搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种用于强流脉冲离子束的束流输出稳定性实时监测方法

许莫非 于翔 张世健 Gennady Efimovich Remnev 乐小云

引用本文:
Citation:

一种用于强流脉冲离子束的束流输出稳定性实时监测方法

许莫非, 于翔, 张世健, Gennady Efimovich Remnev, 乐小云

A method of real-time monitoring beam output stability of intense pulsed ion beam

Xu Mo-Fei, Yu Xiang, Zhang Shi-Jian, Gennady Efimovich Remnev, Le Xiao-Yun
PDF
HTML
导出引用
  • 强流脉冲离子束辐照后的材料表面状态对束流强度具有极高的敏感性. 因此, 在辐照实验中监测束流输出的稳定性, 并及时识别出参数抖动较大的脉冲, 对于实验结果的分析和表面改性效果的优化具有重要意义. 本文利用塑料闪烁体构建了一种时间分辨为6 ns的快响应脉冲X射线诊断系统, 成功捕获了外磁绝缘离子束二极管工作时产生的X射线. 同时, 通过红外相机和法拉第筒对离子束流的能量密度和电流密度进行测量. 分析结果显示, 轫致辐射强度和离子束发射强度均取决于二极管加速电压, 导致X射线强度和离子束流能量密度呈现正相关趋势. 当离子电流密度发生抖动时, X射线信号幅值表现出良好的变化跟随性, 能够对偏离预设参数区间的脉冲做出响应. 这说明本文提出的非拦截式诊断方法能够有效地实时监测强流脉冲离子束束流输出的稳定性.
    Intense pulsed ion beam (IPIB) technology has made remarkable progress in surface modification, mixing, polishing, film deposition, and nano powder synthesis in recent years. However, the surface properties of materials under IPIB irradiation are highly sensitive to beam intensity variations. Deviations from acceptable parameter range can change the surface characteristics and increase prevalence of defects. Consequently, the real-time online monitoring of beam stability during irradiation experiments and promptly identifying of pulses exhibiting significant parameter jitter are of significance in accurately analyzing results and optimizing surface modification. This study presents a fast-response pulse X-ray diagnostic system by employing EJ-200 plastic scintillator, 9266FLB photomultiplier tube, and Tektronic TDS 2024 four-channel oscilloscope. Single particle test demonstrates that the system achieves a time resolution of 6 ns, meeting the requirements for temporal response to detecting pulse X-ray signals with a half-width of ~80 ns. By adjusting the insulation magnetic field strength of the ion diode, the IPIB output level is regulated. The diagnostic system successfully captures X-rays emitted by the external magnetic insulated ion diode operating at different output levels. Simultaneously, the ion beam energy density is measured by using an infrared camera. To mitigate diagnostic errors stemming from target ablation, the maximum energy density is controlled to be below 1.32 J/cm2. Analysis results establish a positive correlation between X-ray intensity and ion beam energy density. This relationship arises from the influence of the insulating magnetic field adjustment on the diode's operating voltage, which subsequently affects the bremsstrahlung radiant intensity and ion beam emission intensity. This correlation offers the potential for the real-time monitoring of IPIB beam output stability by utilizing X-ray signals. To further corroborate the synchronized changes in pulse X-ray intensity and ion beam intensity, Faraday cup is employed as an alternative to infrared imaging method for measuring ion current density. Results demonstrate that the amplitude of the X-ray signal changes synchronously with fluctuations of ion current density. It is worth noting that when the output intensity of ion beam deviates significantly (more than 10% of the preset value), the diagnostic system will respond quickly. These findings validate the efficacy of the proposed non-interceptive diagnostic method of real-time monitoring the intense pulsed ion beam output stability.
      通信作者: 乐小云, xyle@buaa.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12075024)和国防基础科研项目(批准号: 12700002022119001)资助的课题.
      Corresponding author: Le Xiao-Yun, xyle@buaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12075024) and the National Defense Basic Scientific Research Program of China (Grant No. 12700002022119001).
    [1]

    Humphries S 1980 Nucl. Fusion 20 1549Google Scholar

    [2]

    Van Devender J P 1986 Plasma Phys. Control. Fusion 28 841Google Scholar

    [3]

    Long K A, Tahir N A 1982 Phys. Lett. A 91 451Google Scholar

    [4]

    杨海亮, 邱爱慈, 张嘉生, 何小平, 孙剑锋, 彭建昌, 汤俊萍, 任书庆, 欧阳晓平, 张国光, 黄建军, 杨莉, 王海洋, 李洪玉, 李静雅 2004 物理学报 53 406Google Scholar

    Yang H L, Qiu A C, Zhang J S, He X P, Sun J F, Peng J C, Tang J P, Ren S Q, Ouyang X P, Zhang G G, Huang J J, Yang L, Wang H Y, Li H Y, Li J Y 2004 Acta Phys. Sin. 53 406Google Scholar

    [5]

    Mach H, Rogers D W O 1983 IEEE Trans. Nucl. Sci. 30 1514Google Scholar

    [6]

    Baumung K, Bluhm H J, Goel B, Hoppé P, Karow H U, Rusch D, Fortov V E, Kanel G I, Razorenov S V, Utkin A V, Vorobjev O Y 1996 Laser Part. Beams 14 181Google Scholar

    [7]

    Zhong H W, Zhang J, Shen J, Liang G Y, Zhang S J, Huang W Y, Xu M F, Yu X, Yan S, Efimovich Remnev G, Le X Y 2019 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 461 226Google Scholar

    [8]

    Yu X, Zhang S J, Stepanov A V, Shamanin V I, Zhong H W, Liang G Y, Xu M F, Zhang N, Kuang S, Ren J, Shang X, Yan S, Remnev G E, Le X Y 2020 Surf. Coatings Technol. 384 125351Google Scholar

    [9]

    张世健, 喻晓, 钟昊玟, 梁国营, 许莫非, 张楠, 任建慧, 匡仕成, 颜莎, Gennady Efimovich Remnev, 乐小云 2020 物理学报 69 115202Google Scholar

    Zhang S J, Yu X, Zhong H W, Liang G Y, Xu M F, Zhang N, Ren J H, Kuang S C, Yan S, Gennady E R, Le X Y 2020 Acta Phys. Sin. 69 115202Google Scholar

    [10]

    Le X Y, Zhao W J, Yan S, Han B X, Xiang W 2002 Surf. Coatings Technol. 158 159 14

    [11]

    张锋刚, 朱小鹏, 王明阳, 雷明凯 2011 金属学报 47 958

    Zhang F G, Zhu X P, Wang M Y, Lei M K 2011 Acta Metall. Sin. 47 958

    [12]

    Zhang S J, Yu X, Zhang J, Shen J, Zhong H W, Liang G Y, Xu M, Zhang N, Ren J, Kuang S, Shang X, Adegboyega O, Yan S, Remnev G E, Le X Y 2021 Vacuum 187 110154Google Scholar

    [13]

    Zhao W J, Remnev G E, Yan S, Opekounov M S, Le X Y, Matvienko V M, Han B X, Xue J M, Wang Y G 2000 Rev. Sci. Instrum. 71 1045Google Scholar

    [14]

    Yan S, Le X Y, Zhao W J, Shang Y J, Wang Y, Xue J 2007 Surf. Coatings Technol. 201 4817Google Scholar

    [15]

    Xu M F, Yu X, Zhang S J, Yan S, Tarbokov V, Remnev G, Le X Y 2023 Materials (Basel) 16 3028

    [16]

    Yu X, Shen J, Zhong H W, Zhang J, Yan S, Zhang G L, Zhang X, Le X Y 2015 Vacuum 120 116Google Scholar

    [17]

    Hashimoto Y, Yatsuzuka M 2000 Vacuum 59 313Google Scholar

    [18]

    Prasad S V, Renk T J, Kotula P G, DebRoy T 2011 Mater. Lett. 65 4Google Scholar

    [19]

    Suzuki T, Saikusa T, Suematu H, Jiang W, Yatsui K 2003 Surf. Coatings Technol. 169 170 491

    [20]

    Zhu Q, Jiang W, Yatsui K 1999 J. Appl. Phys. 86 5279Google Scholar

    [21]

    Shulov V A, Novikov A S, Paikin A G, Belov A B, Lvov A F, Remnev G E 2007 Surf. Coatings Technol. 201 8654Google Scholar

    [22]

    Zhang J, Zhong H W, Shen J, Yu X, Yan S, Le X Y 2020 Surf. Coatings Technol. 388 125599Google Scholar

    [23]

    Kovivchak V S, Panova T V, Mikhailov K A, Knyazev E V 2013 J. Surf. Investig. 7 531Google Scholar

    [24]

    Zhang Q, Mei X X, Guan T, Zhang X N, Remnev G E, Pavlov S K, Wang Y N 2019 Fusion Eng. Des. 138 16Google Scholar

    [25]

    Mei X X, Zhang X N, Liu X, Wang Y N 2017 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 406 697Google Scholar

    [26]

    Gerdin G, Stygar W, Venneri F 1981 J. Appl. Phys. 52 3269Google Scholar

    [27]

    Christodoulides C E, Freeman J H 1976 Nucl. Instruments Methods 135 13Google Scholar

    [28]

    Davis H A, Bartsch R R, Olson J C, Rej D J, Waganaar W J 1997 J. Appl. Phys. 82 3223Google Scholar

    [29]

    Ryzhkov V A, Stepanov A V, Pyatkov I N, Remnev G E 2021 Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 1013 165671Google Scholar

    [30]

    Ryzhkov V A, Pyatkov I N, Remnev G E 2021 Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 998 165190Google Scholar

    [31]

    Pushkarev A I, Isakova Y I, Yu X, Khailov I P 2013 Rev. Sci. Instrum. 84

    [32]

    Dong Z H, Liu C, Han X G, Lei M K 2007 Surf. Coatings Technol. 201 5054Google Scholar

    [33]

    Masugata K, Chishiro E, Yatsui K 1998 Proceedings of the 12th International Conference on High-Power Particle Beams Haifa, Israel, June 12, 1998 pp222–225

    [34]

    杨海亮, 邱爱慈, 孙剑锋, 何小平, 汤俊萍, 王海洋, 李洪玉, 李静雅, 任书庆, 黄建军, 张嘉生, 彭建昌, 欧阳晓平, 张国光 2004 原子能科学技术 38 204

    Yang H L, Qiu A C, Sun J F, He X P, Tang J P, Wang H Y, Li H Y, Li J Y, Ren S Q, Huang J J, Zhang J S, Peng J C, Ouyang X P, Zhang G G 2004 Atom. Ener. Sci. Tech. 38 204

    [35]

    Yu X, Shen J, Isakova Y I, Zhong H W, Zhang J, Yan S, Zhang G L, Zhang X F, Le X Y 2015 Vacuum 122 12Google Scholar

    [36]

    屈苗, 喻晓, 张洁, 沈杰, 钟昊玟, 张艳燕, 颜莎, 张小富, 张高龙, 乐小云 2015 强激光与粒子束 27 216Google Scholar

    Qu M, Yu X, Zhang J, Shen J, Zhong H W, Zhang Y Y, Yan S, Zhang X F, Zhang G L, Le X Y 2015 High Power Laser and Particle Beams 27 7Google Scholar

    [37]

    刘庆兆 1994 脉冲辐射场诊断技术 (北京: 科学出版社) 第98页

    Liu Q Z 1994 Pulse Radiation Field Diagnosis Technology (Beijing: Science Press) p98

    [38]

    郑志鹏, 祝玉灿, 邵毓莺, 孙汉生 1986 核电子学与探测技术 6 112

    Zheng Z P, Zhu Y C, Shao Y Y, Sun H S 1986 Nucl. Elec. and Det. Tech. 6 112

    [39]

    Xu M F, Kuang S, Yu X, Zhang S J, Yan S, Remnev G E, Le X 2023 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 537 38Google Scholar

    [40]

    陈伯显, 张智 2011 核辐射物理及探测学 (哈尔滨: 哈尔滨工程大学出版社) 第146页

    Chen B X, Zhang Z 2011 Nuclear Radiation Physics and Detection (Harbin: Harbin Engineering University Press) p146

  • 图 1  诊断方法示意图. 1-高压端柱; 2-阳极; 3-阳极托盘; 4-阴极; 5-阴极支撑盘; 6-电子; 7-离子束; 8-绝缘磁场线圈; 9-磁场线圈固定器; 10-有机玻璃观察窗; 11-CaF2窗口; 12-EJ-200塑料闪烁体; 13-9266 FLB光电倍增管

    Fig. 1.  Diagnostic method diagram. 1- High voltage input; 2-anode; 3- anode tray; 4-cathode; 5-cathode support plate; 6- electron; 7-ion beam; 8-insulated magnetic field coils; 9- magnetic field coils fixer; 10- organic glass observation window; 11-CaF2 window; 12-EJ-200 plastic scintillator; 13-9266 FLB photomultiplier tube.

    图 2  诊断系统的时间响应测试结果

    Fig. 2.  Time response test of the diagnostic system.

    图 3  红外相机在(a) IPIB辐照前、(b) IPIB辐照后从热沉靶背面捕获的红外图像, 以及(c)诊断系统捕获的脉冲X射线信号波形

    Fig. 3.  The infrared image captured by the infrared camera from the backside of the heat sink target before (a) IPIB irradiation, (b) after IPIB irradiation, and (c) the pulse X-ray signal waveform captured by the diagnostic system.

    图 4  脉冲X射线信号幅值与IPIB束流能量密度之间的关系

    Fig. 4.  Relationship between the amplitude of pulse X-ray signal and the energy density of IPIB.

    图 5  (a)轫致辐射产生示意图; (b)阳极结构实物图

    Fig. 5.  (a) Schematic diagram of bremsstrahlung generation; (b) picture of anode structure.

    图 6  实验装置示意图. 1-高压端柱; 2-阳极; 3-阳极托盘; 4-阴极; 5-阴极支撑盘; 6-电子; 7-离子束; 8-绝缘磁场线圈; 9-磁场线圈固定器; 10-有机玻璃观察窗; 11-石墨收集体; 12-EJ-200塑料闪烁体; 13-9266 FLB光电倍增管

    Fig. 6.  Schematic diagram of experimental equipment. 1- High voltage input; 2-anode; 3- anode tray; 4-cathode; 5-cathode support plate; 6- electron; 7-ion beam; 8- insulated magnetic field coils; 9- magnetic field coils fixer; 10-organic glass observation window; 11-graphite collector; 12-EJ-200 plastic scintillator; 13-9266 FLB photomultiplier tube.

    图 7  二极管电压、离子电流密度和X射线信号波形图

    Fig. 7.  Diode voltage, ion current density, and X-ray signal waveform.

    图 8  X射线信号幅值与离子电流密度的对应关系

    Fig. 8.  Correspondence between X-ray signal amplitude and ion current density.

  • [1]

    Humphries S 1980 Nucl. Fusion 20 1549Google Scholar

    [2]

    Van Devender J P 1986 Plasma Phys. Control. Fusion 28 841Google Scholar

    [3]

    Long K A, Tahir N A 1982 Phys. Lett. A 91 451Google Scholar

    [4]

    杨海亮, 邱爱慈, 张嘉生, 何小平, 孙剑锋, 彭建昌, 汤俊萍, 任书庆, 欧阳晓平, 张国光, 黄建军, 杨莉, 王海洋, 李洪玉, 李静雅 2004 物理学报 53 406Google Scholar

    Yang H L, Qiu A C, Zhang J S, He X P, Sun J F, Peng J C, Tang J P, Ren S Q, Ouyang X P, Zhang G G, Huang J J, Yang L, Wang H Y, Li H Y, Li J Y 2004 Acta Phys. Sin. 53 406Google Scholar

    [5]

    Mach H, Rogers D W O 1983 IEEE Trans. Nucl. Sci. 30 1514Google Scholar

    [6]

    Baumung K, Bluhm H J, Goel B, Hoppé P, Karow H U, Rusch D, Fortov V E, Kanel G I, Razorenov S V, Utkin A V, Vorobjev O Y 1996 Laser Part. Beams 14 181Google Scholar

    [7]

    Zhong H W, Zhang J, Shen J, Liang G Y, Zhang S J, Huang W Y, Xu M F, Yu X, Yan S, Efimovich Remnev G, Le X Y 2019 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 461 226Google Scholar

    [8]

    Yu X, Zhang S J, Stepanov A V, Shamanin V I, Zhong H W, Liang G Y, Xu M F, Zhang N, Kuang S, Ren J, Shang X, Yan S, Remnev G E, Le X Y 2020 Surf. Coatings Technol. 384 125351Google Scholar

    [9]

    张世健, 喻晓, 钟昊玟, 梁国营, 许莫非, 张楠, 任建慧, 匡仕成, 颜莎, Gennady Efimovich Remnev, 乐小云 2020 物理学报 69 115202Google Scholar

    Zhang S J, Yu X, Zhong H W, Liang G Y, Xu M F, Zhang N, Ren J H, Kuang S C, Yan S, Gennady E R, Le X Y 2020 Acta Phys. Sin. 69 115202Google Scholar

    [10]

    Le X Y, Zhao W J, Yan S, Han B X, Xiang W 2002 Surf. Coatings Technol. 158 159 14

    [11]

    张锋刚, 朱小鹏, 王明阳, 雷明凯 2011 金属学报 47 958

    Zhang F G, Zhu X P, Wang M Y, Lei M K 2011 Acta Metall. Sin. 47 958

    [12]

    Zhang S J, Yu X, Zhang J, Shen J, Zhong H W, Liang G Y, Xu M, Zhang N, Ren J, Kuang S, Shang X, Adegboyega O, Yan S, Remnev G E, Le X Y 2021 Vacuum 187 110154Google Scholar

    [13]

    Zhao W J, Remnev G E, Yan S, Opekounov M S, Le X Y, Matvienko V M, Han B X, Xue J M, Wang Y G 2000 Rev. Sci. Instrum. 71 1045Google Scholar

    [14]

    Yan S, Le X Y, Zhao W J, Shang Y J, Wang Y, Xue J 2007 Surf. Coatings Technol. 201 4817Google Scholar

    [15]

    Xu M F, Yu X, Zhang S J, Yan S, Tarbokov V, Remnev G, Le X Y 2023 Materials (Basel) 16 3028

    [16]

    Yu X, Shen J, Zhong H W, Zhang J, Yan S, Zhang G L, Zhang X, Le X Y 2015 Vacuum 120 116Google Scholar

    [17]

    Hashimoto Y, Yatsuzuka M 2000 Vacuum 59 313Google Scholar

    [18]

    Prasad S V, Renk T J, Kotula P G, DebRoy T 2011 Mater. Lett. 65 4Google Scholar

    [19]

    Suzuki T, Saikusa T, Suematu H, Jiang W, Yatsui K 2003 Surf. Coatings Technol. 169 170 491

    [20]

    Zhu Q, Jiang W, Yatsui K 1999 J. Appl. Phys. 86 5279Google Scholar

    [21]

    Shulov V A, Novikov A S, Paikin A G, Belov A B, Lvov A F, Remnev G E 2007 Surf. Coatings Technol. 201 8654Google Scholar

    [22]

    Zhang J, Zhong H W, Shen J, Yu X, Yan S, Le X Y 2020 Surf. Coatings Technol. 388 125599Google Scholar

    [23]

    Kovivchak V S, Panova T V, Mikhailov K A, Knyazev E V 2013 J. Surf. Investig. 7 531Google Scholar

    [24]

    Zhang Q, Mei X X, Guan T, Zhang X N, Remnev G E, Pavlov S K, Wang Y N 2019 Fusion Eng. Des. 138 16Google Scholar

    [25]

    Mei X X, Zhang X N, Liu X, Wang Y N 2017 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 406 697Google Scholar

    [26]

    Gerdin G, Stygar W, Venneri F 1981 J. Appl. Phys. 52 3269Google Scholar

    [27]

    Christodoulides C E, Freeman J H 1976 Nucl. Instruments Methods 135 13Google Scholar

    [28]

    Davis H A, Bartsch R R, Olson J C, Rej D J, Waganaar W J 1997 J. Appl. Phys. 82 3223Google Scholar

    [29]

    Ryzhkov V A, Stepanov A V, Pyatkov I N, Remnev G E 2021 Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 1013 165671Google Scholar

    [30]

    Ryzhkov V A, Pyatkov I N, Remnev G E 2021 Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 998 165190Google Scholar

    [31]

    Pushkarev A I, Isakova Y I, Yu X, Khailov I P 2013 Rev. Sci. Instrum. 84

    [32]

    Dong Z H, Liu C, Han X G, Lei M K 2007 Surf. Coatings Technol. 201 5054Google Scholar

    [33]

    Masugata K, Chishiro E, Yatsui K 1998 Proceedings of the 12th International Conference on High-Power Particle Beams Haifa, Israel, June 12, 1998 pp222–225

    [34]

    杨海亮, 邱爱慈, 孙剑锋, 何小平, 汤俊萍, 王海洋, 李洪玉, 李静雅, 任书庆, 黄建军, 张嘉生, 彭建昌, 欧阳晓平, 张国光 2004 原子能科学技术 38 204

    Yang H L, Qiu A C, Sun J F, He X P, Tang J P, Wang H Y, Li H Y, Li J Y, Ren S Q, Huang J J, Zhang J S, Peng J C, Ouyang X P, Zhang G G 2004 Atom. Ener. Sci. Tech. 38 204

    [35]

    Yu X, Shen J, Isakova Y I, Zhong H W, Zhang J, Yan S, Zhang G L, Zhang X F, Le X Y 2015 Vacuum 122 12Google Scholar

    [36]

    屈苗, 喻晓, 张洁, 沈杰, 钟昊玟, 张艳燕, 颜莎, 张小富, 张高龙, 乐小云 2015 强激光与粒子束 27 216Google Scholar

    Qu M, Yu X, Zhang J, Shen J, Zhong H W, Zhang Y Y, Yan S, Zhang X F, Zhang G L, Le X Y 2015 High Power Laser and Particle Beams 27 7Google Scholar

    [37]

    刘庆兆 1994 脉冲辐射场诊断技术 (北京: 科学出版社) 第98页

    Liu Q Z 1994 Pulse Radiation Field Diagnosis Technology (Beijing: Science Press) p98

    [38]

    郑志鹏, 祝玉灿, 邵毓莺, 孙汉生 1986 核电子学与探测技术 6 112

    Zheng Z P, Zhu Y C, Shao Y Y, Sun H S 1986 Nucl. Elec. and Det. Tech. 6 112

    [39]

    Xu M F, Kuang S, Yu X, Zhang S J, Yan S, Remnev G E, Le X 2023 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 537 38Google Scholar

    [40]

    陈伯显, 张智 2011 核辐射物理及探测学 (哈尔滨: 哈尔滨工程大学出版社) 第146页

    Chen B X, Zhang Z 2011 Nuclear Radiation Physics and Detection (Harbin: Harbin Engineering University Press) p146

  • [1] 张世健, 喻晓, 钟昊玟, 梁国营, 许莫非, 张楠, 任建慧, 匡仕成, 颜莎, GennadyEfimovich Remnev, 乐小云. 烧蚀对强脉冲离子束在高分子材料中能量沉积的影响. 物理学报, 2020, 69(11): 115202. doi: 10.7498/aps.69.20200212
    [2] 梅策香, 张小安, 周贤明, 赵永涛, 任洁茹, 王兴, 雷瑜, 孙渊博, 程锐, 徐戈, 曾利霞. 高能脉冲C6+离子束激发Ni靶的K壳层X射线. 物理学报, 2017, 66(14): 143401. doi: 10.7498/aps.66.143401
    [3] 张洁, 钟昊玟, 沈杰, 梁国营, 崔晓军, 张小富, 张高龙, 颜莎, 喻晓, 乐小云. 强脉冲离子束辐照金属材料烧蚀产物特性分析. 物理学报, 2017, 66(5): 055202. doi: 10.7498/aps.66.055202
    [4] 喻晓, 沈杰, 钟昊玟, 屈苗, 张洁, 张高龙, 张小富, 颜莎, 乐小云. 强脉冲离子束辐照薄金属靶的热力学过程研究. 物理学报, 2015, 64(17): 175204. doi: 10.7498/aps.64.175204
    [5] 赵鸿飞, 杜磊, 何亮, 包军林. 硅单结晶体管γ射线辐照电阻变化规律研究. 物理学报, 2011, 60(2): 028501. doi: 10.7498/aps.60.028501
    [6] 邹慧, 荆洪阳, 王志平, 关庆丰. 强流脉冲电子束辐照诱发金属纯镍中的空位簇缺陷. 物理学报, 2010, 59(9): 6384-6389. doi: 10.7498/aps.59.6384
    [7] 关庆丰, 程笃庆, 邱冬华, 朱健, 王雪涛, 程秀围. 强流脉冲电子束辐照诱发多晶纯铝中的空位缺陷簇结构. 物理学报, 2009, 58(7): 4846-4852. doi: 10.7498/aps.58.4846
    [8] 程笃庆, 关庆丰, 朱健, 邱东华, 程秀围, 王雪涛. 强流脉冲电子束诱发纯镍表层纳米结构的形成机制. 物理学报, 2009, 58(10): 7300-7306. doi: 10.7498/aps.58.7300
    [9] 宫 野, 张建红, 王晓东, 吴 迪, 刘金远, 刘 悦, 王晓钢, 马腾才. 强流脉冲离子束辐照双层靶能量沉积的数值模拟. 物理学报, 2008, 57(8): 5095-5099. doi: 10.7498/aps.57.5095
    [10] 刘 霖, 叶玉堂, 吴云峰, 方 亮, 陆佳佳. GaAs表面不同运动状态H2SO4-H2O2-H2O液滴的红外辐射特性. 物理学报, 2007, 56(6): 3172-3177. doi: 10.7498/aps.56.3172
    [11] 吴 迪, 宫 野, 刘金远, 王晓钢, 刘 悦, 马腾才. 强流脉冲离子束烧蚀等离子体向背景气体中喷发的数值研究. 物理学报, 2007, 56(1): 333-337. doi: 10.7498/aps.56.333
    [12] 吴 迪, 宫 野, 刘金远, 王晓钢, 刘 悦, 马腾才. 强流脉冲离子束辐照靶材烧蚀效应二维数值研究. 物理学报, 2006, 55(1): 398-402. doi: 10.7498/aps.55.398
    [13] 吴 迪, 宫 野, 刘金远, 王晓钢, 刘 悦, 马腾才. 强流脉冲离子束辐照靶及其喷发的数值研究. 物理学报, 2006, 55(7): 3501-3505. doi: 10.7498/aps.55.3501
    [14] 牟宗信, 李国卿, 秦福文, 黄开玉, 车德良. 非平衡磁控溅射系统离子束流磁镜效应模型. 物理学报, 2005, 54(3): 1378-1384. doi: 10.7498/aps.54.1378
    [15] 谢旭东, 王清月, 柴 路. 频域标定飞秒脉冲干涉自相关迹及钛宝石振荡器实时啁啾监测. 物理学报, 2005, 54(8): 3657-3660. doi: 10.7498/aps.54.3657
    [16] 关庆丰, 安春香, 秦 颖, 邹建新, 郝胜志, 张庆瑜, 董 闯, 邹广田. 强流脉冲电子束应力诱发的微观结构. 物理学报, 2005, 54(8): 3927-3934. doi: 10.7498/aps.54.3927
    [17] 吴 迪, 宫 野, 刘金远, 王晓钢. 强流脉冲离子束与靶作用域值的研究. 物理学报, 2005, 54(4): 1636-1640. doi: 10.7498/aps.54.1636
    [18] 梅显秀, 徐军, 马腾才. 利用强流脉冲离子束技术在室温下沉积类金刚石薄膜研究. 物理学报, 2002, 51(8): 1875-1880. doi: 10.7498/aps.51.1875
    [19] 田人和, 张荟星. 强流重离子束在轴对称电场中的温度和能量展宽. 物理学报, 1992, 41(3): 408-412. doi: 10.7498/aps.41.408
    [20] 江兴流, 陈克凡, 朴禹伯. 新型毫微秒强流脉冲电子束和离子束发生装置. 物理学报, 1983, 32(10): 1344-1348. doi: 10.7498/aps.32.1344
计量
  • 文章访问数:  1588
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-25
  • 修回日期:  2023-06-04
  • 上网日期:  2023-06-26
  • 刊出日期:  2023-09-05

/

返回文章
返回