搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

声光调Q Nd:YVO4晶体级联拉曼倍频窄脉宽657 nm激光器

段延敏 周玉明 孙瑛璐 李志红 张耀举 王鸿雁 朱海永

引用本文:
Citation:

声光调Q Nd:YVO4晶体级联拉曼倍频窄脉宽657 nm激光器

段延敏, 周玉明, 孙瑛璐, 李志红, 张耀举, 王鸿雁, 朱海永

Frequency doubling of acousto-optic Q-switched Nd:YVO4 cascaded Raman laser for narrow pulse-width 657 nm laser

Duan Yan-Min, Zhou Yu-Ming, Sun Ying-Lu, Li Zhi-Hong, Zhang Yao-Ju, Wang Hong-Yan, Zhu Hai-Yong
PDF
HTML
导出引用
  • 本工作对声光调Q的Nd:YVO4晶体级联自拉曼腔内二阶斯托克斯光倍频实现窄脉宽红光激光进行了研究. 从改善自拉曼晶体热效应出发, 综合考虑基频激光性能和提高拉曼变频性能, 设计了三段式键合YVO4/Nd:YVO4/YVO4晶体来提升拉曼转换效率和输出功率. 选用针对二阶斯托克斯波长倍频的室温临界相位匹配切割的LBO晶体作为非线性光学晶体. 其匹配角度(θ = 86.0°, φ = 0°)非常接近非临界相位匹配, 具有较小的走离角, 有利于实现高效的倍频转换效率. 通过抽运光束腰位置、声光调Q重复频率等参数优化, 在14.2 W抽运功率和60 kHz重复频率下, 获得最高平均输出功率1.63 W、转换效率11.5%的657 nm红光激光输出. 657 nm红光的脉冲宽度为11.5 ns, 窄于普通掺钕激光晶体1.3 μm波段激光倍频实现的红光激光, 表明通过级联拉曼倍频技术可发挥拉曼过程脉宽压缩特性实现较窄脉宽红光激光输出.
    Frequency doubling of second-Stokes in an acousto-optic Q-switched Nd:YVO4 cascaded self-Raman cavity is demonstrated to achieve a narrow pulse-width red laser. A three-stage bonded YVO4/Nd:YVO4/YVO4 crystal is designed by comprehensively considering the improvement of thermal effect, the performance of fundamental frequency laser and Raman conversion, to improve the Raman efficiency and output power. An LBO crystal cut for critical phase matching at room temperature is selected and used as a nonlinear optical crystal for realizing the frequency doubling of second- Stokes wave. Its phase matching angle (θ = 86.0°, φ = 0°) is very close to the non-critical phase matching angle and has a small walk-off angle, which is beneficial to the realizing of the high conversion efficiency of frequency doubling. In the experiment, the beam waist position of the pump light and the repetition frequency of the acousto-optic Q-switcher are optimized. Under an incident pump power of 14.2 W and a repetition frequency of 60 kHz, the highest average output power of 1.63 W and conversion efficiency of 11.5% are obtained for the 657 nm red laser emission. The pulse width of 657 nm red light is 11.5 ns at the maximum output power, which is much narrower than that generated by frequency doubling of ordinary neodymium-doped laser at a waveband of 1.3 μm. The result shows that the frequency doubling of the acousto-optic Q-switched Nd:YVO4 cascaded self-Ramanlaser can take advantage of the pulse-width compression characteristics of Raman process to achieve a narrower pulse-width red light laser output.
      通信作者: 朱海永, hyzhu.opt@gmail.com
    • 基金项目: 国家自然科学基金(批准号: 62075167, 61905180)、浙江省自然科学基金(批准号: LY19F050012)和温州市公益性科技计划项目(批准号: G2020013, S20180015)资助的课题
      Corresponding author: Zhu Hai-Yong, hyzhu.opt@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62075167, 61905180), Zhejiang Provincial Natural Science Foundation of China (Grant No. LY19F050012), and Public Welfare Projects of Wenzhou City (Grant Nos. G2020013, S20180015)
    [1]

    Duan Y M, Sun Y L, Zhu H Y, Mao TW, Zhang L, Chen X 2020 Opt. Lett. 45 2564Google Scholar

    [2]

    张蕴川, 樊莉, 魏晨飞, 顾晓敏, 任思贤 2018 物理学报 67 024206Google Scholar

    Zhang Y C, Fan L, Wei C F, Gu X M, Ren S X 2018 Acta Phys. Sin. 67 024206Google Scholar

    [3]

    Liu Y, Liu Z J, Cong Z H, Men S J, Xia J B, Rao H, Zhang S S 2015 Chin. Phys. Lett. 32 124201Google Scholar

    [4]

    程梦瑶, 段延敏, 孙瑛璐, 张立, 朱海永 2020 激光与光电子学进展 57 071611

    Cheng M Y, Duan Y M, Sun Y L, Zhang L, Zhu H Y 2020 Laser & Optoelectronics Progress 57 071611

    [5]

    Zhang L, Duan Y M, Mao X H, Li Z H, Chen Y X, Zhang Y J, Zhu H Y 2021 Opt. Mater. Express 111815

    [6]

    Fan L, Zhao X D, Zhang Y C, Gu D X, Wan H P, Fan H B, Zhu J 2019 Chin. Phys. B. 28 084210Google Scholar

    [7]

    Kaminskii A A, Ueda K, Eichler H J, Kuwano Y, Kouta H, Bagaev S N, Chyba T H, Barnes J C, Gad G M A, Murai T, Lu J 2001 Opt. Commun. 194 201Google Scholar

    [8]

    Chen Y F 2004 Appl. Phys. B 78 685Google Scholar

    [9]

    Chen W D, Wei Y, Huang C H, Wang X L, Shen H Y, Zhai S Y, XuS, Li B X, Chen Z Q, Zhang G 2012 Opt. Lett. 37 1968Google Scholar

    [10]

    Zhu H Y, Guo J H, Ruan X K, Xu C W, Duan Y M, Zhang Y J, Tang D Y 2017 IEEE Photonics J. 9 1500807

    [11]

    Xie Z, Duan Y M, Guo J H, Huang X H, Yan L F, Zhu H Y 2017 J. Opt. 19 115501Google Scholar

    [12]

    Huang H T, He J L, Zuo C H, Zhang B T, Dong X L, Zhao S 2008 Opt. Commun. 281 803Google Scholar

    [13]

    Qin W, Du C L, Ruan S C, Wang Y C 2007 Opt. Express. 15 1594Google Scholar

    [14]

    Li Z Y, Zhang B T, Yang J F, He J L, Huang H T, Zuo C H, Xu J L, Yang X Q, Zhao S 2010 Laser Phys. 20 761Google Scholar

    [15]

    Zhu H Y, Zhang G, Huang C H, Wei Y, Huang L X, Huang Y D 2009 Appl. Phys. 42 045108

    [16]

    Zhou H Q, Bi X L, Zhu S Q, Li Z, Yin H, Zhang P X, Zhen Q C, Qi T L 2018 Opt. Quant. Electron. 50 56Google Scholar

    [17]

    Zhang Y X, Wang S, Alberto D L, Yu G L, Yu H H, Zhang H J, Mauro T, Xu X G, Wang J Y 2015 Chin. Phys. Lett. 32 054210Google Scholar

    [18]

    He M M, Chen S, Na Q X, Luo S J, Zhu H Y, Li Y, Xu C W, Fan D Y 2020 Chin. Opt. Lett. 18 011405Google Scholar

    [19]

    Zhang T, Zhou L B, Zou J Y, Bu Y K, Xu B, Xu X D, Xu J 2021 Opt. Laser. Technol. 139 106961Google Scholar

    [20]

    Zhang Y X, Yang Y L, Zhang L H, Lu D Z, Xu M, Hang Y, Yan S S, Yu H H, Zhang H J 2019 Chin. Opt. Lett. 17 071402Google Scholar

    [21]

    Frey R, Martino A D, Pradère F 1983 Opt. Lett. 8 437Google Scholar

    [22]

    Murray J T, Austin W L, Richard C, Powell 1999 Opt. Mater. 11 353Google Scholar

    [23]

    Lee A J, Jipeng L, Pask H M 2010 Opt. Lett. 35 3000Google Scholar

    [24]

    俞叶, 段延敏, 郭俊宏, 张栋, 陈思梦, 廖小青, 朱海永 2017 中国激光 44 0701007Google Scholar

    Yu Y, Duan Y M, Guo J H, Zhang D, Chen S M, Liao X Q, Zhu H Y 2017 Chin. J. Lasers 44 0701007Google Scholar

    [25]

    孙瑛璐, 段延敏, 程梦瑶, 袁先漳, 张立, 张栋, 朱海永 2020 物理学报 69 124201Google Scholar

    SunYL, Duan Y M, Cheng M Y, Yuan X Z, Zhang L, Zhang D, Zhu H Y 2020 Acta Phys. Sin. 69 124201Google Scholar

    [26]

    Guo J, ZhuH Y, ChenS M, DuanY M, XuX R, XuC W, TangD Y 2018 Laser Phys. Lett. 15 075803Google Scholar

    [27]

    Zhu H Y, Duan Y M, Zhang G, Huang C H, Wei Y, Shen H Y, Zheng Y Q, Huang L X, Chen Z Q 2009 Opt. Express 17 21544Google Scholar

  • 图 1  三段式键合YVO4/Nd:YVO4/YVO4晶体照片

    Fig. 1.  An image of three-stage bonded YVO4/Nd:YVO4/YVO4 crystal.

    图 2  Nd:YVO4晶体级联拉曼倍频红光激光实验装置示意图

    Fig. 2.  Experimental arrangement offrequency doubling of Nd:YVO4 cascade Raman laser for red light emission.

    图 3  在10.5 W入射抽运功率下优化后测量的二阶斯托克斯光及其倍频红光输出功率与入射抽运功率关系

    Fig. 3.  Output power of 2 nd-Stokesand red lightversus incident pump power forthe laser system optimized at incident pump power of 10.5 W.

    图 4  优化抽运光束腰位置后的红光输出功率曲线及最高输出功率下测量的激光谱线

    Fig. 4.  Red light output power after optimizing of the pump beam focus position and laser spectra measured at the maximum output power.

    图 5  倍频657 nm红光的脉冲波形和脉冲序列

    Fig. 5.  Temporal pulse profile and pulse train of 657 nm red light.

  • [1]

    Duan Y M, Sun Y L, Zhu H Y, Mao TW, Zhang L, Chen X 2020 Opt. Lett. 45 2564Google Scholar

    [2]

    张蕴川, 樊莉, 魏晨飞, 顾晓敏, 任思贤 2018 物理学报 67 024206Google Scholar

    Zhang Y C, Fan L, Wei C F, Gu X M, Ren S X 2018 Acta Phys. Sin. 67 024206Google Scholar

    [3]

    Liu Y, Liu Z J, Cong Z H, Men S J, Xia J B, Rao H, Zhang S S 2015 Chin. Phys. Lett. 32 124201Google Scholar

    [4]

    程梦瑶, 段延敏, 孙瑛璐, 张立, 朱海永 2020 激光与光电子学进展 57 071611

    Cheng M Y, Duan Y M, Sun Y L, Zhang L, Zhu H Y 2020 Laser & Optoelectronics Progress 57 071611

    [5]

    Zhang L, Duan Y M, Mao X H, Li Z H, Chen Y X, Zhang Y J, Zhu H Y 2021 Opt. Mater. Express 111815

    [6]

    Fan L, Zhao X D, Zhang Y C, Gu D X, Wan H P, Fan H B, Zhu J 2019 Chin. Phys. B. 28 084210Google Scholar

    [7]

    Kaminskii A A, Ueda K, Eichler H J, Kuwano Y, Kouta H, Bagaev S N, Chyba T H, Barnes J C, Gad G M A, Murai T, Lu J 2001 Opt. Commun. 194 201Google Scholar

    [8]

    Chen Y F 2004 Appl. Phys. B 78 685Google Scholar

    [9]

    Chen W D, Wei Y, Huang C H, Wang X L, Shen H Y, Zhai S Y, XuS, Li B X, Chen Z Q, Zhang G 2012 Opt. Lett. 37 1968Google Scholar

    [10]

    Zhu H Y, Guo J H, Ruan X K, Xu C W, Duan Y M, Zhang Y J, Tang D Y 2017 IEEE Photonics J. 9 1500807

    [11]

    Xie Z, Duan Y M, Guo J H, Huang X H, Yan L F, Zhu H Y 2017 J. Opt. 19 115501Google Scholar

    [12]

    Huang H T, He J L, Zuo C H, Zhang B T, Dong X L, Zhao S 2008 Opt. Commun. 281 803Google Scholar

    [13]

    Qin W, Du C L, Ruan S C, Wang Y C 2007 Opt. Express. 15 1594Google Scholar

    [14]

    Li Z Y, Zhang B T, Yang J F, He J L, Huang H T, Zuo C H, Xu J L, Yang X Q, Zhao S 2010 Laser Phys. 20 761Google Scholar

    [15]

    Zhu H Y, Zhang G, Huang C H, Wei Y, Huang L X, Huang Y D 2009 Appl. Phys. 42 045108

    [16]

    Zhou H Q, Bi X L, Zhu S Q, Li Z, Yin H, Zhang P X, Zhen Q C, Qi T L 2018 Opt. Quant. Electron. 50 56Google Scholar

    [17]

    Zhang Y X, Wang S, Alberto D L, Yu G L, Yu H H, Zhang H J, Mauro T, Xu X G, Wang J Y 2015 Chin. Phys. Lett. 32 054210Google Scholar

    [18]

    He M M, Chen S, Na Q X, Luo S J, Zhu H Y, Li Y, Xu C W, Fan D Y 2020 Chin. Opt. Lett. 18 011405Google Scholar

    [19]

    Zhang T, Zhou L B, Zou J Y, Bu Y K, Xu B, Xu X D, Xu J 2021 Opt. Laser. Technol. 139 106961Google Scholar

    [20]

    Zhang Y X, Yang Y L, Zhang L H, Lu D Z, Xu M, Hang Y, Yan S S, Yu H H, Zhang H J 2019 Chin. Opt. Lett. 17 071402Google Scholar

    [21]

    Frey R, Martino A D, Pradère F 1983 Opt. Lett. 8 437Google Scholar

    [22]

    Murray J T, Austin W L, Richard C, Powell 1999 Opt. Mater. 11 353Google Scholar

    [23]

    Lee A J, Jipeng L, Pask H M 2010 Opt. Lett. 35 3000Google Scholar

    [24]

    俞叶, 段延敏, 郭俊宏, 张栋, 陈思梦, 廖小青, 朱海永 2017 中国激光 44 0701007Google Scholar

    Yu Y, Duan Y M, Guo J H, Zhang D, Chen S M, Liao X Q, Zhu H Y 2017 Chin. J. Lasers 44 0701007Google Scholar

    [25]

    孙瑛璐, 段延敏, 程梦瑶, 袁先漳, 张立, 张栋, 朱海永 2020 物理学报 69 124201Google Scholar

    SunYL, Duan Y M, Cheng M Y, Yuan X Z, Zhang L, Zhang D, Zhu H Y 2020 Acta Phys. Sin. 69 124201Google Scholar

    [26]

    Guo J, ZhuH Y, ChenS M, DuanY M, XuX R, XuC W, TangD Y 2018 Laser Phys. Lett. 15 075803Google Scholar

    [27]

    Zhu H Y, Duan Y M, Zhang G, Huang C H, Wei Y, Shen H Y, Zheng Y Q, Huang L X, Chen Z Q 2009 Opt. Express 17 21544Google Scholar

  • [1] 孙瑛璐, 段延敏, 程梦瑶, 袁先漳, 张立, 张栋, 朱海永. 自拉曼混频黄绿波段三波长可切换激光. 物理学报, 2020, 69(12): 124201. doi: 10.7498/aps.69.20200324
    [2] 张蕴川, 樊莉, 魏晨飞, 顾晓敏, 任思贤. 波长锁定878.9 nm激光二极管抽运内腔式YVO4/BaWO4连续波拉曼激光器. 物理学报, 2018, 67(2): 024206. doi: 10.7498/aps.67.20171848
    [3] 张鑫, 张蕴川, 李建, 李仁杰, 宋庆坤, 张佳乐, 樊莉. 波长锁定激光二极管共振泵浦Nd:YVO4晶体连续波自拉曼激光器的设计与研究. 物理学报, 2017, 66(19): 194203. doi: 10.7498/aps.66.194203
    [4] 李斌, 丁欣, 孙冰, 盛泉, 姜鹏波, 张巍, 刘简, 范琛, 张海永, 姚建铨. 28.2 W波长锁定878.6 nm激光二极管共振抽运双晶体1064 nm激光器. 物理学报, 2014, 63(21): 214206. doi: 10.7498/aps.63.214206
    [5] 樊莉, 陈海涛, 朱骏. 激光二极管抽运的Nd:YVO4连续自拉曼1175nm激光器. 物理学报, 2014, 63(15): 154208. doi: 10.7498/aps.63.154208
    [6] 周英, 戴玉, 姚淑娜, 刘军, 陈家斌, 陈淑芬, 辛建国. 激光二极管抽运Nd:YVO4晶体的三维热效应分析. 物理学报, 2013, 62(2): 024210. doi: 10.7498/aps.62.024210
    [7] 朱海永, 张戈, 张耀举, 黄呈辉, 段延敏, 魏勇, 尉鹏飞, 于永丽. LD端面抽运c切Nd:YVO4自拉曼倍频589 nm黄光激光研究. 物理学报, 2011, 60(9): 094209. doi: 10.7498/aps.60.094209
    [8] 黄琳, 代志勇, 刘永智. 不同脉冲重复频率下抽运方式对全光纤声光调Q激光器性能的影响. 物理学报, 2009, 58(10): 6992-6999. doi: 10.7498/aps.58.6992
    [9] 刘欢, 巩马理. 紧凑型LD端面抽运Nd:YAG内腔三倍频准连续355 nm紫外激光器. 物理学报, 2009, 58(8): 5443-5449. doi: 10.7498/aps.58.5443
    [10] 张玉萍, 张会云, 钟凯, 王鹏, 李喜福, 姚建铨. 高效高稳定高光束质量声光调Q绿光激光器的研究. 物理学报, 2009, 58(5): 3193-3197. doi: 10.7498/aps.58.3193
    [11] 赵宏明, 楼祺洪, 周 军, 董景星, 魏运荣, 王之江. 不同腔结构下的声光调Q双包层光纤激光器特性研究. 物理学报, 2008, 57(6): 3525-3530. doi: 10.7498/aps.57.3525
    [12] 张恒利, 闫 莹, 杜克明. 激光二极管端面抽运Nd∶YVO4晶体连续输出板条激光器研究. 物理学报, 2008, 57(11): 6982-6986. doi: 10.7498/aps.57.6982
    [13] 韩 琳, 宋 峰, 万从尚, 邹昌光, 闫立华, 张 康, 田建国. 自受激拉曼晶体Nd3+:SrMoO4的光谱性质研究. 物理学报, 2007, 56(3): 1751-1757. doi: 10.7498/aps.56.1751
    [14] 喻远琴, 周晓国, 林 柯, 戴静华, 刘世林, 马兴孝. CH4分子ν1模拉曼诱导克尔效应谱与受激拉曼光声光谱峰形的比较. 物理学报, 2006, 55(6): 2740-2745. doi: 10.7498/aps.55.2740
    [15] 尚连聚. 激光二极管端面抽运的1.34μm Nd:YVO4平凹腔型激光器. 物理学报, 2003, 52(10): 2476-2480. doi: 10.7498/aps.52.2476
    [16] 柳强, 巩马理, 闫平, 贾维溥, 崔瑞祯, 王东生. GaAs被动调Q兼输出耦合Nd∶YVO4激光特性研究. 物理学报, 2002, 51(12): 2756-2760. doi: 10.7498/aps.51.2756
    [17] 尚连聚, 郑义. 激光二极管端面抽运的1.34μm Nd:YVO4三镜折叠腔型激光器. 物理学报, 2002, 51(9): 2015-2017. doi: 10.7498/aps.51.2015
    [18] 冯衍, 宋峰, 赵丽娟, 张潮波, 郭红沧, 张光寅. LD抽运Nd:YVO4晶体中的上转换及其影响. 物理学报, 2001, 50(2): 335-340. doi: 10.7498/aps.50.335
    [19] 何京良, 卢兴强, 贾玉磊, 满宝元, 祝世宁, 朱永元. BBO四倍频全固态Nd:YVO4紫外激光器. 物理学报, 2000, 49(10): 2106-2108. doi: 10.7498/aps.49.2106
    [20] 张恒利, 何京良, 陈毓川, 侯 玮, 刘 嵘, 冯宝华, 许祖彦, 王建明, 吴 星, 吴柏昌, 陈创天. 激光二极管抽运Nd∶YVO4晶体1342nm和671nm激光器研究. 物理学报, 1998, 47(9): 1579-1584. doi: 10.7498/aps.47.1579
计量
  • 文章访问数:  5248
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-13
  • 修回日期:  2021-07-28
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-20

/

返回文章
返回