搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于超声分子束束流特性测试的纹影系统研制及应用

殷娇 肖国梁 陈程远 冯北滨 张轶泼 钟武律

引用本文:
Citation:

用于超声分子束束流特性测试的纹影系统研制及应用

殷娇, 肖国梁, 陈程远, 冯北滨, 张轶泼, 钟武律

Development and applications of schlieren system for measuring characteristics of supersonic molecular beam

Yin Jiao, Xiao Guo-Liang, Chen Cheng-Yuan, Feng Bei-Bin, Zhang Yi-Po, Zhong Wu-Lü
PDF
HTML
导出引用
  • 超声分子束注入加料技术是用于磁约束聚变等离子体燃料补充的方法之一. 为优化超声分子束注入束流特性, 提升超声分子束注入加料效率以及深入研究分子束与等离子体相互作用, 研制了用于超声分子束束流特性测试的诊断系统并开展了应用测试. 基于超声分子束注入束流具有透明、超高速等特点, 该诊断系统主要利用纹影法配合高速相机进行束流特性测量, 其中纹影系统设计为“Z”字型反射式. 该系统应用在超声分子束束流测试平台上, 测试了分子束束流基本特征. 为验证系统的有效性, 使用不同形状(圆孔及锥形一体式)喷嘴在大气和真空条件下开展了一系列测试, 分别获得了二氧化碳气体及氘气在不同条件下的束流轮廓. 该系统为超声分子束束流优化提供了直接测试手段.
    Supersonic molecular beam injection (SMBI) is an effective fueling method for the magnetic fusion plasmas. The fueling method was first proposed in the HL-1 tokamak, and now has been applied to several tokamaks and stellarators. Pulsed molecular beam passes from a Laval type nozzle and has a high instantaneous intensity, high directionality and deep deposition in the plasma. The fueling efficiency is higher than the gas puffing efficiency. In addition, it is widely used for controlling plasma density and investigating plasma physics. To further improve the fueling capability in future fusion devices, it is highly desirable to optimize the characteristic of the SMB and further investigate the interactions between the molecular beam and the plasma. In this paper, a schlieren diagnostic system is developed to measure the parameters of molecular beam, and the testing application is performed. The schlieren system, which is based on the schlieren photography, is designed with the zigzag optical path and equipped on the SMBI testing platform to measure the characteristics of the supersonic molecular beam. In order to verify the effectiveness of the system, a series of tests is carried out with different nozzle shapes under atmospheric and vacuum conditions. The beam profiles of CO2 and D2 under different background pressures are obtained. The testing results indicate that the directionality of the integrated Laval nozzle is much better than that of the pinhole nozzle. The schlieren system provides a testing tool for optimizing the supersonic molecular beam.
      通信作者: 钟武律, zhongwl@swip.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFE0301106)、国家自然科学基金优秀青年基金(批准号: 11922503)和中核集团“青年英才计划”资助的课题.
      Corresponding author: Zhong Wu-Lü, zhongwl@swip.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFE0301106), the Excellent Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11922503), and the Scientific Research Program for Young Talents of China National Nuclear Corporation
    [1]

    Yao L H, Tang N Y, Cui Z Y, et al. 1998 Nucl. Fusion 38 631Google Scholar

    [2]

    Yu D L, Chen C Y, Yao L H, et al. 2012 Nucl. Fusion 52 082001Google Scholar

    [3]

    Zheng X W, Li J G, Hu J S, et al. 2013 Plasma Phys. Controlled. Fusion 55 115010Google Scholar

    [4]

    Chen C Y, Yu D L, Feng B B, et al. 2016 Rev. Sci. Instrum. 87 093503Google Scholar

    [5]

    Xiao W W, Zou X L, Ding X T, et al. 2010 Phys. Rev. Lett. 104 215001Google Scholar

    [6]

    Sun H J, Ding X T, Yao L H, et al. 2010 Plasma Phys. Controlled Fusion 52 045003Google Scholar

    [7]

    Duan X R, Dong J Q, Yan L W, et al. 2010 Nucl. Fusion 50 095011Google Scholar

    [8]

    Zhong W L, Zou X L, Liang A S, et al. 2020 Nucl. Fusion 60 082002Google Scholar

    [9]

    Xiao W W, Diamond P H, Zou X L, et al. 2012 Nucl. Fusion 52 114027Google Scholar

    [10]

    Zhong W L, Zou X L, Feng B B, et al. 2019 Nucl. Fusion 59 076033Google Scholar

    [11]

    Duan X R, Liu Y, Xu M, et al. 2017 Nucl. Fusion 57 102013Google Scholar

    [12]

    Huang D W, Chen Z Y, Tong R H, et al. 2017 Plasma Phys. Controlled Fusion 59 085002Google Scholar

    [13]

    Baldzuhn J, Yao L H, W7-AS Team 2003 30th EPS Conference on Controlled Fusion and Plasma Physics St. Petersburg, Russia, July 7−11, 2003 p4.166pd

    [14]

    Pégourié B, Tsitrone E, Dejarnac R, et al. 2003 J. Nucl. Mater. 313 539Google Scholar

    [15]

    Kwak J G, Oh Y K, Yang H L, et al. 2013 Nucl. Fusion 53 104005Google Scholar

    [16]

    Takenaga H, Miyo Y, Bucalossi J, et al. 2010 Nucl. Fusion 50 115003Google Scholar

    [17]

    Xiao J S, Yang Z J, Zhuang G, et al. 2014 Plasma Sci. Technol. l 16Google Scholar

    [18]

    冯北滨, 肖国梁, 陈程远, 等 2019 CFETR集成工程设计年会暨聚变堆设计研讨会 中国黄山, 2019年 9月24日, 第1−53页

    Feng B B, Xiao G L, Chen C Y, et al. 2019 Annual Meeting of CFETR Integrated Design & Fusion Reactor Design Workshop, Huangshan, China, September 24, 2019 pp1−53 (in Chinese)

    [19]

    冯北滨, 肖国梁, 陈程远, 等 2019年第一届中国磁约束聚变能大会暨聚变能活动周 中国乐山, 2019年11月25日 EX(P)-19

    Feng B B, Xiao G L, Chen C Y, et al. 2019 1st Chinese Fusion Energy Conference, Leshan, China, November 25, 2019 EX(P)-19 (in Chinese)

    [20]

    塞特尔 G S著 (叶继飞, 文明, 徐徐等译) 2001 纹影与阴影技术 (北京: 国防工业出版社) 第25−28页

    Settles G S (translated by Ye J F, Wen M, Xu X, et al.) 2001 Schlieren and Shadowgraph Techniques-Visualizing Phenomena in Transparent Media (Beijing: National Defense Industry Press) pp25−28 (in Chinese)

    [21]

    冯天植, 刘成民, 赵润祥, 等 1994 弹道学报 6 89

    Feng T Z, Liu C M, Zhao R X, et al. 1994 J. Ballistics 6 89

    [22]

    叶继飞, 金燕, 吴文堂, 等 2011 实验流体力学 25 94Google Scholar

    Ye J F, Jin Y, Wu W T, et al. 2011 J. Exp. Fluid Mech. 25 94Google Scholar

    [23]

    Yao L H, Zhou Y, Cao J Y, et al. 2001 Nucl. Fusion 41 817Google Scholar

    [24]

    李华, 杨臧健, 吴敏, 等 2011 实验流体力学 25 91Google Scholar

    Li H, Yang Z J, Wu M, et al. 2011 J. Exp. Fluid Mech. 25 91Google Scholar

  • 图 1  纹影系统示意图

    Fig. 1.  A diagram of the schlieren system.

    图 2  (a)光源狭缝系统; (b)狭缝机构; (c)不同类型狭缝示意图

    Fig. 2.  (a) Light source and slit system; (b) slit mechanism; (c) diagram of different types of slits.

    图 3  (a)刀口实物图; (b)高速相机实物图

    Fig. 3.  (a) Image of the cutter; (b) image of the high-speed camera

    图 4  超声分子束注入测试平台 (a1)锥形一体式喷嘴剖面图; (a2)圆孔喷嘴剖面图

    Fig. 4.  SMBI testing platform: (a1) cross-section of the integrated conical nozzle; (a2) cross-section of the nozzle with a pinhole.

    图 5  刀口在(a)焦点前、(b)焦点上、(c)焦点后位置处的纹影图

    Fig. 5.  Schlieren images for the cutter point located (a) in front of the focus, (b) at the focus and (c) behind the focus.

    图 6  (a) SMBI束流轮廓纹影图(M为马赫数); (b) 超声束流理论示意图

    Fig. 6.  (a) The measured schlieren image of SMBI beam (M is Mach number); (b) a theoretical diagram of supersonic beam.

    图 7  (a) D2和(b) CO2气体在圆孔喷嘴出口处的纹影图, 背景压强为105 Pa

    Fig. 7.  Schlieren images of (a) D2 and (b) CO2 gas with a pinhole nozzle under the atmospheric condition.

    图 8  (a) D2和(b) CO2气体在锥形一体式喷嘴出口处的纹影图, 背景压强为105 Pa

    Fig. 8.  Schlieren images of (a) D2 and (b) CO2 gas with integrated conical nozzle under the atmospheric condition.

    图 9  CO2气体在不同直径的圆孔喷嘴出口处的纹影轮廓图(背景压强为105 Pa) (a) 0.5 mm; (b) 0.25 mm

    Fig. 9.  Schlieren images of CO2 gas with nozzles of different pinholes under the atmospheric condition: (a) 0.5 mm; (b) 0.25 mm.

    图 10  CO2气体在不同喷嘴出口处的纹影轮廓图(背景压强为5 × 102 Pa) (a) 0.25 mm 圆形喷嘴; (b) 0.25 mm 锥形一体式喷嘴

    Fig. 10.  Schlieren images of CO2 gas with different nozzles under the vacuum condition (5 × 102 Pa): (a) A pinhole nozzle with a diameter of 0.25 mm; (b) integrated conical nozzle with a diameter of 0.25 mm.

    表 1  主要系统元件参数

    Table 1.  Parameters of main components.

    元件名称详细参数
    光源彩色LED, 中心波长532 nm, 功率250 W
    且连续可调, 带聚焦透镜及风冷
    狭缝圆孔, 直径小于3 mm可调节, 边缘锐利
    无毛刺
    球面反
    射镜1,2
    有效通光口径ϕ150 mm, 焦距2.5 m, 边缘
    厚度60 mm, 面型精度1/4波长
    小反射镜1,2有效通光口径ϕ50 mm
    平面转折镜有效通光口径ϕ215 mm, 面型精度1/8波长
    观察窗1,2有效通光口径ϕ150 mm, 材质K9, 厚度20 mm
    刀口开启宽度5 mm, 步进精度0.01 mm
    装调结构中心高度1.1 m, 升降调节精度 ±100 mm
    下载: 导出CSV
  • [1]

    Yao L H, Tang N Y, Cui Z Y, et al. 1998 Nucl. Fusion 38 631Google Scholar

    [2]

    Yu D L, Chen C Y, Yao L H, et al. 2012 Nucl. Fusion 52 082001Google Scholar

    [3]

    Zheng X W, Li J G, Hu J S, et al. 2013 Plasma Phys. Controlled. Fusion 55 115010Google Scholar

    [4]

    Chen C Y, Yu D L, Feng B B, et al. 2016 Rev. Sci. Instrum. 87 093503Google Scholar

    [5]

    Xiao W W, Zou X L, Ding X T, et al. 2010 Phys. Rev. Lett. 104 215001Google Scholar

    [6]

    Sun H J, Ding X T, Yao L H, et al. 2010 Plasma Phys. Controlled Fusion 52 045003Google Scholar

    [7]

    Duan X R, Dong J Q, Yan L W, et al. 2010 Nucl. Fusion 50 095011Google Scholar

    [8]

    Zhong W L, Zou X L, Liang A S, et al. 2020 Nucl. Fusion 60 082002Google Scholar

    [9]

    Xiao W W, Diamond P H, Zou X L, et al. 2012 Nucl. Fusion 52 114027Google Scholar

    [10]

    Zhong W L, Zou X L, Feng B B, et al. 2019 Nucl. Fusion 59 076033Google Scholar

    [11]

    Duan X R, Liu Y, Xu M, et al. 2017 Nucl. Fusion 57 102013Google Scholar

    [12]

    Huang D W, Chen Z Y, Tong R H, et al. 2017 Plasma Phys. Controlled Fusion 59 085002Google Scholar

    [13]

    Baldzuhn J, Yao L H, W7-AS Team 2003 30th EPS Conference on Controlled Fusion and Plasma Physics St. Petersburg, Russia, July 7−11, 2003 p4.166pd

    [14]

    Pégourié B, Tsitrone E, Dejarnac R, et al. 2003 J. Nucl. Mater. 313 539Google Scholar

    [15]

    Kwak J G, Oh Y K, Yang H L, et al. 2013 Nucl. Fusion 53 104005Google Scholar

    [16]

    Takenaga H, Miyo Y, Bucalossi J, et al. 2010 Nucl. Fusion 50 115003Google Scholar

    [17]

    Xiao J S, Yang Z J, Zhuang G, et al. 2014 Plasma Sci. Technol. l 16Google Scholar

    [18]

    冯北滨, 肖国梁, 陈程远, 等 2019 CFETR集成工程设计年会暨聚变堆设计研讨会 中国黄山, 2019年 9月24日, 第1−53页

    Feng B B, Xiao G L, Chen C Y, et al. 2019 Annual Meeting of CFETR Integrated Design & Fusion Reactor Design Workshop, Huangshan, China, September 24, 2019 pp1−53 (in Chinese)

    [19]

    冯北滨, 肖国梁, 陈程远, 等 2019年第一届中国磁约束聚变能大会暨聚变能活动周 中国乐山, 2019年11月25日 EX(P)-19

    Feng B B, Xiao G L, Chen C Y, et al. 2019 1st Chinese Fusion Energy Conference, Leshan, China, November 25, 2019 EX(P)-19 (in Chinese)

    [20]

    塞特尔 G S著 (叶继飞, 文明, 徐徐等译) 2001 纹影与阴影技术 (北京: 国防工业出版社) 第25−28页

    Settles G S (translated by Ye J F, Wen M, Xu X, et al.) 2001 Schlieren and Shadowgraph Techniques-Visualizing Phenomena in Transparent Media (Beijing: National Defense Industry Press) pp25−28 (in Chinese)

    [21]

    冯天植, 刘成民, 赵润祥, 等 1994 弹道学报 6 89

    Feng T Z, Liu C M, Zhao R X, et al. 1994 J. Ballistics 6 89

    [22]

    叶继飞, 金燕, 吴文堂, 等 2011 实验流体力学 25 94Google Scholar

    Ye J F, Jin Y, Wu W T, et al. 2011 J. Exp. Fluid Mech. 25 94Google Scholar

    [23]

    Yao L H, Zhou Y, Cao J Y, et al. 2001 Nucl. Fusion 41 817Google Scholar

    [24]

    李华, 杨臧健, 吴敏, 等 2011 实验流体力学 25 91Google Scholar

    Li H, Yang Z J, Wu M, et al. 2011 J. Exp. Fluid Mech. 25 91Google Scholar

  • [1] 董旭, 黄永盛, 唐光毅, 陈姗红, 司梅雨, 张建勇. 基于微波-电子康普顿背散射的环形正负电子对撞机束流能量测量方案. 物理学报, 2021, 70(13): 131301. doi: 10.7498/aps.70.20202081
    [2] 周茂蕾, 刘东, 曲国峰, 陈桎远, 李敏, 王艺舟, 徐子虚, 韩纪锋. 基于麦克风的气体超声分子束飞行速度的实验研究. 物理学报, 2019, 68(16): 164702. doi: 10.7498/aps.68.20190436
    [3] 鲍杰, 陈永浩, 张显鹏, 栾广源, 任杰, 王琦, 阮锡超, 张凯, 安琪, 白怀勇, 曹平, 陈琪萍, 程品晶, 崔增琪, 樊瑞睿, 封常青, 顾旻皓, 郭凤琴, 韩长材, 韩子杰, 贺国珠, 何泳成, 何越峰, 黄翰雄, 黄蔚玲, 黄锡汝, 季筱路, 吉旭阳, 江浩雨, 蒋伟, 敬罕涛, 康玲, 康明涛, 兰长林, 李波, 李论, 李强, 李晓, 李阳, 李样, 刘荣, 刘树彬, 刘星言, 马应林, 宁常军, 聂阳波, 齐斌斌, 宋朝晖, 孙虹, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 王鹏程, 王涛峰, 王艳凤, 王朝辉, 王征, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 解立坤, 羊奕伟, 杨毅, 易晗, 于莉, 余滔, 于永积, 张国辉, 张旌, 张林浩, 张利英, 张清民, 张奇伟, 张玉亮, 张志永, 赵映潭, 周良, 周祖英, 朱丹阳, 朱科军, 朱鹏. 更正:中国散裂中子源反角白光中子束流参数的初步测量. 物理学报, 2019, 68(10): 109901. doi: 10.7498/aps.68.109901
    [4] 鲍杰, 陈永浩, 张显鹏, 栾广源, 任杰, 王琦, 阮锡超, 张凯, 安琪, 白怀勇, 曹平, 陈琪萍, 程品晶, 崔增琪, 樊瑞睿, 封常青, 顾旻皓, 郭凤琴, 韩长材, 韩子杰, 贺国珠, 何泳成, 何越峰, 黄翰雄, 黄蔚玲, 黄锡汝, 季筱路, 吉旭阳, 江浩雨, 蒋伟, 敬罕涛, 康玲, 康明涛, 兰长林, 李波, 李论, 李强, 李晓, 李阳, 李样, 刘荣, 刘树彬, 刘星言, 马应林, 宁常军, 聂阳波, 齐斌斌, 宋朝晖, 孙虹, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 王鹏程, 王涛峰, 王艳凤, 王朝辉, 王征, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 解立坤, 羊奕伟, 杨毅, 易晗, 于莉, 余滔, 于永积, 张国辉, 张旌, 张林浩, 张利英, 张清民, 张奇伟, 张玉亮, 张志永, 赵映潭, 周良, 周祖英, 朱丹阳, 朱科军, 朱鹏. 中国散裂中子源反角白光中子束流参数的初步测量. 物理学报, 2019, 68(8): 080101. doi: 10.7498/aps.68.20182191
    [5] 吴雪科, 孙小琴, 刘殷学, 李会东, 周雨林, 王占辉, 冯灏. 超声分子束注入密度和宽度对托克马克装置加料深度的影响. 物理学报, 2017, 66(19): 195201. doi: 10.7498/aps.66.195201
    [6] 丁红兵, 王超, 赵雅坤. 临界流喷嘴喉部氢气等熵指数解析计算与进化回归方法. 物理学报, 2014, 63(16): 164701. doi: 10.7498/aps.63.164701
    [7] 白现臣, 杨建华, 张建德, 靳振兴. 多重电子超越现象对高功率注入大间隙速调管中束流群聚特性的影响. 物理学报, 2013, 62(5): 058402. doi: 10.7498/aps.62.058402
    [8] 郑星炜, 李建刚, 胡建生, 李加宏, 曹斌, 吴金华. 基于超声分子束和普通充气的聚变等离子体密度反馈实验研究. 物理学报, 2013, 62(15): 155202. doi: 10.7498/aps.62.155202
    [9] 冯北滨, 姚良骅, 陈程远, 季小全, 钟武律, 石中兵, 余德良, 崔正英, 宋显明, 段旭如. HL-2A装置上超声分子束注入触发L-H转换的实验研究. 物理学报, 2013, 62(1): 015203. doi: 10.7498/aps.62.015203
    [10] 张忠兵, 欧阳晓平, 夏海鸿, 陈亮, 王群书, 王兰, 马彦良, 潘洪波, 刘林月. 高能质子束流强度绝对测量的二次电子补偿原理研究. 物理学报, 2010, 59(8): 5369-5373. doi: 10.7498/aps.59.5369
    [11] 焦一鸣, 姚良骅, 冯北滨, 陈程远, 周艳, 石中兵, 董家齐, 段旭如. 强场和弱场侧超声分子束注入对加料的影响. 物理学报, 2010, 59(10): 7191-7197. doi: 10.7498/aps.59.7191
    [12] 姚良骅, 冯北滨, 陈程远, 冯 震, 李 伟, 焦一鸣. 中国环流器二号A(HL-2A)超声分子束注入最新结果. 物理学报, 2008, 57(7): 4159-4165. doi: 10.7498/aps.57.4159
    [13] 石中兵, 姚良骅, 丁玄同, 段旭如, 冯北滨, 刘泽田, 肖维文, 孙红娟, 李 旭, 李 伟, 陈程远, 焦一鸣. HL-2A托卡马克超声分子束注入深度和加料效果研究. 物理学报, 2007, 56(8): 4771-4777. doi: 10.7498/aps.56.4771
    [14] 关庆丰, 安春香, 秦 颖, 邹建新, 郝胜志, 张庆瑜, 董 闯, 邹广田. 强流脉冲电子束应力诱发的微观结构. 物理学报, 2005, 54(8): 3927-3934. doi: 10.7498/aps.54.3927
    [15] 牟宗信, 李国卿, 秦福文, 黄开玉, 车德良. 非平衡磁控溅射系统离子束流磁镜效应模型. 物理学报, 2005, 54(3): 1378-1384. doi: 10.7498/aps.54.1378
    [16] 焦一鸣, 周艳, 姚良骅, 董家齐. 超声分子束在HL-1M托卡马克等离子体中的消融和穿透. 物理学报, 2004, 53(4): 1123-1128. doi: 10.7498/aps.53.1123
    [17] 姚良骅, 冯北滨, 冯震, 董贾福, 郦文忠, 徐德明, 洪文玉. HL-1M装置高气压超声分子束加料效果. 物理学报, 2002, 51(3): 596-602. doi: 10.7498/aps.51.596
    [18] 董贾福, 唐年益, 李伟, 罗俊林, 郭干诚, 钟云泽, 刘仪, 傅炳忠, 姚良骅, 冯北滨, 秦运文. HL-1M装置超声分子束注入等离子体穿透特性的诊断. 物理学报, 2002, 51(9): 2074-2079. doi: 10.7498/aps.51.2074
    [19] 杨 宇, 夏冠群, 赵国庆, 王 迅. Si离子注入对分子束外延Si1-xGex/Si量子阱发光特性的影响. 物理学报, 1998, 47(6): 978-984. doi: 10.7498/aps.47.978
    [20] 何元金, 胡勇, 戴伦. 用于分子束外延的慢正电子束在线分析系统. 物理学报, 1992, 41(3): 517-522. doi: 10.7498/aps.41.517
计量
  • 文章访问数:  6939
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-23
  • 修回日期:  2020-09-25
  • 上网日期:  2020-10-27
  • 刊出日期:  2020-11-05

/

返回文章
返回