搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

烧蚀对强脉冲离子束在高分子材料中能量沉积的影响

张世健 喻晓 钟昊玟 梁国营 许莫非 张楠 任建慧 匡仕成 颜莎 GennadyEfimovich Remnev 乐小云

引用本文:
Citation:

烧蚀对强脉冲离子束在高分子材料中能量沉积的影响

张世健, 喻晓, 钟昊玟, 梁国营, 许莫非, 张楠, 任建慧, 匡仕成, 颜莎, GennadyEfimovich Remnev, 乐小云

Influence of ablation on energy deposition in polymer material under irradiation of intense pulsed ion beam

Zhang Shi-Jian, Yu Xiao, Zhong Hao-Wen, Liang Guo-Ying, Xu Mo-Fei, Zhang Nan, Ren Jian-Hui, Kuang Shi-Cheng, Yan Sha, Gennady Efimovich Remnev, Le Xiao-Yun
PDF
HTML
导出引用
  • 高能量密度纳秒量级强脉冲离子束辐照材料表面的烧蚀产物和束流的相互作用, 可能对束流在靶中的能量沉积产生影响, 进而影响烧蚀情况下的束流分析和相关应用的优化. 本文采用红外成像方法对横截面能量密度1.5—1.8 J/cm2的强脉冲离子束在304不锈钢和高分子材料上的能量沉积进行了测量分析. 结果表明在高分子材料上, 在超过一定能量密度后, 束流引发材料表面烧蚀产物的屏蔽效应使得大部分束流能量不能沉积在靶上. 采用有限元方法对束流引发的温度场分布进行了计算, 验证了高分子材料的低热导率以及低分解温度使其在脉冲辐照早期即开始热解, 烧蚀产物对后续束流能量的进一步沉积产生屏蔽. 此类效应在金属上存在的可能性和对束流诊断等应用的影响, 亦进行了讨论.
    Short-pulse length and high-power density, intense pulsed ion beam (IPIB) has been widely studied in material processing during past decades. Ablation effect plays a great role in the interaction between IPIB and material and may affect the energy deposition of IPIB, thus further influencing the beam application and diagnostics. Therefore, the investigation of ablation effect on energy deposition of IPIB in the irradiated material is of great significance for its applications and diagnostic techniques. In this work, experiments on the IPIB irradiation are carried out on the BIPPAB-450 accelerator at Beihang University. Its maximum accelerating voltage is 450 kV, peak current density is 150 A/cm2, energy density is 1.5–1.8 J/cm2 and pulse duration (FWHM) is 80 ns. Polymer materials which have low thermal conductivity, low decomposition temperature and thus yield to ablation under low beam density, such as polycarbonate (PC), polyvinyl chloride (PVC) and polymethyl methacrylate (PMMA), are chosen in the present research. The 304 stainless steel is used for calorimetric beam diagnostics and comparative analysis. Energy deposition in polymer material and 304 stainless steel are obtained by high infrared imaging diagnostics. It is revealed that the distributions of energy deposition in these two kinds of materials differ from each other obviously. The highest energy density deposited in the 304 stainless steel appears in the center of the irradiated area where focused is the beam with a higher energy density. However, the central energy density in polymer material turns out to be lower than the surrounding area, indicating that a large portion of the ion beam is prevented from reaching the target. Meanwhile, the simulation based on the finite element method is carried out for the thermal filed distribution and evolution under the IPIB irradiation. The simulation result indicates that the strong ablation can be generated on the target surface since the highest temperature caused by IPIB irradiation is much higher than its decomposition temperature. According to the results of experiments and simulation, the polymer material can start to be ablated at the initial stage of IPIB irradiation which will consume partial energy and the products of ablation may act as shielding to block the energy deposition in the same pulse.
      通信作者: 乐小云, xyle@buaa.edu.cn
    • 基金项目: 国家级-国家自然科学基金(11175012)
      Corresponding author: Le Xiao-Yun, xyle@buaa.edu.cn
    [1]

    Humphries S J 1980 Nucl. Fusion 20 1549Google Scholar

    [2]

    Le X Y, Zhao W J, Yan S, Han B X 2001 Curr. Appl. Phys. 1 219Google Scholar

    [3]

    Shulov V A, Nochovnaya N A, Remnev G E, Pellerin F, Monge-Cadet P 1998 Surf. Coat. Technol. 99 74Google Scholar

    [4]

    Remnev G E, Isakov I F, Opekounov M S, Matvienko V M, Ryzhkov V A, Struts V K, Grushin I I, Zakoutayev A N, Potyomkin A V, Tarbokov V A, Pushkaryov A N, Kutuzov V L, Ovsyannikov M Y 1999 Surf. Coat. Technol. 114 206Google Scholar

    [5]

    Zhao W J, Remnev G E, Yan S, Opekounov M S, Le X Y, Matvienko V M, Han B X, Xue J M, Wang Y G 2000 Rev. Sci. Instrum. 71 1045Google Scholar

    [6]

    谭畅 2006 博士学位论文 (大连: 大连理工大学)

    Tan C 2006 Ph.D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [7]

    宫野, 刘金远, 王晓钢, 刘悦, 马腾才, 吴迪 2007 物理学报 56 333Google Scholar

    Gong Y, Liu J Y, Wang X G, Liu Y, Ma T C, Wu D 2007 Acta Phys. Sin. 56 333Google Scholar

    [8]

    Yatsui K, Grigoriu C, Masugata K, Jiang W, Sonegawa T 1997 Jpn. J. Appl. Phys. 36 4928Google Scholar

    [9]

    梅显秀, 徐军, 马腾才 2002 物理学报 51 1875Google Scholar

    Mei X X, Xu J, Ma T C 2002 Acta Phys. Sin. 51 1875Google Scholar

    [10]

    Yatsui K, Grigoriu C, Kubo H, Masugata K, Shimotori Y 1995 Appl. Phys. Lett. 67 1214Google Scholar

    [11]

    Nakagawa Y, Grigoriu C, Masugata K, Jiang W, Yatsui K 1998 J. Mater. Sci. 33 529Google Scholar

    [12]

    张洁, 钟昊玟, 沈杰, 梁国营, 崔晓军, 张小富, 张高龙, 颜莎, 喻晓, 乐小云 2017 物理学报 66 055202Google Scholar

    Zhang J, Zhong H W, Shen J, Liang G Y, Cui X J, Zhang X F, Zhang G L, Yan S, Yu X, Le X Y 2017 Acta Phys. Sin. 66 055202Google Scholar

    [13]

    Zhang J, Yu X, Zhong H W, Wei B B, Qu M, Shen J, Zhang Y Y, Yan S, Zhang G L, Zhang X F, Le X Y 2015 Nucl. Instrum. Methods Phys. Res., Sect. B 365 210Google Scholar

    [14]

    Zhang J, Zhong H W, Ye Z A, Shen J, Liang G Y, Cui X J, Yu X, Zhang X F, Zhang G L, Yan S, Remnev G E, Le X Y 2017 Laser Part. Beams 35 108Google Scholar

    [15]

    Yu X, Shen J, Qu M, Liu W B, Zhong H W, Zhang J, Zhang Y Y, Yan S, Zhang G L, Zhang X F, Le X Y 2015 Vacuum 113 36Google Scholar

    [16]

    喻晓, 沈杰, 钟昊玟, 屈苗, 张洁, 张高龙, 张小富, 颜莎, 乐小云 2015 物理学报 64 216102Google Scholar

    Yu X, Shen J, Zhong H W, Qu M, Zhang J, Zhang G L, Zhang X F, Yan S, Le X Y 2015 Acta Phys. Sin. 64 216102Google Scholar

    [17]

    Yu X, Zhang S J, Stepanov A V, Shamanin V I, Zhong H W, Liang G Y, Xu M F, Zhang N, Kuang S C, Ren J H, Shang X Y, Yan S, Remnev G E, Le X Y 2020 Surf. Coat. Technol. 384 125351Google Scholar

    [18]

    张新兰, 张琴, 傅强, 周楠 2008 塑料工业 36 1Google Scholar

    Zhang X L, Zhang Q, Fu Q, Zhou N 2008 China Plastic Industry 36 1Google Scholar

    [19]

    谢飞, 苏正良, 文彦飞 2014 塑料工业 42 55Google Scholar

    Xie F, Su Z L, Wen Y F 2014 China Plastic Industry 42 55Google Scholar

    [20]

    王刚, 单岩 2005 Moldflow模具分析应用实例 (北京: 清华大学出版社) 第32页

    Wang G, Shan Y 2005 Application Examples of Mold Analysis by Moldflow (Beijing: Tsinghua University Press) p32 (in Chinese)

  • 图 1  IPIB辐照前后靶背面温度分布图 (a) 辐照前304不锈钢; (b) 辐照后304不锈钢; (c) 辐照后PC; (d) 辐照后PVC; (e) 辐照后PMMA

    Fig. 1.  Distribution of temperature on rear face before and after IPIB irradiation: (a) 304 stainless steel, before irradiation; (b) 304 stainless steel, after irradiation; (c) PC, after irradiation; (d) PVC, after irradiation; (e) PMMA, after irradiation.

    图 2  沿x方向能量密度分布图 (a) 304不锈钢; (b) PC; (c) PVC; (d) PMMA

    Fig. 2.  Distribution of energy density along x direction: (a) 304 stainless steel; (b) PC; (c) PVC; (d) PMMA.

    图 3  能量密度为1 J/cm2的IPIB产生的功率密度 (a) 304不锈钢; (b) PC

    Fig. 3.  IPIB power density distribution with cross-sectional energy density 1 J/cm2 in (a) 304 stainless steel; (b) PC.

    图 4  1 J/cm2的IPIB作用下的热场变化 (a) 304不锈钢; (b) PC

    Fig. 4.  Thermal field distribution after irradiation of IPIB with cross-sectional energy density of 1 J/cm2 in (a) 304 stainless steel; (b) PC

  • [1]

    Humphries S J 1980 Nucl. Fusion 20 1549Google Scholar

    [2]

    Le X Y, Zhao W J, Yan S, Han B X 2001 Curr. Appl. Phys. 1 219Google Scholar

    [3]

    Shulov V A, Nochovnaya N A, Remnev G E, Pellerin F, Monge-Cadet P 1998 Surf. Coat. Technol. 99 74Google Scholar

    [4]

    Remnev G E, Isakov I F, Opekounov M S, Matvienko V M, Ryzhkov V A, Struts V K, Grushin I I, Zakoutayev A N, Potyomkin A V, Tarbokov V A, Pushkaryov A N, Kutuzov V L, Ovsyannikov M Y 1999 Surf. Coat. Technol. 114 206Google Scholar

    [5]

    Zhao W J, Remnev G E, Yan S, Opekounov M S, Le X Y, Matvienko V M, Han B X, Xue J M, Wang Y G 2000 Rev. Sci. Instrum. 71 1045Google Scholar

    [6]

    谭畅 2006 博士学位论文 (大连: 大连理工大学)

    Tan C 2006 Ph.D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [7]

    宫野, 刘金远, 王晓钢, 刘悦, 马腾才, 吴迪 2007 物理学报 56 333Google Scholar

    Gong Y, Liu J Y, Wang X G, Liu Y, Ma T C, Wu D 2007 Acta Phys. Sin. 56 333Google Scholar

    [8]

    Yatsui K, Grigoriu C, Masugata K, Jiang W, Sonegawa T 1997 Jpn. J. Appl. Phys. 36 4928Google Scholar

    [9]

    梅显秀, 徐军, 马腾才 2002 物理学报 51 1875Google Scholar

    Mei X X, Xu J, Ma T C 2002 Acta Phys. Sin. 51 1875Google Scholar

    [10]

    Yatsui K, Grigoriu C, Kubo H, Masugata K, Shimotori Y 1995 Appl. Phys. Lett. 67 1214Google Scholar

    [11]

    Nakagawa Y, Grigoriu C, Masugata K, Jiang W, Yatsui K 1998 J. Mater. Sci. 33 529Google Scholar

    [12]

    张洁, 钟昊玟, 沈杰, 梁国营, 崔晓军, 张小富, 张高龙, 颜莎, 喻晓, 乐小云 2017 物理学报 66 055202Google Scholar

    Zhang J, Zhong H W, Shen J, Liang G Y, Cui X J, Zhang X F, Zhang G L, Yan S, Yu X, Le X Y 2017 Acta Phys. Sin. 66 055202Google Scholar

    [13]

    Zhang J, Yu X, Zhong H W, Wei B B, Qu M, Shen J, Zhang Y Y, Yan S, Zhang G L, Zhang X F, Le X Y 2015 Nucl. Instrum. Methods Phys. Res., Sect. B 365 210Google Scholar

    [14]

    Zhang J, Zhong H W, Ye Z A, Shen J, Liang G Y, Cui X J, Yu X, Zhang X F, Zhang G L, Yan S, Remnev G E, Le X Y 2017 Laser Part. Beams 35 108Google Scholar

    [15]

    Yu X, Shen J, Qu M, Liu W B, Zhong H W, Zhang J, Zhang Y Y, Yan S, Zhang G L, Zhang X F, Le X Y 2015 Vacuum 113 36Google Scholar

    [16]

    喻晓, 沈杰, 钟昊玟, 屈苗, 张洁, 张高龙, 张小富, 颜莎, 乐小云 2015 物理学报 64 216102Google Scholar

    Yu X, Shen J, Zhong H W, Qu M, Zhang J, Zhang G L, Zhang X F, Yan S, Le X Y 2015 Acta Phys. Sin. 64 216102Google Scholar

    [17]

    Yu X, Zhang S J, Stepanov A V, Shamanin V I, Zhong H W, Liang G Y, Xu M F, Zhang N, Kuang S C, Ren J H, Shang X Y, Yan S, Remnev G E, Le X Y 2020 Surf. Coat. Technol. 384 125351Google Scholar

    [18]

    张新兰, 张琴, 傅强, 周楠 2008 塑料工业 36 1Google Scholar

    Zhang X L, Zhang Q, Fu Q, Zhou N 2008 China Plastic Industry 36 1Google Scholar

    [19]

    谢飞, 苏正良, 文彦飞 2014 塑料工业 42 55Google Scholar

    Xie F, Su Z L, Wen Y F 2014 China Plastic Industry 42 55Google Scholar

    [20]

    王刚, 单岩 2005 Moldflow模具分析应用实例 (北京: 清华大学出版社) 第32页

    Wang G, Shan Y 2005 Application Examples of Mold Analysis by Moldflow (Beijing: Tsinghua University Press) p32 (in Chinese)

  • [1] 丁明松, 刘庆宗, 江涛, 傅杨奥骁, 李鹏, 梅杰. 表面烧蚀对等离子体的影响及其与电磁场相互作用. 物理学报, 2024, 73(11): 115204. doi: 10.7498/aps.73.20231733
    [2] 何民卿, 张华, 李明强, 彭力, 周沧涛. 快点火中质子的能量沉积和神光II升级装置上的质子束的产生. 物理学报, 2023, 72(9): 095201. doi: 10.7498/aps.72.20222005
    [3] 周斌, 于全芝, 胡志良, 陈亮, 张雪荧, 梁天骄. 高能质子在散裂靶中的能量沉积计算与实验验证. 物理学报, 2021, 70(5): 052401. doi: 10.7498/aps.70.20201504
    [4] 王凯, 孙靖雅, 潘昌基, 王飞飞, 张可, 陈治成. 飞秒激光辐照二硫化钨的超快动态响应及时域整形调制. 物理学报, 2021, 70(20): 205201. doi: 10.7498/aps.70.20210737
    [5] 张洁, 钟昊玟, 沈杰, 梁国营, 崔晓军, 张小富, 张高龙, 颜莎, 喻晓, 乐小云. 强脉冲离子束辐照金属材料烧蚀产物特性分析. 物理学报, 2017, 66(5): 055202. doi: 10.7498/aps.66.055202
    [6] 喻晓, 沈杰, 钟昊玟, 屈苗, 张洁, 张高龙, 张小富, 颜莎, 乐小云. 强脉冲离子束辐照薄金属靶的热力学过程研究. 物理学报, 2015, 64(17): 175204. doi: 10.7498/aps.64.175204
    [7] 冯培培, 吴寒, 张楠. 超短脉冲激光烧蚀石墨产生的喷射物的时间分辨发射光谱研究. 物理学报, 2015, 64(21): 214201. doi: 10.7498/aps.64.214201
    [8] 盛亮, 李阳, 吴坚, 袁媛, 赵吉祯, 张美, 彭博栋, 黑东炜. 双绞铝丝纳秒电爆炸实验研究. 物理学报, 2014, 63(20): 205203. doi: 10.7498/aps.63.205203
    [9] 石桓通, 邹晓兵, 赵屾, 朱鑫磊, 王新新. 并联金属丝提高电爆炸丝沉积能量的数值模拟. 物理学报, 2014, 63(14): 145206. doi: 10.7498/aps.63.145206
    [10] 王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农. 飞秒激光烧蚀金属靶的冲击温度. 物理学报, 2013, 62(21): 210601. doi: 10.7498/aps.62.210601
    [11] 刘腊群, 刘大刚, 王学琼, 杨超, 夏蒙重, 彭凯. 磁绝缘传输线中心汇流区电子能量沉积及温度变化的数值模拟研究. 物理学报, 2012, 61(16): 162902. doi: 10.7498/aps.61.162902
    [12] 许慎跃, 马新文, 任雪光, T. Pflüger, A. Dorn, J. Ullrich. 甲烷分子电子碰撞电离和解离的实验研究. 物理学报, 2011, 60(9): 093401. doi: 10.7498/aps.60.093401
    [13] 方美华, 魏志勇, 杨 浩, 程金星. 高能铁离子在水介质中核反应过程所导致的能量沉积. 物理学报, 2008, 57(10): 6196-6201. doi: 10.7498/aps.57.6196
    [14] 宫 野, 张建红, 王晓东, 吴 迪, 刘金远, 刘 悦, 王晓钢, 马腾才. 强流脉冲离子束辐照双层靶能量沉积的数值模拟. 物理学报, 2008, 57(8): 5095-5099. doi: 10.7498/aps.57.5095
    [15] 吴 迪, 宫 野, 刘金远, 王晓钢, 刘 悦, 马腾才. 强流脉冲离子束烧蚀等离子体向背景气体中喷发的数值研究. 物理学报, 2007, 56(1): 333-337. doi: 10.7498/aps.56.333
    [16] 施研博, 应阳君, 李金鸿. α粒子的慢化过程对D-T等离子体聚变燃烧的影响. 物理学报, 2007, 56(12): 6911-6917. doi: 10.7498/aps.56.6911
    [17] 吴 迪, 宫 野, 刘金远, 王晓钢, 刘 悦, 马腾才. 强流脉冲离子束辐照靶材烧蚀效应二维数值研究. 物理学报, 2006, 55(1): 398-402. doi: 10.7498/aps.55.398
    [18] 李 华. 静态随机存储器单粒子翻转的Monte Carlo模拟. 物理学报, 2006, 55(7): 3540-3545. doi: 10.7498/aps.55.3540
    [19] 谭新玉, 张端明, 李智华, 关 丽, 李 莉. 纳秒脉冲激光沉积薄膜过程中的烧蚀特性研究. 物理学报, 2005, 54(8): 3915-3921. doi: 10.7498/aps.54.3915
    [20] 任黎明, 陈宝钦, 谭震宇. Monte Carlo方法研究低能电子束曝光沉积能分布规律. 物理学报, 2002, 51(3): 512-518. doi: 10.7498/aps.51.512
计量
  • 文章访问数:  5540
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-12
  • 修回日期:  2020-03-23
  • 刊出日期:  2020-06-05

/

返回文章
返回