搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光加速电子束放射照相的模拟研究

肖渊 王晓方 滕建 陈晓虎 陈媛 洪伟

引用本文:
Citation:

激光加速电子束放射照相的模拟研究

肖渊, 王晓方, 滕建, 陈晓虎, 陈媛, 洪伟

Simulation study of radiography using laser-produced electron beam

Xiao Yuan, Wang Xiao-Fang, Teng Jian, Chen Xiao-Hu, Chen Yuan, Hong Wei
PDF
导出引用
  • 激光加速产生高能量电子束具有源尺寸小、准单能、脉宽窄等特征. 通过蒙特卡罗程序模拟研究了高能电子束的放射照相. 模拟了200 MeV准直电子束照射台阶靶、厚铁靶, 11 MeV点源电子束照射惯性约束聚变模型靶, 以及70 MeV点源电子束在激光等离子体磁场下的偏转. 结果表明激光加速电子束在探伤厚材料内部、确认薄材料界面、测量电磁场等诊断中具有高时空分辨、灵敏等能力.
    Laser accelerated high-energy electron beam has the properties of small source size, quasi-monoenergetic, and short duration. In this paper the radiography by the electron beam is simulated using a Monte-Carlo code. Various radiographies are simulated, such as a step target and a thick iron block of inside cracks by a collimated 200-MeV beam, a modelled inertial-confinement-fusion target by a 11-MeV point-like beam, and the deflectometry of a 70-MeV electron beam by a laser plasma generated magnetic field. The obtained results indicate that the radiography by a laser-accelerated electron beam is of high spatial resolution and sensitivity in the detection of the inside defects of material, identification of the interface of thin material, and diagnosis of electromagnetic field.
    • 基金项目: 国家自然科学基金(批准号: 11075160)、中国工程物理研究院科技发展基金(批准号: 2012B012008) 和中国科学院资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11075160), China Academy of Engineering Physics (Grant No.2012B012008) and the Chinese Academy of Sciences.
    [1]

    Tzortzakis S, Prade B, Franco M, Mysyrowicz A 2000 Opt. Commun. 181 123

    [2]

    Centurion M, Pu Y, Liu Z W, Psaltis D, Hansch T W 2004 Opt. Lett. 29 772

    [3]

    Wang C, Wang W, Sun J R, Fang Z H, Wu J, Fu S Z, Ma W X, Gu Y, Wang S J, Zhang G P, Zheng W D, Zhang T X, Peng H M, Shao P, Yi K, Lin Z Q, Wang Z S, Wang H C, Zhou B, Chen L Y, Jin C S 2005 Acta. Phys. Sin. 54 202 (in Chinese) [王琛, 王伟, 孙今人, 方智恒, 吴 江, 傅思祖, 马伟新, 顾援, 王世绩, 张国平, 郑无敌, 张覃鑫, 彭惠民, 邵 平, 易 葵, 林尊琪, 王占山, 王洪昌, 周 斌, 陈玲燕, 金春水 2005 物理学报 54 202]

    [4]

    Koehler A M 1968 Science 160 303

    [5]

    West D, Sherwood A C 1972 Nature 239 157

    [6]

    Teng J, Hong W, Zhao Z Q, Wu S C, Qin X Z, He Y L, Gu Y Q, Ding Y K 2009 Acta Phys. Sin. 58 1635 (in Chinese) [滕建, 洪伟, 赵宗清, 巫顺超, 秦孝尊, 何颖玲, 谷渝秋, 丁永坤 2009 物理学报 58 1635]

    [7]

    Li C K, Seguin F H, Rygg J R, Frenje J A, Manuel M, Petrasso R D, Betti R, Delettrez J, Knauer J P, Marshall F, Meyerhofer D D, Shvarts D, Smalyuk V A, Stoeckl C 2008 Phys. Rev. Lett. 100 225001

    [8]

    Sarri G, Cecchetti C A, Romagnani L, Brown C M, Hoarty D J, James S, Morton J, Dieckmann M E, Jung R, Will O, Bulanov S V, Pegoraro F, Borghese M 2010 New J. Phys. 12 045006l

    [9]

    Mackinnon A J, Patel P K, Town R P, Edwards M J, Phillips T, Lerner S C, Price D W, Hicks D, Key M H, Hatchett S, Wilks S C, Borghesi M, Romagnani L, Kar S, Toncian T, Pretzler G, Willi O, Koenig M, Martinolli E, Lepape S, Benuzzi-Mounaix A, Audebert P, Gauthier J C, King J, Snavely R, Freeman R R 2004 Rev. Sci. Instrum. 75 3531

    [10]

    Li C K, Seguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P J, Amendt P A, Hatchett S P, Landen O L, Mackinnon A J, Patel P K, Smalyuk V A, Sangster T C, Knauer J P 2006 Phys. Rev. Lett. 97 135003

    [11]

    Mackinnon A J, Patel P K, Borghesi M, Clarke R C, Freeman R R, Habara H, Hatchett S P, Hey D, Hicks D G, Kar S, Key M H, King J A, Lancaster K, Neely D, Nikkro A, Norreys P A, Notley M M, Phillips T W, Romagnani L, Snavely R A, Stephens R B, Town R P J 2006 Phys. Rev. Lett. 97 045001

    [12]

    Snavely R A, Key M H, Hatchett S P, Cowan T E, Roth M, Phillips T W, Stoyer M A, Henry E A, Sangster T C, Singh M S, Wilks S C, MacKinnon A, Offenberger A, Pennington D M, Yasuike K, Langdon A B, Lasinski B F, Johnson J, Perry M D, Campbell E M 2000 Phys. Rev. Lett. 85 2945

    [13]

    Leemans W P, Nagler B, Gonsalves A J, Toth C, Nakamura K, Geddes C G R, Esarey E, Schroeder C B, Hooker S M 2006 Nat. Phys. 2 10

    [14]

    Faure J, Glinec Y, Pukhov A, Kiselev S, Gordienko S, Lefebvre E, Rousseau J P, Burgy F, Malka V 2004 Nature 431 541

    [15]

    Mangles S P D, Murphy C D, Najmudin Z, Thomas A G R, Collier J L, Dangor A E, Divall E, Foster P S, Gallacher J G, Hooker C J, Jaroszynski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R, Krushelnick K 2004 Nature 431 535

    [16]

    Centurion M, Reckenthaeler P, Trushin S A, Krausz F, Fill E E 2008 Nat. Photon. 2 315

    [17]

    Inoue S, Tokita S, Otani K, Hashida M, Sakabe S 2011 Appl. Phys. Lett. 99 031501

    [18]

    Mangles S P D, Walton B R, Najmudin Z, Dangor A E, Krushelnick K, Malka V, Manclossi M, Lopes N, Carias C, Mendes G, Dorchies F 2006 Laser Part. Beams 24 185

    [19]

    Ramanathan V, Banerjee S, Powers N, Cunningham N, Chandler-Smith N A, Zhao K, Brown K, Umstadter D, Clarke S, Pozzi S, Beene J, Vane C R, Schultz D 2010 Phys. Rev. ST Accel. Beams 13 104701

    [20]

    Wang X L, Li C, Shao M, Chen H F 2009 The Technique of Particle Detection (Hefei: USTC Press) p26 (in Chinese) [汪晓莲, 李澄, 邵明, 陈宏芳 2009 粒子探测技术 (合肥: 中国科学技术大学出版社) 第26页]

    [21]

    Cecchetti C A, Borghesi M, Fuchs J, Schurtz G, Kar S, Macchi A, Romagnani L, Wilson P A, Antici P, Jung R, Osterholtz J, Pipahl C A, Willi O, Schiavi A, Notley M, Neely D 2009 Phys. Plasmas 16 043102

    [22]

    Zhong J Y, Li Y T, Wang X G, Wang J Q, Dong Q L, Xiao C J, Wang S J, Liu X, Zhang L, An L, Wang F L, Zhu J Q, Gu Y, He X T, Zhao G, Zhang J 2010 Nat. Phys. 6 984

  • [1]

    Tzortzakis S, Prade B, Franco M, Mysyrowicz A 2000 Opt. Commun. 181 123

    [2]

    Centurion M, Pu Y, Liu Z W, Psaltis D, Hansch T W 2004 Opt. Lett. 29 772

    [3]

    Wang C, Wang W, Sun J R, Fang Z H, Wu J, Fu S Z, Ma W X, Gu Y, Wang S J, Zhang G P, Zheng W D, Zhang T X, Peng H M, Shao P, Yi K, Lin Z Q, Wang Z S, Wang H C, Zhou B, Chen L Y, Jin C S 2005 Acta. Phys. Sin. 54 202 (in Chinese) [王琛, 王伟, 孙今人, 方智恒, 吴 江, 傅思祖, 马伟新, 顾援, 王世绩, 张国平, 郑无敌, 张覃鑫, 彭惠民, 邵 平, 易 葵, 林尊琪, 王占山, 王洪昌, 周 斌, 陈玲燕, 金春水 2005 物理学报 54 202]

    [4]

    Koehler A M 1968 Science 160 303

    [5]

    West D, Sherwood A C 1972 Nature 239 157

    [6]

    Teng J, Hong W, Zhao Z Q, Wu S C, Qin X Z, He Y L, Gu Y Q, Ding Y K 2009 Acta Phys. Sin. 58 1635 (in Chinese) [滕建, 洪伟, 赵宗清, 巫顺超, 秦孝尊, 何颖玲, 谷渝秋, 丁永坤 2009 物理学报 58 1635]

    [7]

    Li C K, Seguin F H, Rygg J R, Frenje J A, Manuel M, Petrasso R D, Betti R, Delettrez J, Knauer J P, Marshall F, Meyerhofer D D, Shvarts D, Smalyuk V A, Stoeckl C 2008 Phys. Rev. Lett. 100 225001

    [8]

    Sarri G, Cecchetti C A, Romagnani L, Brown C M, Hoarty D J, James S, Morton J, Dieckmann M E, Jung R, Will O, Bulanov S V, Pegoraro F, Borghese M 2010 New J. Phys. 12 045006l

    [9]

    Mackinnon A J, Patel P K, Town R P, Edwards M J, Phillips T, Lerner S C, Price D W, Hicks D, Key M H, Hatchett S, Wilks S C, Borghesi M, Romagnani L, Kar S, Toncian T, Pretzler G, Willi O, Koenig M, Martinolli E, Lepape S, Benuzzi-Mounaix A, Audebert P, Gauthier J C, King J, Snavely R, Freeman R R 2004 Rev. Sci. Instrum. 75 3531

    [10]

    Li C K, Seguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P J, Amendt P A, Hatchett S P, Landen O L, Mackinnon A J, Patel P K, Smalyuk V A, Sangster T C, Knauer J P 2006 Phys. Rev. Lett. 97 135003

    [11]

    Mackinnon A J, Patel P K, Borghesi M, Clarke R C, Freeman R R, Habara H, Hatchett S P, Hey D, Hicks D G, Kar S, Key M H, King J A, Lancaster K, Neely D, Nikkro A, Norreys P A, Notley M M, Phillips T W, Romagnani L, Snavely R A, Stephens R B, Town R P J 2006 Phys. Rev. Lett. 97 045001

    [12]

    Snavely R A, Key M H, Hatchett S P, Cowan T E, Roth M, Phillips T W, Stoyer M A, Henry E A, Sangster T C, Singh M S, Wilks S C, MacKinnon A, Offenberger A, Pennington D M, Yasuike K, Langdon A B, Lasinski B F, Johnson J, Perry M D, Campbell E M 2000 Phys. Rev. Lett. 85 2945

    [13]

    Leemans W P, Nagler B, Gonsalves A J, Toth C, Nakamura K, Geddes C G R, Esarey E, Schroeder C B, Hooker S M 2006 Nat. Phys. 2 10

    [14]

    Faure J, Glinec Y, Pukhov A, Kiselev S, Gordienko S, Lefebvre E, Rousseau J P, Burgy F, Malka V 2004 Nature 431 541

    [15]

    Mangles S P D, Murphy C D, Najmudin Z, Thomas A G R, Collier J L, Dangor A E, Divall E, Foster P S, Gallacher J G, Hooker C J, Jaroszynski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R, Krushelnick K 2004 Nature 431 535

    [16]

    Centurion M, Reckenthaeler P, Trushin S A, Krausz F, Fill E E 2008 Nat. Photon. 2 315

    [17]

    Inoue S, Tokita S, Otani K, Hashida M, Sakabe S 2011 Appl. Phys. Lett. 99 031501

    [18]

    Mangles S P D, Walton B R, Najmudin Z, Dangor A E, Krushelnick K, Malka V, Manclossi M, Lopes N, Carias C, Mendes G, Dorchies F 2006 Laser Part. Beams 24 185

    [19]

    Ramanathan V, Banerjee S, Powers N, Cunningham N, Chandler-Smith N A, Zhao K, Brown K, Umstadter D, Clarke S, Pozzi S, Beene J, Vane C R, Schultz D 2010 Phys. Rev. ST Accel. Beams 13 104701

    [20]

    Wang X L, Li C, Shao M, Chen H F 2009 The Technique of Particle Detection (Hefei: USTC Press) p26 (in Chinese) [汪晓莲, 李澄, 邵明, 陈宏芳 2009 粒子探测技术 (合肥: 中国科学技术大学出版社) 第26页]

    [21]

    Cecchetti C A, Borghesi M, Fuchs J, Schurtz G, Kar S, Macchi A, Romagnani L, Wilson P A, Antici P, Jung R, Osterholtz J, Pipahl C A, Willi O, Schiavi A, Notley M, Neely D 2009 Phys. Plasmas 16 043102

    [22]

    Zhong J Y, Li Y T, Wang X G, Wang J Q, Dong Q L, Xiao C J, Wang S J, Liu X, Zhang L, An L, Wang F L, Zhu J Q, Gu Y, He X T, Zhao G, Zhang J 2010 Nat. Phys. 6 984

  • [1] 王丽敏, 段丙皇, 许献国, 李昊, 陈治军, 杨坤杰, 张硕. 基于蒙特卡罗模拟研究锆钛酸铅镧材料的中子辐照损伤. 物理学报, 2022, 71(7): 076101. doi: 10.7498/aps.71.20212041
    [2] 李亮亮, 王晓方. 高能带电粒子束对陡峭密度梯度区照相的散射效应解析模型及散射调制现象的特征. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212269
    [3] 李亮亮, 王晓方. 高能带电粒子束对陡峭密度梯度区照相的散射效应解析模型. 物理学报, 2022, 71(11): 115201. doi: 10.7498/aps.70.20212269
    [4] 周斌, 于全芝, 张宏斌, 张雪荧, 鞠永芹, 陈亮, 阮锡超. 80.5 MeV/u碳离子诱发铜靶的放射性剩余产物测量. 物理学报, 2021, 70(7): 072501. doi: 10.7498/aps.70.20201503
    [5] 陈锋, 郑娜, 许海波. 质子照相中基于能量损失的密度重建. 物理学报, 2018, 67(20): 206101. doi: 10.7498/aps.67.20181039
    [6] 陈媛, 王晓方, 邵光超. 电子束放射照相的特性与参数优化. 物理学报, 2015, 64(15): 154101. doi: 10.7498/aps.64.154101
    [7] 梁文龙, 王亦曼, 刘伟, 李洪义, 王金淑. 用于真空电子太赫兹器件的微型热阴极电子束源研究. 物理学报, 2014, 63(5): 057901. doi: 10.7498/aps.63.057901
    [8] 华钰超, 董源, 曹炳阳. 硅纳米薄膜中声子弹道扩散导热的蒙特卡罗模拟. 物理学报, 2013, 62(24): 244401. doi: 10.7498/aps.62.244401
    [9] 兰木, 向钢, 辜刚旭, 张析. 一种晶体表面水平纳米线生长机理的蒙特卡罗模拟研究 . 物理学报, 2012, 61(22): 228101. doi: 10.7498/aps.61.228101
    [10] 樊小辉, 赵兴宇, 王丽娜, 张丽丽, 周恒为, 张晋鲁, 黄以能. 分子串模型中空间弛豫模式的弛豫动力学的蒙特卡罗模拟. 物理学报, 2011, 60(12): 126401. doi: 10.7498/aps.60.126401
    [11] 全荣辉, 张振龙, 韩建伟, 黄建国, 闫小娟. 电子辐照下聚合物介质深层充电现象研究. 物理学报, 2009, 58(2): 1205-1211. doi: 10.7498/aps.58.1205
    [12] 高飞, 山田亮子, 渡边光男, 刘华锋. 应用蒙特卡罗模拟进行正电子发射断层成像仪散射特性分析. 物理学报, 2009, 58(5): 3584-3591. doi: 10.7498/aps.58.3584
    [13] 徐兰青, 李 晖, 肖郑颖. 基于蒙特卡罗模拟的散射介质中后向光散射模型及分析应用. 物理学报, 2008, 57(9): 6030-6035. doi: 10.7498/aps.57.6030
    [14] 张永辉, 常安碧, 向 飞, 宋法伦, 康 强, 罗 敏, 李名加, 龚胜刚. 电功率20 GW重复频率强流电子束二极管研究. 物理学报, 2007, 56(10): 5754-5757. doi: 10.7498/aps.56.5754
    [15] 和青芳, 徐 征, 刘德昂, 徐叙瑢. 蒙特卡罗方法模拟薄膜电致发光器件中碰撞离化的作用. 物理学报, 2006, 55(4): 1997-2002. doi: 10.7498/aps.55.1997
    [16] 巩华荣, 宫玉彬, 魏彦玉, 唐昌建, 薛东海, 王文祥. 考虑到束-波相互作用的速调管离子噪声二维模拟. 物理学报, 2006, 55(10): 5368-5374. doi: 10.7498/aps.55.5368
    [17] 李 弘, 苏 铁, 欧阳亮, 王慧慧, 白小燕, 陈志鹏, 刘万东. 电子束产生大尺度等离子体过程的数值模拟研究. 物理学报, 2006, 55(7): 3506-3513. doi: 10.7498/aps.55.3506
    [18] 张永辉, 马乔生, 向 飞, 甘延青, 常安碧, 刘 忠, 周传明. 重复脉冲强流电子束传输技术研究. 物理学报, 2005, 54(7): 3111-3115. doi: 10.7498/aps.54.3111
    [19] 王志军, 董丽芳, 尚 勇. 电子助进化学气相沉积金刚石中发射光谱的蒙特卡罗模拟. 物理学报, 2005, 54(2): 880-885. doi: 10.7498/aps.54.880
    [20] 郭宝增. 用全带Monte Carlo方法模拟纤锌矿相GaN和ZnO材料的电子输运特性. 物理学报, 2002, 51(10): 2344-2348. doi: 10.7498/aps.51.2344
计量
  • 文章访问数:  6515
  • PDF下载量:  826
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-27
  • 修回日期:  2012-07-01
  • 刊出日期:  2012-12-05

激光加速电子束放射照相的模拟研究

  • 1. 中国科学技术大学近代物理系, 合肥 230026;
  • 2. 中国工程物理研究院激光聚变研究中心, 绵阳 621900
    基金项目: 国家自然科学基金(批准号: 11075160)、中国工程物理研究院科技发展基金(批准号: 2012B012008) 和中国科学院资助的课题.

摘要: 激光加速产生高能量电子束具有源尺寸小、准单能、脉宽窄等特征. 通过蒙特卡罗程序模拟研究了高能电子束的放射照相. 模拟了200 MeV准直电子束照射台阶靶、厚铁靶, 11 MeV点源电子束照射惯性约束聚变模型靶, 以及70 MeV点源电子束在激光等离子体磁场下的偏转. 结果表明激光加速电子束在探伤厚材料内部、确认薄材料界面、测量电磁场等诊断中具有高时空分辨、灵敏等能力.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回