搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电场和加热器特性对饱和池沸腾传热影响的介观数值方法研究

胡剑 张森 娄钦

引用本文:
Citation:

电场和加热器特性对饱和池沸腾传热影响的介观数值方法研究

胡剑, 张森, 娄钦

Mesoscopic study on effect of electric field and heater characteristics on saturated pool boiling heat transfer

Hu Jian, Zhang Sen, Lou Qin
PDF
HTML
导出引用
  • 采用耦合电场模型的相变格子Boltzmann (LB)方法研究了饱和池沸腾传热性能, 重点分析了均匀电场作用下加热器表面润湿性以及加热器长度对沸腾过程中气泡生成、合并、断裂等动力学行为的影响以及气泡的动力学行为对池沸腾传热性能的影响. 结果表明, 电场的作用能否强化沸腾传热与加热器的长度以及润湿性有直接关系. 对于亲水表面, 当加热器长度$L_H^*\leqslant6.25$时, 由于加热器尺寸较小, 沸腾过程中加热器表面产生的气泡相互作用力弱, 此情况下电场的存在使得气泡体积减小, 沸腾被抑制. 当加热器长度$6.25< L_H^*\leqslant $$ 9.375$时, 均匀电场均能提高临界热流密度(critical heat flux, CHF), 且在此加热器长度范围内, CHF提高的百分比随着电场强度的增大而增大. 这是因为$6.25<L_H^*\leqslant9.375$时, 更长的加热器为气泡的生成提供了充分的空间, 气泡之间的相互作用力较强, 均匀电场作用下的气泡间距增大, 气泡数量增加, 且CHF提高百分比逐渐增大; 当$L_H^*>9.375$时, 再润湿阻力随着加热器长度的增大而增大, 导致沸腾过程中产生的蒸气在电场力作用下容易被紧贴于加热表面, 增加了固体与流体之间的换热热阻, 并在气泡根部形成不利于气泡向中间移动的涡, 减缓了加热表面热流体与两侧较冷流体的热质交换, CHF提高的百分比随着加热器长度的增大逐渐减小. 对于疏水表面, 随着长度的增大, CHF提高百分比同样为先增大后减小, 然而其阈值增大.
    The phase change lattice Boltzmann (LB) model combined with the electric field model is employed to investigate the heat transfer performance of saturated pool boiling. Particular attention is paid to the influence of heater surface wettability and heater length on bubble behaviors, including generation, merging, and fracture during boiling in a uniform electric field. Moreover, the effects of the bubble behavior on heat transfer performance are also investigated. The study results indicate that the enhancement of boiling heat transfer by the electric field is dependent on both the heater length and the wettability. In the case of a hydrophilic surface, when the heater length $L_H^*\leqslant 6.25$, the bubble interaction force generated on the heater surface during boiling is weak due to the small size of the heater. Thus the effect of a uniform electric field on the bubble dynamic behaviors is mainly manifested by reducing the bubble size. As a result, the whole boiling phase is suppressed in this case. In the case of $6.25 < L_H^*\leqslant9.375$, the uniform electric field enhances the critical heat flux (CHF), and the enhancement degree increases with electric field strength increasing. This can be attributed to the longer heater providing sufficient space for bubble generation, resulting in increased bubble nucleation sites and stronger interaction forces between bubbles. On the other hand, the distance between adjacent bubbles increases with the heater length increasing,thus further contributing to the improved CHF percentage. When $L_H^*>9.375$, the rewetting resistance increases with heater length increasing. So the vapor generated in the boiling process is prone to be closely adhered to the heating surface under the action of electric field force, forming a thin layer of vapor on the heater surface. The vapor not only increases the heat transfer thermal resistance between the solid and the fluid but also creates no vortex near the bubble. This is not conducive to the movement of the bubble to the middle of the heater, thereby slowing down the heat mass exchange between the hot fluid on the heating surface and the colder fluid on both sides. As a result, the improved percentage of CHF decreases gradually with the increase in the heater length. In the case of hydrophobic surfaces, the increased percentage of CHF initially increases with heater length increasing and then decreases. However, comparing with the hydrophilic surface, the increase of the heater source length corresponds to the beginning of the decrease of critical heat flux.
      通信作者: 张森, zhangsen6912@163.com
    • 基金项目: 国家自然科学基金(批准号: 51976128)和上海市浦江人才计划(批准号: 22PJD047)资助的课题
      Corresponding author: Zhang Sen, zhangsen6912@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51976128) and the Shanghai Pujiang Talent Program, China (Grant No. 22PJD047)
    [1]

    张海松, 徐进良, 朱鑫杰 2021 物理学报 70 044401Google Scholar

    Zhang H S, Xu J L, Zhu X J 2021 Acta Phys. Sin. 70 044401Google Scholar

    [2]

    曹春蕾, 何孝天, 马骁婧, 徐进良 2021 物理学报 70 134703Google Scholar

    Cao C L, He X T, Ma X Q, Xu J L 2021 Acta Phys. Sin. 70 134703Google Scholar

    [3]

    曾建邦, 李隆键, 廖全, 蒋方明 2011 物理学报 60 066401Google Scholar

    Zeng J B, Li L J, Liao Q, Jiang F M 2011 Acta Phys. Sin. 60 066401Google Scholar

    [4]

    Gong S, Cheng P 2015 Int. J. Heat Mass Transfer 85 635Google Scholar

    [5]

    Lou A Q, Wang H, Li L 2023 Phys. Fluids 35 013316Google Scholar

    [6]

    赵可, 佘阳梓, 蒋彦龙, 秦静, 张振豪 2019 物理学报 68 244401Google Scholar

    Zhao K, She Y Z, Jiao Y L, Qin J, Zhang Z H 2019 Acta Phys. Sin. 68 244401Google Scholar

    [7]

    Clubb L 1916 UK Patent 100796 [1916-07-09

    [8]

    Madadnia J, Koosha H 2003 Exp. Therm. Fluid Sci. 27 145Google Scholar

    [9]

    Gao M, Cheng P, Quan X J 2013 Int. J. Heat Mass Transfer 67 984Google Scholar

    [10]

    Dong W, Li R Y, Yu H L, Yan Y Y 2006 Exp. Therm. Fluid Sci. 30 579Google Scholar

    [11]

    Zu Y Q, Yan Y Y 2009 Int. J. Heat Mass Transfer 30 761

    [12]

    Quan X J, Gao M, Cheng P, Li J S 2015 Int. J. Heat Mass Transfer 85 595Google Scholar

    [13]

    Liu B, Garivalis A I, Cao Z, Zhang Y, Wei J 2022 Int. J. Heat Mass Transfer 183 122154Google Scholar

    [14]

    Garivalis A I, Manfredini G, Saccone G, Di Marco P, Kossolapov A, Bucci M 2021 NPJ Microgravity 7 37Google Scholar

    [15]

    Nie L R, Yu L, Zheng Z, Shu C 2013 Phys. Rev. E 87 062142Google Scholar

    [16]

    Chen R Y, Pan W L, Zhang J Q, Nie L R 2016 Chaos 26 093113Google Scholar

    [17]

    Chen R Y, Tong L M, Nie L R, Wang C J, Pan W L 2017 Physica A 468 532Google Scholar

    [18]

    Du W, Kao J K, Shi Z, Nie L R 2023 Chin. Phys. B 32 020505Google Scholar

    [19]

    李迎雪, 王浩原, 娄钦 2022 应用数学和力学 43 727Google Scholar

    Li Y X, Wang H Y, Lou Q 2022 Appl. Math. Mech. 43 727Google Scholar

    [20]

    Songoro H 2015 Ph.D. Dissertation (Darmstadt: Technische Universitat)

    [21]

    Tomar G, Gerlach D, Biswas G, Alleborn N, Sharma A, Durst F, Welch S W J, Delgado A 2007 J. Comput. Phys. 227 1267Google Scholar

    [22]

    Pandey V, Biswas G, Dalal A 2016 Phys. Fluids 28 052102Google Scholar

    [23]

    Shan X, Chen H 1993 Phys. Rev. E 47 1815Google Scholar

    [24]

    Gong S, Cheng P 2017 Int. Commun. Heat Mass Transfer 87 61Google Scholar

    [25]

    Ma X, Cheng P, Gong S, Quan X 2017 Int. J. Heat Mass Transfer 114 453Google Scholar

    [26]

    Feng Y, Li H, Guo K, Lei X, Zhao J 2019 Int. J. Heat Mass Transfer 135 885Google Scholar

    [27]

    张浏斌, 单彦广, 戎志成 2022 计算物理 39 12

    Zhang L B, Shan Y G, Rong Z C 2022 Chin. J. Comput. Phys. 39 12

    [28]

    Yao J D, Luo K, Wu J, Yi H L 2022 Phys. Fluids 34 013606Google Scholar

    [29]

    Li W X, Li Q, Chang H Z, Yu Y, Tang S 2022 Phys. Fluids 34 123327Google Scholar

    [30]

    Rainey K N, You S M 2001 Int. J. Heat Mass Transfer 44 2589Google Scholar

    [31]

    Lee S Y, Tong K K, Park C M, Kim M H, Jo H J 2022 Appl. Therm. Eng. 2 213

    [32]

    Zhang C, Cheng P, Hong F 2016 Int. J. Heat Mass Transfer 101 1331Google Scholar

    [33]

    Wang H Y, Lou Q, Liu G J, Li L 2022 Int. J. Therm. Sci. 178 107554Google Scholar

    [34]

    Gong S, Cheng P 2012 Int. J. Heat Mass Transfer 55 4923Google Scholar

    [35]

    Qian Y H, D'Humières1 D, Lallemand P 1992 EPL 17 479Google Scholar

    [36]

    Guo Z L, Shi B C, Wang N C 2000 J. Comput Phys. 165 288Google Scholar

    [37]

    Panofsky W, Phillips M, Jauch J M 1956 AM. J. Phys. 24 416

    [38]

    He X, Ning L 2000 Comput. Phys. Commun. 129 158Google Scholar

    [39]

    Ding H, Spelt P 2007 Phys. Rev. E 75 046708Google Scholar

    [40]

    Li L, Chen C, Mei R, Mei M, Klausner J 2014 Phys. Rev. E 89 043308Google Scholar

  • 图 1  物理问题示意图

    Fig. 1.  Diagram of the physical problem.

    图 2  (a)亲水表面和(b)疏水表面不同长度加热器的沸腾曲线

    Fig. 2.  Boiling curves of heaters with different lengths: (a) Hydrophilic surfaces; (b) hydrophobic surfaces.

    图 3  $L_H^* = 3.125$, $t^* = 66.99$时刻, 不同加热温度下的气泡形态 (a) $T_\mathrm{b} = 0.98 T_\mathrm{c}$; (b) $T_\mathrm{b} = 1.00 T_\mathrm{c}$; (c) $T_\mathrm{b} = 1.02 T_\mathrm{c}$

    Fig. 3.  The bubble morphology at $L_H^*=3.125$, $t^*=66.99$ moments with different heating temperatures: (a) $T_\mathrm{b}= $$ 0.98 T_\mathrm{c}$; (b) $T_\mathrm{b}=1.00 T_\mathrm{c}$; (c) $T_\mathrm{b}=1.02 T_\mathrm{c}$.

    图 4  $t^*=55.83, T_\mathrm{b}=0.98 T_\mathrm{c}$条件下, 不同长度加热器下沸腾的气泡形态和流场 (a) $L_H^*=6.25$; (b) $L_H^*=18.75$

    Fig. 4.  Bubble morphology and flow field for boiling with different length heaters under $t^*=55.83, T_\mathrm{b}=0.98 T_\mathrm{c}$ conditions: (a) $L_H^*=6.25$; (b) $L_H^*=18.75$.

    图 5  亲水表面不同长度加热器在不同电场强度下的沸腾曲线 (a) $L_H^*=3.125$; (b) $L_H^*=6.25$; (c) $L_H^*=7.5$; (d) $L_H^*= $$ 9.375$; (e) $L_H^*=12.5$; (f) $L_H^*=18.75$

    Fig. 5.  Boiling curves of heaters of different lengths on hydrophilic surfaces under different electric field strengths: (a) $L_H^*=3.125$; (b) $L_H^*=6.25$; (c) $L_H^*=7.5$; (d) $L_H^*=9.375$; (e) $L_H^*=12.5$; (f) $L_H^*=18.75$.

    图 6  $L_H^*=6.25$时, 在均匀电场强度$E=0, 0.16327$作用下 (a) $T_\mathrm{b}=0.97 T_\mathrm{c}$, 核态沸腾状态; (b) $T_\mathrm{b}=1.02 T_\mathrm{c}$, 膜态沸腾状态的气泡形态

    Fig. 6.  The bubble morphology of (a) $T_\mathrm{b}=0.97 T_\mathrm{c}$, nucleated boiling state; (b) $T_\mathrm{b}=1.02 T_\mathrm{c}$, film boiling state under the action of uniform electric field strength $E=0, 0.16327$, $L_H^*=6.25$.

    图 7  不同长度加热器在电场强度$E=0, 0.10884$下的气泡形态对比 (a) $L_H^*=7.5$; (b) $L_H^*=9.375$; (c) $L_H^*=12.5$; (d) $L_H^*=18.75$

    Fig. 7.  Comparison of bubble morphology of heaters with different lengths at electric field strength $E=0, 0.10884$: (a) $L_H^*=7.5$; (b) $L_H^*=9.375$; (c) $L_H^*=12.5$; (d) $L_H^*=18.75$.

    图 8  不同电场强度下亲水表面加热器长度与临界热流密度的关系

    Fig. 8.  Relationship between hydrophilic surface heater length and critical heat flow density at different electric field strengths.

    图 9  均匀电场强度$E=0.10884$作用下, $T_\mathrm{b}=0.995 T_\mathrm{c}$沸腾过程的空间平均热流密度随时间的变化

    Fig. 9.  Spatially averaged heat flow density with time for $T_\mathrm{b}=0.995 T_\mathrm{c}$ boiling process under uniform electric field strength $E=0.10884$.

    图 10  均匀电场强度$E=0.10884$作用下, $T_\mathrm{b}=0.995 T_\mathrm{c}$沸腾状态的气泡形态演变、当前时刻气泡所受电场力和当前时刻流场分布 (a) $L_H^*=7.5$; (b) $L_H^*=9.375$

    Fig. 10.  Evolution of bubble morphology, electric field force on the bubble at the current moment and flow field distribution at the current moment under the action of uniform electric field strength $E=0.10884$, $T_\mathrm{b}=0.995 T_\mathrm{c}$ boiling state: (a) $L_H^*=7.5$; (b) $L_H^*=9.375$.

    图 11  均匀电场强度$E=0.16327$作用下, $T_\mathrm{b}=0.995 T_\mathrm{c}$沸腾过程的空间平均热流密度随时间的变化

    Fig. 11.  Spatially averaged heat flow density with time for $T_\mathrm{b}=0.995 T_\mathrm{c}$ boiling process under uniform electric field strength $E=0.16327$.

    图 12  均匀电场强度$E=0.16327$作用下, $T_\mathrm{b}=0.995 T_\mathrm{c}$沸腾状态的气泡形态演变、当前时刻气泡所受电场力和当前时刻流场分布 (a) $L_H^*=12.5$; (b) $L_H^*=18.75$

    Fig. 12.  Evolution of bubble morphology, electric field force on the bubble at the current moment and flow field distribution at the current moment under the action of uniform electric field strength $E=0.16327$, $T_\mathrm{b}=0.995 T_\mathrm{c}$ boiling state: (a) $L_H^*=12.5$; (b) $L_H^*=18.75$.

    图 13  疏水表面不同长度加热器在不同电场强度下的沸腾曲线 (a) $L_H^*=3.125$; (b) $L_H^*=6.25$; (c) $L_H^*=7.5$; (d) $L_H^*= $$ 9.375$; (e) $L_H^*=12.5$; (f) $L_H^*=18.75$

    Fig. 13.  Boiling curves of different lengths of heaters on hydrophobic surfaces under different electric field strengths: (a) $L_H^*= 3.125$; (b) $L_H^*=6.25$; (c) $L_H^*=7.5$; (d) $L_H^*=9.375$; (e) $L_H^*=12.5$, (f) $L_H^*=18.75$.

    图 14  $t_0^*=80.39$时刻, $T_\mathrm{b}=0.99 T_\mathrm{c}$时 (a) $E=0$; (b) $E= $$ 0.16327$的疏水表面对应的气泡动力学行为

    Fig. 14.  The bubble dynamics behavior of the hydrophobic surface: (a) $E=0$, (b) $E=0.16327$ at the $t_0^*=80.39$, $T_\mathrm{b}=0.99 T_\mathrm{c}$.

    图 15  不同电场强度下疏水表面加热器长度与临界热流密度(CHF)的关系

    Fig. 15.  Relationship between hydrophobic surface heater length and critical heat flow density (CHF) at different electric field strengths.

    表 1  格子单位与物理单位转换

    Table 1.  The unit conversion from lattice unit to physical unit.

    符号格子单
    位大小
    物理单位大小转换因子
    $ \rho_\mathrm{l} $5.426570.02 $ \mathrm{kg}/\mathrm{m}^3 $106.16 $ \mathrm{kg}/\mathrm{m}^3 $
    $ \rho_\mathrm{v} $0.811386.13 $ \mathrm{kg}/\mathrm{m}^3 $106.16 $ \mathrm{kg}/\mathrm{m}^3 $
    $ l_0 $16$ 4.72\times 10^{-6}\;\mathrm{m} $$ 2.95\times 10^{-7}\;\mathrm{m} $
    $ u_0 $0.035838.56 $ \mathrm{m/s} $1077.09 $ \mathrm{m/s} $
    $ t_0 $447.8$ 1.224\times 10^{-7}\;\mathrm{s} $$ 2.734\times 10^{-10}\;\mathrm{s} $
    ν0.06$ 0.19\times 10^{-4}\;\mathrm{m}^2/\mathrm{s} $$ 3.18\times 10^{-4}\;\mathrm{m}^2/\mathrm{s} $
    $ T_\mathrm{c} $0.1961647.2 $ \mathrm{K} $3300.36 $ \mathrm{K} $
    $ p_\mathrm{c} $0.1784$ 0.221\times 10^{8}\;\mathrm{Pa} $$ 1.24\times 10^{8}\;\mathrm{Pa} $
    $ c_\mathrm{vl} $4.01405.9 $\mathrm{J}/(\mathrm{kg}{\cdot} \mathrm{K})$351.48 $ \mathrm{J}/(\mathrm{kg}\cdot \mathrm{K}) $
    $ h_\mathrm{fg} $0.624$ 0.726\times 10^{6}\;\mathrm{J/kg} $$ 1.16\times 10^{6}\;\mathrm{J/kg} $
    $ \lambda_\mathrm{s} $32.556390.67 $\mathrm{W}/(\mathrm{m}{\cdot} \mathrm{K})$12.0 $ \mathrm{W}/(\mathrm{m}\cdot \mathrm{K}) $
    $ q_0 $0.01269$1.69 \times 10^{9}\;\mathrm{J}/({\rm{m} }^2{\cdot} {\rm{s} })$$1.33 \times 10^{11}\;\mathrm{J}/({\rm{m} }^2{\cdot} {\rm{s} })$
    $ \varepsilon_0\varepsilon_\mathrm{l} $2.236$ 1.98\times 10^{-11}\;\mathrm{F/m} $$ 8.85\times 10^{-12}\;\mathrm{F/m} $
    $ \varepsilon_0\varepsilon_\mathrm{v} $1$ 8.85\times 10^{-12}\;\mathrm{F/m} $$ 8.85\times 10^{-12}\;\mathrm{F/m} $
    V11096.96 V1096.96 V
    下载: 导出CSV
  • [1]

    张海松, 徐进良, 朱鑫杰 2021 物理学报 70 044401Google Scholar

    Zhang H S, Xu J L, Zhu X J 2021 Acta Phys. Sin. 70 044401Google Scholar

    [2]

    曹春蕾, 何孝天, 马骁婧, 徐进良 2021 物理学报 70 134703Google Scholar

    Cao C L, He X T, Ma X Q, Xu J L 2021 Acta Phys. Sin. 70 134703Google Scholar

    [3]

    曾建邦, 李隆键, 廖全, 蒋方明 2011 物理学报 60 066401Google Scholar

    Zeng J B, Li L J, Liao Q, Jiang F M 2011 Acta Phys. Sin. 60 066401Google Scholar

    [4]

    Gong S, Cheng P 2015 Int. J. Heat Mass Transfer 85 635Google Scholar

    [5]

    Lou A Q, Wang H, Li L 2023 Phys. Fluids 35 013316Google Scholar

    [6]

    赵可, 佘阳梓, 蒋彦龙, 秦静, 张振豪 2019 物理学报 68 244401Google Scholar

    Zhao K, She Y Z, Jiao Y L, Qin J, Zhang Z H 2019 Acta Phys. Sin. 68 244401Google Scholar

    [7]

    Clubb L 1916 UK Patent 100796 [1916-07-09

    [8]

    Madadnia J, Koosha H 2003 Exp. Therm. Fluid Sci. 27 145Google Scholar

    [9]

    Gao M, Cheng P, Quan X J 2013 Int. J. Heat Mass Transfer 67 984Google Scholar

    [10]

    Dong W, Li R Y, Yu H L, Yan Y Y 2006 Exp. Therm. Fluid Sci. 30 579Google Scholar

    [11]

    Zu Y Q, Yan Y Y 2009 Int. J. Heat Mass Transfer 30 761

    [12]

    Quan X J, Gao M, Cheng P, Li J S 2015 Int. J. Heat Mass Transfer 85 595Google Scholar

    [13]

    Liu B, Garivalis A I, Cao Z, Zhang Y, Wei J 2022 Int. J. Heat Mass Transfer 183 122154Google Scholar

    [14]

    Garivalis A I, Manfredini G, Saccone G, Di Marco P, Kossolapov A, Bucci M 2021 NPJ Microgravity 7 37Google Scholar

    [15]

    Nie L R, Yu L, Zheng Z, Shu C 2013 Phys. Rev. E 87 062142Google Scholar

    [16]

    Chen R Y, Pan W L, Zhang J Q, Nie L R 2016 Chaos 26 093113Google Scholar

    [17]

    Chen R Y, Tong L M, Nie L R, Wang C J, Pan W L 2017 Physica A 468 532Google Scholar

    [18]

    Du W, Kao J K, Shi Z, Nie L R 2023 Chin. Phys. B 32 020505Google Scholar

    [19]

    李迎雪, 王浩原, 娄钦 2022 应用数学和力学 43 727Google Scholar

    Li Y X, Wang H Y, Lou Q 2022 Appl. Math. Mech. 43 727Google Scholar

    [20]

    Songoro H 2015 Ph.D. Dissertation (Darmstadt: Technische Universitat)

    [21]

    Tomar G, Gerlach D, Biswas G, Alleborn N, Sharma A, Durst F, Welch S W J, Delgado A 2007 J. Comput. Phys. 227 1267Google Scholar

    [22]

    Pandey V, Biswas G, Dalal A 2016 Phys. Fluids 28 052102Google Scholar

    [23]

    Shan X, Chen H 1993 Phys. Rev. E 47 1815Google Scholar

    [24]

    Gong S, Cheng P 2017 Int. Commun. Heat Mass Transfer 87 61Google Scholar

    [25]

    Ma X, Cheng P, Gong S, Quan X 2017 Int. J. Heat Mass Transfer 114 453Google Scholar

    [26]

    Feng Y, Li H, Guo K, Lei X, Zhao J 2019 Int. J. Heat Mass Transfer 135 885Google Scholar

    [27]

    张浏斌, 单彦广, 戎志成 2022 计算物理 39 12

    Zhang L B, Shan Y G, Rong Z C 2022 Chin. J. Comput. Phys. 39 12

    [28]

    Yao J D, Luo K, Wu J, Yi H L 2022 Phys. Fluids 34 013606Google Scholar

    [29]

    Li W X, Li Q, Chang H Z, Yu Y, Tang S 2022 Phys. Fluids 34 123327Google Scholar

    [30]

    Rainey K N, You S M 2001 Int. J. Heat Mass Transfer 44 2589Google Scholar

    [31]

    Lee S Y, Tong K K, Park C M, Kim M H, Jo H J 2022 Appl. Therm. Eng. 2 213

    [32]

    Zhang C, Cheng P, Hong F 2016 Int. J. Heat Mass Transfer 101 1331Google Scholar

    [33]

    Wang H Y, Lou Q, Liu G J, Li L 2022 Int. J. Therm. Sci. 178 107554Google Scholar

    [34]

    Gong S, Cheng P 2012 Int. J. Heat Mass Transfer 55 4923Google Scholar

    [35]

    Qian Y H, D'Humières1 D, Lallemand P 1992 EPL 17 479Google Scholar

    [36]

    Guo Z L, Shi B C, Wang N C 2000 J. Comput Phys. 165 288Google Scholar

    [37]

    Panofsky W, Phillips M, Jauch J M 1956 AM. J. Phys. 24 416

    [38]

    He X, Ning L 2000 Comput. Phys. Commun. 129 158Google Scholar

    [39]

    Ding H, Spelt P 2007 Phys. Rev. E 75 046708Google Scholar

    [40]

    Li L, Chen C, Mei R, Mei M, Klausner J 2014 Phys. Rev. E 89 043308Google Scholar

  • [1] 白璞, 王登甲, 刘艳峰. 润湿性影响薄液膜沸腾传热的分子动力学研究. 物理学报, 2024, 73(9): 090201. doi: 10.7498/aps.73.20232026
    [2] 张森, 娄钦. 电场作用下锥翅表面强化池沸腾换热的介观数值方法. 物理学报, 2024, 73(2): 026401. doi: 10.7498/aps.73.20231141
    [3] 李春曦, 马成, 叶学民. 薄液滴在润湿性受限轨道上的热毛细迁移特性. 物理学报, 2023, 72(2): 024702. doi: 10.7498/aps.72.20221562
    [4] 王文远, 谢章, 郝少倩, 吴锋民, 寇建龙. 不同方向石墨烯片构筑纳米孔隙浸润特征. 物理学报, 2022, 71(19): 196101. doi: 10.7498/aps.71.20220685
    [5] 彭家略, 郭浩, 尤天涯, 纪献兵, 徐进良. 液滴碰撞Janus颗粒球表面的行为特征. 物理学报, 2021, 70(4): 044701. doi: 10.7498/aps.70.20201358
    [6] 曹春蕾, 何孝天, 马骁婧, 徐进良. 液态金属软表面池沸腾传热的实验研究. 物理学报, 2021, 70(13): 134703. doi: 10.7498/aps.70.20202053
    [7] 梅涛, 陈占秀, 杨历, 朱洪漫, 苗瑞灿. 非对称纳米通道内界面热阻的分子动力学研究. 物理学报, 2020, 69(22): 224701. doi: 10.7498/aps.69.20200491
    [8] 梅涛, 陈占秀, 杨历, 王坤, 苗瑞灿. 纳米通道粗糙内壁对流体流动行为的影响. 物理学报, 2019, 68(9): 094701. doi: 10.7498/aps.68.20181956
    [9] 叶学民, 张湘珊, 李明兰, 李春曦. 液滴在不同润湿性表面上蒸发时的动力学特性. 物理学报, 2018, 67(11): 114702. doi: 10.7498/aps.67.20180159
    [10] 熊其玉, 董磊, 焦云龙, 刘小君, 刘焜. 应用激光蚀刻不同微织构表面的润湿性. 物理学报, 2015, 64(20): 206101. doi: 10.7498/aps.64.206101
    [11] 姚祎, 周哲玮, 胡国辉. 有结构壁面上液滴运动特征的耗散粒子动力学模拟. 物理学报, 2013, 62(13): 134701. doi: 10.7498/aps.62.134701
    [12] 王陶, 李俊杰, 王锦程. 界面润湿性及固相体积分数对颗粒粗化动力学影响的相场法研究. 物理学报, 2013, 62(10): 106402. doi: 10.7498/aps.62.106402
    [13] 赵宁, 黄明亮, 马海涛, 潘学民, 刘晓英. 液态Sn-Cu钎料的黏滞性与润湿行为研究. 物理学报, 2013, 62(8): 086601. doi: 10.7498/aps.62.086601
    [14] 曾建邦, 李隆键, 廖全, 蒋方明. 池沸腾中气泡生长过程的格子Boltzmann方法模拟. 物理学报, 2011, 60(6): 066401. doi: 10.7498/aps.60.066401
    [15] 石自媛, 胡国辉, 周哲玮. 润湿性梯度驱动液滴运动的格子Boltzmann模拟. 物理学报, 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [16] 肖波齐, 陈玲霞, 蒋国平, 饶连周, 王宗篪, 魏茂金. 池沸腾传热的数学分析. 物理学报, 2009, 58(4): 2523-2527. doi: 10.7498/aps.58.2523
    [17] 王晓冬, 董 鹏, 陈胜利, 仪桂云. 亚微米聚苯乙烯微球在气-液界面组装的机理研究. 物理学报, 2007, 56(5): 3017-3021. doi: 10.7498/aps.56.3017
    [18] 王晓冬, 董 鹏, 陈胜利, 仪桂云. 亚微米聚苯乙烯微球在气-液界面组装的机理研究. 物理学报, 2007, 56(3): 1831-1836. doi: 10.7498/aps.56.1831
    [19] 王超英, 翟光杰, 吴兰生, 麦振洪, 李 宏, 张海峰, 丁炳哲. 重力对GaSb熔滴和液/固界面交互作用的影响. 物理学报, 2000, 49(10): 2094-2100. doi: 10.7498/aps.49.2094
    [20] 严北平, 刘家璐, 张廷庆, 王朝东, 郎维和, 张宝峰. 移动加热器法生长碲镉汞晶体的数值模拟. 物理学报, 1995, 44(3): 439-445. doi: 10.7498/aps.44.439
计量
  • 文章访问数:  2825
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-08
  • 修回日期:  2023-06-25
  • 上网日期:  2023-07-06
  • 刊出日期:  2023-09-05

/

返回文章
返回