (a) The mean square displacement MSD $ = \left\langle{{{\left| {\Delta {{{r}}_i}(t)} \right|}^2}}\right\rangle $ as a function of t for different $ v_0 $ at $ K_{\rm {fb}} = 10.0 $ and $ \tau = 10.0 $; (b) the separation coefficient S as a function of $ v_0 $ for different $ K_{\rm {fb}} $ and $ \tau $. The other parameters are $ \omega = 2.1 $, $ D_{\theta} = 0.001 $, and $ \phi = 0.5 $.

    图 9  (a) CCW粒子和CW粒子的有效扩散系数D随填充率$ \phi $的变化; (b) 分离系数S随填充率$ \phi $的变化. 其他参数设置为$ v_0 = 2.5 $, $ D_{\theta} = 0.001 $, $ \omega = 2.1 $, $ K_{\rm {fb}} = 10.0 $, $ \tau = 10.0 $

    Fig. 9.  (a) The effective diffusion coefficient D of CCW and CW particles as a function of $ \phi $; (b) the separation coefficient S as a function of $ \phi $. The other parameters are $ v_0 = 2.5 $, $ D_{\theta} = 0.001 $, $ \omega = 2.1 $, $ K_{\rm {fb}} = 10.0 $, and $ \tau = 10.0 $.

  • [1]

    Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G 2016 Rev. Mod. Phys. 88 045006Google Scholar

    [2]

    Chen C, Liu S, Shi X, Chate H, Wu Y 2017 Nature 542 210Google Scholar

    [3]

    Reichhardt C J O, Reichhardt C 2017 Annu. Rev. Condens. Matter Phys. 8 51Google Scholar

    [4]

    Reichhardt C J O, Reichhardt C 2017 Nat. Phys. 13 10Google Scholar

    [5]

    夏益祺, 谌庄琳, 郭永坤 2019 物理学报 68 161101Google Scholar

    Xia Y Q, Zhan Z L, Guo Y K 2019 Acta Phys. Sin. 68 161101Google Scholar

    [6]

    张红, 宗奕吾, 杨明成, 赵坤 2019 物理学报 68 134702Google Scholar

    Zhang H, Zong Y W, Yang M C, Zhao K 2019 Acta Phys. Sin. 68 134702Google Scholar

    [7]

    Vale R D, Milligan R A 2000 Science 288 88Google Scholar

    [8]

    Leptos K C, Guasto J S, Gollub J P, Pesci A I, Goldstein R E 2009 Phys. Rev. Lett. 103 198103Google Scholar

    [9]

    Howse J, Jones R, Ryan A, Gough T, Vafabakhsh R, Golestanian R 2007 Phys. Rev. Lett. 99 048102Google Scholar

    [10]

    van Teeffelen S, Löwen H 2008 Phys. Rev. E 78 020101(RGoogle Scholar

    [11]

    Tjhung E, Cates M E, Marenduzzo D 2017 Proc. Natl. Acad. Sci. 114 4631Google Scholar

    [12]

    Friedrich B M, Jülicher F 2007 Proc. Natl. Acad. Sci. 104 13256Google Scholar

    [13]

    Leonardo R D, Dell'Arciprete D, Angelani L, Iebba V 2011 Phys. Rev. Lett. 106 038101Google Scholar

    [14]

    Shenoy V B, Tambe D T, Prasad A, Theriot J A 2007 Proc. Natl. Acad. Sci. 104 8229Google Scholar

    [15]

    Von Lospichl B, Klapp S H L 2018 Phys. Rev. E 98 042605Google Scholar

    [16]

    Lopez B J, Kuwada N J, Craig E M, Long B R, Linke H 2008 Phys. Rev. Lett. 101 220601Google Scholar

    [17]

    Gernert R, Klapp S H L 2015 Phys. Rev. E 92 022132Google Scholar

    [18]

    Popli P, Ganguly S, Sengupta S 2018 Soft Matter 14 104Google Scholar

    [19]

    Yang Y, Bevan M A 2018 ACS Nano 12 10712Google Scholar

    [20]

    Blickle V, Bechinger C 2011 Nat. Phys. 8 143Google Scholar

    [21]

    Hanes R D L, Jenkins M C, Egelhaaf S U 2009 Rev. Sci. Instrum. 80 083703Google Scholar

    [22]

    Evers F, Hanes R D L, Zunke C, Capellmann R F, Bewerunge J, Dalle-Ferrier C, Jenkins M C, Ladadwa I, Heuer A, Castaneda-Priego R, Egelhaaf S U 2013 Eur. Phys. J. Spec. Top. 222 2995Google Scholar

    [23]

    Bewerunge J, Egelhaaf S U 2016 Phys. Rev. A 93 013806Google Scholar

    [24]

    Bäuerle T, Fischer A, Speck T, Bechinger C 2018 Nat. Commun. 9 3232Google Scholar

    [25]

    Jones P, Marag O, Volpe G 2015 Optical Tweezers: Principles and Applications (Cambridge: Cambridge University Press)

    [26]

    Nishizawa K, Bremerich M, Ayade H, Schmidt C F, Ariga T, Mizuno D 2017 Sci. Adv. 3 e1700318Google Scholar

    [27]

    Leyman M, Ogemark F, Wehr J, Volpe G 2018 Phys. Rev. E 98 052606Google Scholar

    [28]

    Lavergne F A, Wendehenne H, Bäuerle T, Bechinger C 2019 Science 364 70Google Scholar

    [29]

    Adler J 1966 Science 153 708Google Scholar

    [30]

    Couzin I D, Franks N R 2003 Proc. R. Soc. London, Ser. B 270 139Google Scholar

    [31]

    Jin C, Hokmabad B V, Baldwin K A, Maass C C 2018 J. Phys. Condens. Matter 30 054003Google Scholar

    [32]

    Volpe G, Gigan S, Volpe G 2014 Am. J. Phys. 82 659Google Scholar

    [33]

    Kumari S, Nunes A S, Araújo N A M, Margarida M Telo da Gama 2017 J. Chem. Phys. 147 174702Google Scholar

    [34]

    Maggi C, Lepore A, Solari J, Rizzo A, Di Leonardo R 2013 Soft Matter 9 10885Google Scholar

    [35]

    Berdakin I, Jeyaram Y, Moshchalkov V V, Venken L, Dierckx S, Vanderleyden S J, Sil-hanek A V, Condat C A, Marconi V I 2013 Phys. Rev. E 87 052702Google Scholar

    [36]

    Yang W, Misko V R, Nelissen K, Kong M, Peeters F M 2012 Soft Matter 8 5175Google Scholar

    [37]

    Weber S N, Weber C A, Frey E 2016 Phys. Rev. Lett. 116 058301Google Scholar

    [38]

    Costanzo A, Elgeti J, Auth T, Gompper G, Ripoll M 2014 EPL 107 36003Google Scholar

    [39]

    Stenhammar J, Wittkowski R, Marenduzzo D, et al. 2015 Phys. Rev. Lett. 114 018301Google Scholar

    [40]

    Ma Z, Lei Q, Ni R 2017 Soft Matter 13 8940Google Scholar

    [41]

    McCandlish S R, Baskaran A, Hagan M F 2012 Soft Matter 8 2527Google Scholar

    [42]

    Smrek J, Kremer K 2017 Phys. Rev. Lett. 118 098002Google Scholar

    [43]

    Harder J, Cacciuto A 2018 Phys. Rev. E 97 022603Google Scholar

    [44]

    Nourhani A, Crespi V H, Lammert P E 2015 Phys. Rev. Lett. 115 118101Google Scholar

    [45]

    Mijalkov M, Volpe G 2013 Soft Matter 9 6376Google Scholar

    [46]

    Scholz C, Engel M, Pöschel T 2018 Nat. Commun. 9 1Google Scholar

    [47]

    Chen Q, Ai B 2015 J. Chem. Phys. 143 104113Google Scholar

    [48]

    Ai B, Shao Z, Zhong W 2018 Soft Matter 14 4388Google Scholar

    [49]

    Wysocki A, Winkler R G, Gompper G 2016 New J. Phys. 18 123030Google Scholar

    [50]

    Dolai P, Simha A, Mishra S 2018 Soft Matter 14 6137Google Scholar

    [51]

    Ai B 2016 Sci. Rep. 6 1Google Scholar

    [52]

    Nguyen N H P, Klotsa D, Engel M, Glotzer S C 2014 Phys. Rev. Lett. 112 075701Google Scholar

    [53]

    Agrawal A, Babu S B 2018 Phys. Rev. E 97 020401(RGoogle Scholar

    [54]

    Ai B, He Y, Zhong W 2015 Soft Matter 11 3852Google Scholar

    [55]

    Reichhardt C, Reichhardt C J O 2013 Phys. Rev. E 88 042306Google Scholar

    [56]

    DiLuzio W R, Turner L, Mayer M, Garstecki P, Weibel D B, Berg H C, Whitesides G M 2005 Nature 435 1271Google Scholar

    [57]

    Shin J, Cherstvy A G, Metzler R 2014 New J. Phys. 16 053047Google Scholar

    [58]

    Di Leonardo R, Dell’Arciprete D 2011 Physical Review Letters 106 038101

    [59]

    Cẽbers A 2011 J. Magn. Magn. Mater. 323 279Google Scholar

    [60]

    Hennig D 2009 Phys. Rev. E 79 041114Google Scholar

    [61]

    Yang X, Manning M L, Marchetti M C 2014 Soft Matter 10 6477Google Scholar

    [62]

    Cates M E, Tailleur J 2015 Annu. Rev. Condens. Matter Phys. 6 219Google Scholar

  • [1] 李晨璞, 吴魏霞, 张礼刚, 胡金江, 谢革英, 郑志刚. 具有不同扩散系数的活性手征粒子分离. 物理学报, 2024, 73(20): 200201. doi: 10.7498/aps.73.20240686
    [2] 邓永和, 张宇文, 谭恒博, 文大东, 高明, 吴安如. NiCu双金属纳米粒子的表面偏析、结构特征与扩散. 物理学报, 2021, 70(17): 177601. doi: 10.7498/aps.70.20210336
    [3] 刘心卓, 王华光. 椭球胶体在圆球胶体体系中扩散行为的实验研究. 物理学报, 2020, 69(23): 238201. doi: 10.7498/aps.69.20201301
    [4] 张恒, 黄燕, 石旺舟, 周孝好, 陈效双. Al原子在Si表面扩散动力学的第一性原理研究. 物理学报, 2019, 68(20): 207302. doi: 10.7498/aps.68.20190783
    [5] 王超, 陈英才, 周艳丽, 罗孟波. 两嵌段高分子链在周期管道内扩散的Monte Carlo模拟. 物理学报, 2017, 66(1): 018201. doi: 10.7498/aps.66.018201
    [6] 李亚雄, 刘先贵, 胡志明, 高树生, 端祥刚, 常进. 页岩气滑脱、扩散传输机理耦合新方法. 物理学报, 2017, 66(11): 114702. doi: 10.7498/aps.66.114702
    [7] 陆裕东, 何小琦, 恩云飞, 王歆, 庄志强. 倒装芯片上金属布线/凸点互连结构中原子的定向扩散. 物理学报, 2010, 59(5): 3438-3444. doi: 10.7498/aps.59.3438
    [8] 陈德彝, 王忠龙. 白交叉关联色噪声驱动的线性振子的扩散. 物理学报, 2010, 59(1): 111-115. doi: 10.7498/aps.59.111
    [9] 杨春, 冯玉芳, 余毅. 动力学研究AlN/α-Al2O3(0001)薄膜生长初期的吸附与扩散. 物理学报, 2009, 58(5): 3553-3559. doi: 10.7498/aps.58.3553
    [10] 张传瑜, 高 涛, 张云光, 周晶晶, 朱正和, 陈 波. 氦对LaNi5晶体结构的影响及其扩散特性研究. 物理学报, 2008, 57(7): 4379-4385. doi: 10.7498/aps.57.4379
    [11] 李美丽, 张 迪, 孙宏宁, 付兴烨, 姚秀伟, 李 丛, 段永平, 闫 元, 牟洪臣, 孙民华. 二元Lennard-Jones液体的相分离过程及其扩散性质的分子动力学研究. 物理学报, 2008, 57(11): 7157-7163. doi: 10.7498/aps.57.7157
    [12] 王永亮, 张 超, 唐 鑫, 张庆瑜. 表面Cu原子间相互作用对Cu(001)表面跳跃扩散行为的影响. 物理学报, 2006, 55(8): 4214-4220. doi: 10.7498/aps.55.4214
    [13] 曹 博, 包良满, 李公平, 何山虎. Cu/SiO2/Si(111)体系中Cu和Si的扩散及界面反应. 物理学报, 2006, 55(12): 6550-6555. doi: 10.7498/aps.55.6550
    [14] 杨 春, 余 毅, 李言荣, 刘永华. 温度对ZnO/Al2O3(0001)界面的吸附、扩散及生长初期模式的影响. 物理学报, 2005, 54(12): 5907-5913. doi: 10.7498/aps.54.5907
    [15] 常福宣, 陈 进, 黄 薇. 反常扩散与分数阶对流-扩散方程. 物理学报, 2005, 54(3): 1113-1117. doi: 10.7498/aps.54.1113
    [16] 黄卫东, 林 鑫, 李 涛, 王琳琳, Y. Inatomi. 单相合金凝固过程时间相关的界面稳定性(Ⅱ)实验对比. 物理学报, 2004, 53(11): 3978-3983. doi: 10.7498/aps.53.3978
    [17] 林 鑫, 李 涛, 王琳琳, 苏云鹏, 黄卫东. 单相合金凝固过程时间相关的界面稳定性(I)理论分析. 物理学报, 2004, 53(11): 3971-3977. doi: 10.7498/aps.53.3971
    [18] 胡晓君, 戴永兵, 何贤昶, 沈荷生, 李荣斌. 空位在金刚石近(001)表面扩散的分子动力学模拟. 物理学报, 2002, 51(6): 1388-1392. doi: 10.7498/aps.51.1388
    [19] 张海燕. 多分量胶体悬浮系统转动扩散张量的反射理论. 物理学报, 2002, 51(2): 449-455. doi: 10.7498/aps.51.449
    [20] 陈敏, 魏合林, 刘祖黎, 姚凯伦. 沉积粒子能量对薄膜早期生长过程的影响. 物理学报, 2001, 50(12): 2446-2451. doi: 10.7498/aps.50.2446
计量
  • 文章访问数:  6615
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-07
  • 修回日期:  2020-07-08
  • 上网日期:  2020-11-09
  • 刊出日期:  2020-11-20

/

返回文章
返回