搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同缺陷态下具有高光力耦合率的新型一维光力晶体纳米梁

徐琦 孙小伟 宋婷 温晓东 刘禧萱 王羿文 刘子江

引用本文:
Citation:

不同缺陷态下具有高光力耦合率的新型一维光力晶体纳米梁

徐琦, 孙小伟, 宋婷, 温晓东, 刘禧萱, 王羿文, 刘子江

Novel one-dimensional optomechanical crystal nanobeam with high optomechanical coupling rate under different defect states

Xu Qi, Sun Xiao-Wei, Song Ting, Wen Xiao-Dong, Liu Xi-Xuan, Wang Yi-Wen, Liu Zi-Jiang
PDF
HTML
导出引用
  • 本文设计了一种由两侧挖孔的六棱柱单胞周期性排列而成的新型光力晶体纳米梁谐振腔, 利用有限元法计算了该结构在不同缺陷态下的带隙特性. 基于移动边界效应和光弹性效应机制, 采用一阶微扰理论并借助光力耦合系数计算法获得了光力晶体纳米梁谐振腔的光力耦合率, 同时分析了谐振腔声学模态的对称性, 并对光力耦合机制进行了探索. 研究表明: 改变缺陷数量或优化几何结构均可改善光学模式和机械模式的重叠性; 对于同种缺陷不同数量的谐振腔结构, 缺陷数量只会影响光力耦合率中移动边界效应和光弹性效应的作用方式, 而几乎不会改变其耦合率的大小. 分析具有梯度缺陷的光力晶体纳米梁谐振腔的振动模态对称性发现, 只有关于x-y, x-z, y-z平面偶对称的振动模态才能与光学模态产生强耦合, 并得到高达2.25 MHz的光力耦合率.
    Optomechanical crystals can simultaneously modulate elastic waves and electromagnetic waves as well as localizing phonons and photons to enhance the acousto-optic interaction. In this work, a new type of optomechanical crystal nanobeam cavity is designed by periodically arranging the unit cells with double holes on both sides of a hexagonal prism. Considering the moving boundary effect and the photoelastic effect as well as using the first-order electromagnetic perturbation theory and the optomechanical coupling coefficient calculation method, the optomechanical coupling rate of the structure is calculated. The result shows that the overlap between the optical mode and the mechanical mode can be improved by changing the number of defects and optimizing the geometric structure. For the nanobeam cavity structures with different numbers of the like defects, the number of defects will only affect the action mode of the moving boundary effect and photoelastic effect in the optomechanical coupling rate, but will not change the coupling rate too much. In particular, the optomechanical coupling rate of the single defect optomechanical crystal nanobeam cavity can reach –1.29 MHz, and the equivalent mass is 42.6 fg. Moreover, the designed structure is simple and easy to process and fabricate. The coupling rate of even-symmetric optomechanical crystal nanobeam cavity based on gradient defect can reach 2.25 MHz, and the coupling rate of odd symmetric structure can reach 2.18 MHz, in which the moving boundary effect is dominant. Based on the symmetry analysis of the vibration modes of the optomechanical crystal nanobeam cavity with gradient defects, it is worth noting that only the even symmetrical vibration modes of x-y, x-z and y-z can strongly couple with the optical modes. The surface density of the moving boundary effect is calculated and analyzed, and it is found that the surface density of the acoustic resonance mode with high symmetry also possesses high symmetry. However, when the surface density of the moving boundary effect in the defect state appears adjacent to each other and cancels out each other, it will destroy the coupling mode of the moving boundary effect and reduce the coupling rate, whether the symmetry is high or low. In addition, the designed optomechanical crystal nanobeam can also improve the quality factor of the resonant cavity by optimizing the defect structure while maintaining a high optomechanical coupling rate. Therefore, this research provides an effective means to find a structure with high optomechanical coupling rate, and also presents the ideas for designing the space sensors.
      通信作者: 孙小伟, sunxw_lzjtu@yeah.net
    • 基金项目: 甘肃省高等学校产业支撑计划项目(批准号: 2021CYZC-07)、甘肃省重点人才项目(批准号: 2020RCXM100)、甘肃省自然科学基金重点项目(批准号: 20JR5RA427, 20JR5RA211)、甘肃省高等学校创新基金项目(批准号: 2020A-039)和兰州市科技计划项目(批准号: 2021-1-140)资助的课题
      Corresponding author: Sun Xiao-Wei, sunxw_lzjtu@yeah.net
    • Funds: Project supported by the Industrial Support and Guidance Project of Universities in Gansu Province, China (Grant No. 2021CYZC-07), the Key Talent Foundation of Gansu Province, China (Grant No. 2020RCXM100), the Natural Science Foundation of Gansu Province(Grant Nos. 20JR5RA427, 20JR5RA211), the Higher Education Innovation Fund Project of Gansu Province(Grant No. 2020A-039), and the Lanzhou Science and Technology Planning Program, China (Grant No. 2021-1-140).
    [1]

    John S 1987 Phys. Rev. Lett. 58 2486Google Scholar

    [2]

    张若羽, 李培丽 2021 物理学报 70 054208Google Scholar

    Zhang R Y, Li P L 2021 Acta Phys. Sin. 70 054208Google Scholar

    [3]

    Kushwaha M S, Halevi P, Dobrzynski L, Djafari-Rouhani B 1993 Phys. Rev. Lett. 71 2022Google Scholar

    [4]

    Pennec Y, Laude V, Papanikolaou N, Djafari-Rouhani B, Oudich M, El Jallal S, Beugnot J C, Escalante J M, Martínez A 2014 Nanophotonics 3 413Google Scholar

    [5]

    Maldovan M, Thomas E L 2006 Appl. Phys. Lett. 88 251907Google Scholar

    [6]

    Moradi P, Bahrami A 2018 J. Appl. Phys. 123 115113Google Scholar

    [7]

    Yu Z, Sun X 2018 Opt. Express 26 1255Google Scholar

    [8]

    Li H, Liu W, Yu T, Wang T, Liao Q 2020 Phys. Lett. A 384 126499Google Scholar

    [9]

    Shu Y, Yu M, Yu T, Liu W, Wang T, Liao Q 2020 Opt. Express 28 24813Google Scholar

    [10]

    Shaban S M, Mehaney A, Aly A H 2020 Appl. Optics 59 3878Google Scholar

    [11]

    Lucklum R, Zubtsov M, Oseev A 2013 Anal. Bioanal. Chem. 405 6497Google Scholar

    [12]

    Eichenfield M, Camacho R, Chan J, Vahala K J, Painter O 2009 Nature 459 550Google Scholar

    [13]

    Eichenfield M, Chan J, Camacho R M, Vahala K J, Painter O 2009 Nature 462 78Google Scholar

    [14]

    陈华俊, 方贤文, 陈昌兆, 李洋 2016 物理学报 65 194205Google Scholar

    Chen H J, Fang X W, Chen C Z, Li Y 2016 Acta Phys. Sin. 65 194205Google Scholar

    [15]

    罗均文, 吴德伟, 苗强, 魏天丽 2020 物理学报 69 054203Google Scholar

    Luo J W, Wu D W, Miao Q, Wei T L 2020 Acta Phys. Sin. 69 054203Google Scholar

    [16]

    Chan J, Alegre T P, Safavi-Naeini A H, Hill J T, Krause A, Groblacher S, Aspelmeyer M, Painter O 2011 Nature 478 89Google Scholar

    [17]

    Safavi-Naeini A H, Van Thourhout D, Baets R, van Laer R 2019 Optica 6 213Google Scholar

    [18]

    Liu Q, Lu H, Bibbó L, Wang Q, Lin M, Tao K, Albin S, Ouyang Z 2020 Appl. Nanosci. 10 1395Google Scholar

    [19]

    Ramp H, Clark T, Hauer B, Doolin C, Balram KC, Srinivasan K, Davis J 2020 Appl. Phys. Lett. 116 174005Google Scholar

    [20]

    Ren H, Matheny M H, MacCabe G S, Luo J, Pfeifer H, Mirhosseini M, Painter O 2020 Nat. Commun. 11 3373Google Scholar

    [21]

    Rolland Q, Oudich M, El-Jallal S, Dupont S, Pennec Y, Gazalet J, Kastelik J C, Lévêque G, Djafari-Rouhani B 2012 Appl. Phys. Lett. 101 061109Google Scholar

    [22]

    Chan J, Safavi-Naeini AH, Hill J T, Meenehan S, Painter O 2012 Appl. Phys. Lett. 101 081115Google Scholar

    [23]

    Gomis-Bresco J, Navarro-Urrios D, Oudich M, El-Jallal S, Griol A, Puerto D, Chavez E, Pennec Y, Djafari-Rouhani B, Alzina F, Martinez A, Torres C M 2014 Nat. Commun. 5 4452Google Scholar

    [24]

    Oudich M, El-Jallal S, Pennec Y, Djafari-Rouhani B, Gomis-Bresco J, Navarro-Urrios D, Sotomayor Torres C M, Martínez A, Makhoute A 2014 Phys. Rev. B 89 245122Google Scholar

    [25]

    Li Y, Cui K, Feng X, Huang Y, Huang Z, Liu F, Zhang W 2015 Journal of Optics 17 045001Google Scholar

    [26]

    Chiu C C, Chen W M, Sung K W, Hsiao F L 2017 Opt. Express 25 6076Google Scholar

    [27]

    Lin T R, Chang C C, Hsu J C 2019 J. Appl. Phys. 126 064901Google Scholar

    [28]

    Huang N N, Chung Y C, Chiu H T, Hsu J C, Lin Y F, Kuo C T, Chang Y W, Chen C Y, Lin T R 2020 Crystals 10 421Google Scholar

    [29]

    Pennec Y, Rouhani B D, Li C, Escalante J M, Martinez A, Benchabane S, Laude V, Papanikolaou N 2011 AIP Adv. 1 041901Google Scholar

    [30]

    Hsu J C, Lu T Y, Lin T R 2015 Opt. Express 23 25814Google Scholar

    [31]

    Aram M, Khorasani S 2017 Appl. Phys. B-Lasers O. 123 218Google Scholar

    [32]

    Johnson S G, Ibanescu M, Skorobogatiy M A, Weisberg O, Joannopoulos J D, Fink Y 2002 Phys. Rev. E 65 066611Google Scholar

    [33]

    Eichenfield M, Chan J, Safavi-Naeini AH, Vahala KJ, Painter O 2009 Opt. Express 17 20078Google Scholar

  • 图 1  所设计的一维六角双孔型光力晶体纳米梁谐振腔: (a)谐振腔结构; (b)光力晶体单胞; (c)不同缺陷数量谐振腔; (d)偶对称型梯度谐振腔; (e)奇对称型梯度谐振腔

    Fig. 1.  The model structures of the one-dimensional hexagonal double-hole type optomechanical crystal nanobeam cavity designed in the present work, where (a) is nanobeam cavity structure, (b) is optomechanical crystal unit cell, (c) represents the cavity with different number of defects, and (d) and (e) are the even-symmetric and odd-symmetric gradient nanobeam cavity, respectively.

    图 2  六角双孔型光力晶体能带结构: (a)声子能带结构; (b)光子能带结构; (c)声子带隙随内孔半径的改变; (d)光子带隙随内孔半径的改变; (e)无缺陷纳米梁与奇对称型谐振腔声透射谱; (f)无缺陷纳米梁与偶对称型谐振腔声透射谱

    Fig. 2.  The band structures of hexagonal double-hole type optomechanical crystal, where (a) and (b) represent the phononic and photonic band structure, respectively, (c) and (d) correspond to the change of the phononic and photonic band gap with the radius of the inner hole, and (e) and (f) are different defects acoustic transmission spectrum of optomechanical crystal nanobeam cavity.

    图 3  (a)−(f)不同缺陷数量光力晶体谐振腔的电场和位移场模态图; (g)不同缺陷数量谐振腔的光力耦合率

    Fig. 3.  The electric field and displacement field modes of optomechanical crystal cavities with different defect numbers are shown in (a) (f), and (g) is optomechanical coupling rates of nanobeam cavities with different numbers of defects.

    图 4  具有不同圆角半径的两缺陷光力晶体纳米梁及其光力耦合率

    Fig. 4.  Two-defect optomechanical crystal cavities with different fillet radii and its optomechanical coupling rates.

    图 5  几何优化谐振腔的声子能带结构: (a)偶对称谐振腔的声子能带结构, A1-L1为带隙内产生的声子缺陷模; (b)奇对称谐振腔的声子能带结构, A2-N2为带隙内产生的声子缺陷模

    Fig. 5.  Phononic band structures of the geometrically optimized nanobeam cavities, where (a) is phononic band structure of the even symmetric cavity, in which A1-L1 are the defect modes generated in phononic band gap, and (b) is phononic band structure of the odd symmetric cavity, in which A2-N2 are the defect modes generated in phononic band gap.

    图 6  几何优化偶对称谐振腔的电场和位移场模态及其光力耦合率: (a)谐振腔的位移场模态图A1-L1与电场模态图P1; (b)光力耦合率及其分量gmbgpe

    Fig. 6.  Geometrically optimize the electric field and displacement field modes of the even symmetric nanobeam cavity and optomechanical coupling rates, where (a) represents displacement field mode diagram A1-L1 and electric field mode diagram P1 of the nanobeam cavity, and (b) is optomechanical coupling rates of nanobeam cavities and its components gmb and gpe.

    图 7  几何优化奇对称谐振腔的电场和位移场模态及其光力耦合率: (a)奇数谐振腔的位移场模态图A2-N2与电场模态图P2; (b)光力耦合率及其分量gmbgpe

    Fig. 7.  Geometrically optimize the electric field and displacement field modes of the odd symmetric nanobeam cavity and optomechanical coupling rates, where (a) represents displacement field mode diagram A2-N2 and electric field mode diagram P2 of the nanobeam cavity, and (b) is optomechanical coupling rates of nanobeam cavity and its components gmb and gpe.

    图 8  偶对称型纳米梁谐振腔不同谐振频率下声子腔模${\zeta _{{\text{mb}}}}$的分布图

    Fig. 8.  The distribution diagram of the phononic cavity modes ${\zeta _{{\text{mb}}}}$ at different resonant frequencies of the even-symmetric nanobeam cavity.

    图 9  新型梯度腔光力晶体梁及其声学模态和光学模态

    Fig. 9.  A new gradient cavity optomechanical crystal nanobeam and its acoustic and optical modes.

    表 1  偶对称型谐振腔声学共振模式与光学模式的耦合率

    Table 1.  Optomechanical coupling rates of even symmetric nanobeam cavity

    A1B1C1D1E1F1
    gmb / Hz–1.076×105–1.805×1066.721×105–8.925×104–1.204×1053.790×105
    gpe / Hz1.130×1046.104×104–1.888×1036.130×1029.662×1037.078×104
    g0 / Hz–9.626×104–1.744×1066.532×105–8.864×104–1.108×1054.498×105
    meff / 10–17 kg2.4294.0721.6571.7196.8164.698
    G1H1I1J1K1L1
    gmb / Hz–1.987×106–9.336×103–1.745×1041.102×1051.028×106–2.258×103
    gpe / Hz–2.661×105–1.470×103–6.952×1031.425×1033.462×1057.341×103
    g0 / Hz–2.253×106–1.081×104–2.440×1041.116×1051.374×1065.083×103
    meff / 10–17 kg7.0862.8792.9493.3208.1153.701
    下载: 导出CSV

    表 2  奇对称型谐振腔声学共振模式与光学模式的耦合率

    Table 2.  Optomechanical coupling rates of odd symmetric nanobeam cavity

    A2B2C2D2E2F2G2
    gmb/Hz–2.100×1065.629×1047.079×1032.795×1049.599×1048.016×1043.082×104
    gpe/Hz–7.580×1044.084×1032.762×103–8.579×103–1.062×105–4.091×1035.240×103
    g0/Hz–2.176×1066.037×1049.840×1031.937×104–1.024×1047.607×104–3.606×104
    meff /10–17 kg3.280.9911.053.652.791.410.110
    H2I2J2K2L2M2N2
    gmb/Hz–5.600×1051.818×1036.875×102–1.391×103–1.240×1041.401×1041.311×104
    gpe/Hz1.833×105–2.254×1031.972×103–3.701×1022.550×102–8.942×1039.903×102
    g0/Hz–3.767×105–4.357×1022.659×103–1.761×1031.266×1045.066×1031.410×104
    meff /10–17 kg9.161.961.890.2960.2330.2870.260
    下载: 导出CSV

    表 3  新型梯度腔光力晶体梁的光力耦合率

    Table 3.  Optomechanical coupling rates of a new gradient cavity optomechanical crystal nanobeam.

    f/GHzgmb/Hzgpe/Hzg0/Hzmeff /kg
    7.545–1.093×105–2.076×106–2.185×1067.383×10–17
    下载: 导出CSV
  • [1]

    John S 1987 Phys. Rev. Lett. 58 2486Google Scholar

    [2]

    张若羽, 李培丽 2021 物理学报 70 054208Google Scholar

    Zhang R Y, Li P L 2021 Acta Phys. Sin. 70 054208Google Scholar

    [3]

    Kushwaha M S, Halevi P, Dobrzynski L, Djafari-Rouhani B 1993 Phys. Rev. Lett. 71 2022Google Scholar

    [4]

    Pennec Y, Laude V, Papanikolaou N, Djafari-Rouhani B, Oudich M, El Jallal S, Beugnot J C, Escalante J M, Martínez A 2014 Nanophotonics 3 413Google Scholar

    [5]

    Maldovan M, Thomas E L 2006 Appl. Phys. Lett. 88 251907Google Scholar

    [6]

    Moradi P, Bahrami A 2018 J. Appl. Phys. 123 115113Google Scholar

    [7]

    Yu Z, Sun X 2018 Opt. Express 26 1255Google Scholar

    [8]

    Li H, Liu W, Yu T, Wang T, Liao Q 2020 Phys. Lett. A 384 126499Google Scholar

    [9]

    Shu Y, Yu M, Yu T, Liu W, Wang T, Liao Q 2020 Opt. Express 28 24813Google Scholar

    [10]

    Shaban S M, Mehaney A, Aly A H 2020 Appl. Optics 59 3878Google Scholar

    [11]

    Lucklum R, Zubtsov M, Oseev A 2013 Anal. Bioanal. Chem. 405 6497Google Scholar

    [12]

    Eichenfield M, Camacho R, Chan J, Vahala K J, Painter O 2009 Nature 459 550Google Scholar

    [13]

    Eichenfield M, Chan J, Camacho R M, Vahala K J, Painter O 2009 Nature 462 78Google Scholar

    [14]

    陈华俊, 方贤文, 陈昌兆, 李洋 2016 物理学报 65 194205Google Scholar

    Chen H J, Fang X W, Chen C Z, Li Y 2016 Acta Phys. Sin. 65 194205Google Scholar

    [15]

    罗均文, 吴德伟, 苗强, 魏天丽 2020 物理学报 69 054203Google Scholar

    Luo J W, Wu D W, Miao Q, Wei T L 2020 Acta Phys. Sin. 69 054203Google Scholar

    [16]

    Chan J, Alegre T P, Safavi-Naeini A H, Hill J T, Krause A, Groblacher S, Aspelmeyer M, Painter O 2011 Nature 478 89Google Scholar

    [17]

    Safavi-Naeini A H, Van Thourhout D, Baets R, van Laer R 2019 Optica 6 213Google Scholar

    [18]

    Liu Q, Lu H, Bibbó L, Wang Q, Lin M, Tao K, Albin S, Ouyang Z 2020 Appl. Nanosci. 10 1395Google Scholar

    [19]

    Ramp H, Clark T, Hauer B, Doolin C, Balram KC, Srinivasan K, Davis J 2020 Appl. Phys. Lett. 116 174005Google Scholar

    [20]

    Ren H, Matheny M H, MacCabe G S, Luo J, Pfeifer H, Mirhosseini M, Painter O 2020 Nat. Commun. 11 3373Google Scholar

    [21]

    Rolland Q, Oudich M, El-Jallal S, Dupont S, Pennec Y, Gazalet J, Kastelik J C, Lévêque G, Djafari-Rouhani B 2012 Appl. Phys. Lett. 101 061109Google Scholar

    [22]

    Chan J, Safavi-Naeini AH, Hill J T, Meenehan S, Painter O 2012 Appl. Phys. Lett. 101 081115Google Scholar

    [23]

    Gomis-Bresco J, Navarro-Urrios D, Oudich M, El-Jallal S, Griol A, Puerto D, Chavez E, Pennec Y, Djafari-Rouhani B, Alzina F, Martinez A, Torres C M 2014 Nat. Commun. 5 4452Google Scholar

    [24]

    Oudich M, El-Jallal S, Pennec Y, Djafari-Rouhani B, Gomis-Bresco J, Navarro-Urrios D, Sotomayor Torres C M, Martínez A, Makhoute A 2014 Phys. Rev. B 89 245122Google Scholar

    [25]

    Li Y, Cui K, Feng X, Huang Y, Huang Z, Liu F, Zhang W 2015 Journal of Optics 17 045001Google Scholar

    [26]

    Chiu C C, Chen W M, Sung K W, Hsiao F L 2017 Opt. Express 25 6076Google Scholar

    [27]

    Lin T R, Chang C C, Hsu J C 2019 J. Appl. Phys. 126 064901Google Scholar

    [28]

    Huang N N, Chung Y C, Chiu H T, Hsu J C, Lin Y F, Kuo C T, Chang Y W, Chen C Y, Lin T R 2020 Crystals 10 421Google Scholar

    [29]

    Pennec Y, Rouhani B D, Li C, Escalante J M, Martinez A, Benchabane S, Laude V, Papanikolaou N 2011 AIP Adv. 1 041901Google Scholar

    [30]

    Hsu J C, Lu T Y, Lin T R 2015 Opt. Express 23 25814Google Scholar

    [31]

    Aram M, Khorasani S 2017 Appl. Phys. B-Lasers O. 123 218Google Scholar

    [32]

    Johnson S G, Ibanescu M, Skorobogatiy M A, Weisberg O, Joannopoulos J D, Fink Y 2002 Phys. Rev. E 65 066611Google Scholar

    [33]

    Eichenfield M, Chan J, Safavi-Naeini AH, Vahala KJ, Painter O 2009 Opt. Express 17 20078Google Scholar

  • [1] 刘海洋, 范晓跃, 范豪杰, 李阳阳, 唐天鸿, 王刚. 等离子体轰击单层WS2引入缺陷态对束缚激子光学性质的影响. 物理学报, 2024, 73(13): 137802. doi: 10.7498/aps.73.20240475
    [2] 曹明鹏, 吴晓鹏, 管宏山, 单光宝, 周斌, 杨力宏, 杨银堂. 基于对偶单元法的三维集成微系统电热耦合分析. 物理学报, 2021, 70(7): 074401. doi: 10.7498/aps.70.20201628
    [3] 孙伟彬, 王婷, 孙小伟, 康太凤, 谭自豪, 刘子江. 新型二维三组元压电声子晶体板的缺陷态及振动能量回收. 物理学报, 2019, 68(23): 234206. doi: 10.7498/aps.68.20190260
    [4] 赵运进, 田锰, 黄勇刚, 王小云, 杨红, 米贤武. 基于有限元法的光子并矢格林函数重整化及其在自发辐射率和能级移动研究中的应用. 物理学报, 2018, 67(19): 193102. doi: 10.7498/aps.67.20180898
    [5] 王静, 刘远, 刘玉荣, 吴为敬, 罗心月, 刘凯, 李斌, 恩云飞. 铟锌氧化物薄膜晶体管局域态分布的提取方法. 物理学报, 2016, 65(12): 128501. doi: 10.7498/aps.65.128501
    [6] 于歌, 韩奇钢, 李明哲, 贾晓鹏, 马红安, 李月芬. 新型圆角式高压碳化钨硬质合金顶锤的有限元分析. 物理学报, 2012, 61(4): 040702. doi: 10.7498/aps.61.040702
    [7] 赵兴涛, 刘晓旭, 郑义, 韩颖, 周桂耀, 李曙光, 侯蓝田. 微小空气孔传光的光子晶体光纤研究. 物理学报, 2012, 61(21): 214210. doi: 10.7498/aps.61.214210
    [8] 夏长明, 周桂耀, 韩颖, 刘兆伦, 侯蓝田. V形高双折射光子晶体光纤特性研究. 物理学报, 2011, 60(9): 094213. doi: 10.7498/aps.60.094213
    [9] 齐跃峰, 乔汉平, 毕卫红, 刘燕燕. 热激法光子晶体光纤光栅制备工艺中热传导特性研究. 物理学报, 2011, 60(3): 034214. doi: 10.7498/aps.60.034214
    [10] 岳蕾蕾, 陈雨, 樊光辉, 何娇, 赵德荀, 刘应开. 缺陷态对4340钢-环氧树脂二维声子晶体带隙的影响. 物理学报, 2011, 60(10): 106103. doi: 10.7498/aps.60.106103
    [11] 李艳武, 刘彭义, 侯林涛, 吴冰. Rubrene作电子传输层的异质结有机太阳能电池. 物理学报, 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
    [12] 韩奇钢, 马红安, 肖宏宇, 李瑞, 张聪, 李战厂, 田宇, 贾晓鹏. 基于有限元法分析宝石级金刚石的合成腔体温度场. 物理学报, 2010, 59(3): 1923-1927. doi: 10.7498/aps.59.1923
    [13] 赵岩, 施伟华, 姜跃进. 中心外缺陷对带隙型光子晶体光纤色散特性的影响. 物理学报, 2010, 59(9): 6279-6283. doi: 10.7498/aps.59.6279
    [14] 刘全喜, 钟鸣. 激光二极管阵列端面抽运复合棒状激光器热效应的有限元法分析. 物理学报, 2010, 59(12): 8535-8541. doi: 10.7498/aps.59.8535
    [15] 韩奇钢, 贾晓鹏, 马红安, 李瑞, 张聪, 李战厂, 田宇. 基于三维有限元法模拟分析六面顶顶锤的热应力. 物理学报, 2009, 58(7): 4812-4816. doi: 10.7498/aps.58.4812
    [16] 宋小鹿, 过振, 李兵斌, 王石语, 蔡德芳, 文建国. 脉冲激光二极管侧面抽运Nd∶YAG激光器晶体时变热效应. 物理学报, 2009, 58(3): 1700-1708. doi: 10.7498/aps.58.1700
    [17] 董建文, 陈溢杭, 汪河洲. 含奇异材料的掺杂一维光子晶体色散关系和空间局域度理论. 物理学报, 2007, 56(1): 268-273. doi: 10.7498/aps.56.268
    [18] 张洪武, 王晋宝, 叶宏飞, 王 磊. 范德华力的广义参变本构模型及其在碳纳米管计算中的应用. 物理学报, 2007, 56(3): 1422-1428. doi: 10.7498/aps.56.1422
    [19] 赵 芳, 苑立波. 二维声子晶体同质位错结缺陷态特性. 物理学报, 2006, 55(2): 517-520. doi: 10.7498/aps.55.517
    [20] 王辉, 李永平. 用特征矩阵法计算光子晶体的带隙结构. 物理学报, 2001, 50(11): 2172-2178. doi: 10.7498/aps.50.2172
计量
  • 文章访问数:  5200
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-17
  • 修回日期:  2021-06-16
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-20

/

返回文章
返回