-
报道了高效的Nd:YVO4晶体自拉曼结合二阶非线性光学混频实现黄绿波段三波长可选输出. 从改善热效应和增加拉曼介质长度出发, 设计双端键合的YVO4/Nd:YVO4/YVO4晶体用于自拉曼变频. 考虑混频转换效率和混频波长切换的便捷性, 选用临界相位匹配的BaB2O4 (BBO)晶体作为二阶非线性光学混频晶体. 只需微调BBO晶体匹配角度在1.4°内, 就可成功实现基频光和一阶斯托克斯光之间的倍频与和频, 获得高效的532 nm绿光、559 nm黄绿光和588 nm黄光三个波长可切换输出. 在19.5 W抽运功率和60 kHz的重复频率下, 三个波长激光的最高平均输出功率分别为4.37 W, 2.03 W和3.43 W, 对应抽运光到可见光的转换效率分别达22.4%, 10.4%和17.6%, 对应脉冲宽度分别为36 ns, 12.2 ns和12.7 ns. 可见波段波长可切换激光器可满足激光医疗、显示、光谱成像和生物光子学等领域对多种波长激光的应用需求.An efficient Nd:YVO4 crystal self-Raman laser combined with second-order nonlinear frequency conversion is demonstrated to achieve an switchable output of three wavelengths in the yellow-green band. In order to improve the thermal effect and increase the length of Raman medium, a three-stage diffusion-bonded YVO4/Nd:YVO4/YVO4 crystal is designed for high power and efficient self-Raman laser operation. Selective frequency mixing mechanisms between the fundamental wave and the first Stokes wave using the LiB3O5 (LBO) and BaB2O4 (BBO) crystals are comparatively studied by temperature tuning and angle tuning, respectively. Considering the frequency mixing conversion efficiency and a relatively fast wavelength switching, the BBO crystal with critical phase matching is selected as the second order nonlinear optical crystal for frequency conversion. It only needs to fine-tune the phase match angle of BBO crystal within 1.4°, and thus successfully realizing all second harmonic and sum frequency generation between the fundamental wave and the first Stokes wave. Therefore the efficient-switchable output of the three wavelengths of 532 nm green light, 559 nm lime light and 588 nm yellow light is obtained. Under the incident pump power of 19.5 W and the pulse repetition rate of 60 kHz, maximum average output power of 4.37 W at 532 nm, 2.03 W at 559 nm, 3.43 W at 588 nm are achieved. The conversion efficiency values of the corresponding pump light to visible light are 22.4%, 10.4% and 17.6%, respectively. The corresponding pulse widths are 36 ns, 12.2 ns and 12.7 ns, respectively. The results show that the selective frequency mixing of self-Raman operation is an efficient approach to achieving the wavelength-switchable emission in visible waveband. This wavelength-switchable laser source has important applications in the areas of laser therapy, visual display, spectral imaging and biological medicine.
-
Keywords:
- self-Raman /
- Nd:YVO4 crystal /
- visible source /
- wavelength switchable
[1] Kaminskii A A, Ueda K, Eichler H J, Kuwano Y, Kouta H, Bagaev S N, Chyba T H, Barnes J C, Gad G M A, Murai T, Lu J 2001 Opt. Commun. 194 201Google Scholar
[2] Chen Y F 2004 Appl. Phys. B 78 685Google Scholar
[3] Chen Y F 2004 Opt. Lett. 29 1251Google Scholar
[4] Pask H M, Dekker P, Mildren R P, Spence D J, Piper J A 2008 Prog. Quantum Electron. 32 121Google Scholar
[5] Cai W Y, Duan Y M, Li J T, Yan L F, Mao M J, Zhao B, Zhu H Y 2015 Chin. Phys. Lett. 32 034206Google Scholar
[6] 朱海永, 张戈, 张耀举, 黄呈辉, 段延敏, 魏勇, 尉鹏飞, 于永丽 2011 物理学报 60 094209Google Scholar
Zhu H Y, Zhang G, Zhang Y J, Huang C H, Duan Y M, Wei Y, Wei P F, Yu Y L 2011 Acta Phys. Sin. 60 094209Google Scholar
[7] 张鑫, 张蕴川, 李建, 李仁杰, 宋庆坤, 张佳乐, 樊莉 2017 物理学报 66 194203Google Scholar
Zhang X, Zhang Y C, Li J, Li R J, Song Q K, Zhang J L, Fan L 2017 Acta Phys. Sin. 66 194203Google Scholar
[8] Zhou Q Q, Shi S C, Chen S M, Duan Y M, Zhang X M, Guo J, Zhao B, Zhu H Y 2019 Chin. Phys. Lett. 36 014205Google Scholar
[9] Chen Y F, Liu Y C, Pan Y Y, Gu D Y, Cheng H P, Tsou C H, Liang H C 2019 Opt. Lett. 44 1323Google Scholar
[10] Chen M T, Dai S B, Zhu S Q, Yin H, Li Z, Chen Z Q 2019 J. Opt. Soc. Am. B 36 524Google Scholar
[11] Zhu H Y, Duan Y M, Zhang G, Huang C H, Wei Y, Shen H Y, Zheng Y Q, Huang L X, Chen Z Q 2009 Opt. Express 17 21544Google Scholar
[12] Liu J, Ding X, Jiang P B, Sheng Q, Yu X Y, Sun B, Wang J B, Shi R, Zhao L, Bai Y T 2018 Appl. Opt. 57 3154Google Scholar
[13] Spence D J, Li X L, Lee A J, Pask H M 2012 Opt. Commun. 285 3849Google Scholar
[14] Mao T W, Duan Y M, Chen S M, Chen M Y, Zhang X M, Zhou Q Q, Zhu H Y 2019 IEEE Photonics Technol. Lett. 31 1112Google Scholar
[15] Li X L 2016 Chin. Opt. Lett. 14 021404Google Scholar
[16] Chen Y F, Pan Y Y, Liu Y C, Cheng H P, Tsou C H, Liang H C 2019 Opt. Express 27 2029Google Scholar
[17] Chen S M, Cheng M Y, Zhu H Y, Mao T W, Zhang X M, Zhou Q Q, Zhang G, Duan Y M 2019 J. Lumin. 214 116555Google Scholar
[18] Mildren R P, Pask H M, Ogilvy H, Piper J A 2005 Opt. Lett. 30 1500Google Scholar
[19] Lee A J, Spence D J, Piper J A, Pask H M 2010 Opt. Express 18 20013Google Scholar
[20] 樊莉, 陈海涛, 朱骏 2014 物理学报 63 154208Google Scholar
Fan L, Chen H T, Zhu J 2014 Acta Phys. Sin. 63 154208Google Scholar
[21] Zhu H Y, Guo J H, Duan Y M, Zhang J, Zhang Y C, Xu C W, Wang H Y, Fan D Y 2018 Opt. Lett. 43 345Google Scholar
[22] Zhu H Y, Guo J H, Ruan X K, Xu C W, Duan Y M, Zhang Y J, Tang D Y 2017 IEEE Photonics J. 9 1500807Google Scholar
[23] Liu Y, Liu Z J, Cong Z H, Men S J, Rao H, Xia J B, Zhang S S, Zhang H J 2016 Opt. Laser Technol. 81 184Google Scholar
[24] Guo J, Zhu H Y, Chen S M, Duan Y M, Xu X R, Xu C W, Tang D Y 2018 Laser Phys. Lett. 15 075803Google Scholar
[25] Runcorn T H, Gorlitz F G, Murray R T, Kelleher E J R 2018 IEEE J. Sel. Top. Quantum Electron. 24 1400208Google Scholar
[26] Staples G, Wu H, Qian J 2015 Laser Focus World 51 61
[27] 刘文陆, 周传清, 任秋实 2012 中国医疗器械杂志 36 326
Liu W L, Zhou C Q, Ren Q S 2012 Chinese Journal of Instrumentation 36 326
-
表 1 不同混频机制的LBO和BBO相位匹配参数(SHG, 倍频; SFM, 和频)
Table 1. Phase-matching (PM) angles for frequency mixing mechanism (SHG, second harmonic generation; SFM, sum frequency generation).
Wavelength conversion 1064 nm SHG 1064 nm & 1176 nm SFM 1176 nm SHG Output wavelength/nm 532 559 588 LBO PM temperature/℃ 149 89 41 LBO PM angle θ = 90°, φ = 11.3° θ = 90°, φ = 7.9° θ = 90°, φ = 3.7° BBO PM angle θ = 22.9°, φ = 0° θ = 22.1°, φ = 0° θ = 21.5°, φ = 0° -
[1] Kaminskii A A, Ueda K, Eichler H J, Kuwano Y, Kouta H, Bagaev S N, Chyba T H, Barnes J C, Gad G M A, Murai T, Lu J 2001 Opt. Commun. 194 201Google Scholar
[2] Chen Y F 2004 Appl. Phys. B 78 685Google Scholar
[3] Chen Y F 2004 Opt. Lett. 29 1251Google Scholar
[4] Pask H M, Dekker P, Mildren R P, Spence D J, Piper J A 2008 Prog. Quantum Electron. 32 121Google Scholar
[5] Cai W Y, Duan Y M, Li J T, Yan L F, Mao M J, Zhao B, Zhu H Y 2015 Chin. Phys. Lett. 32 034206Google Scholar
[6] 朱海永, 张戈, 张耀举, 黄呈辉, 段延敏, 魏勇, 尉鹏飞, 于永丽 2011 物理学报 60 094209Google Scholar
Zhu H Y, Zhang G, Zhang Y J, Huang C H, Duan Y M, Wei Y, Wei P F, Yu Y L 2011 Acta Phys. Sin. 60 094209Google Scholar
[7] 张鑫, 张蕴川, 李建, 李仁杰, 宋庆坤, 张佳乐, 樊莉 2017 物理学报 66 194203Google Scholar
Zhang X, Zhang Y C, Li J, Li R J, Song Q K, Zhang J L, Fan L 2017 Acta Phys. Sin. 66 194203Google Scholar
[8] Zhou Q Q, Shi S C, Chen S M, Duan Y M, Zhang X M, Guo J, Zhao B, Zhu H Y 2019 Chin. Phys. Lett. 36 014205Google Scholar
[9] Chen Y F, Liu Y C, Pan Y Y, Gu D Y, Cheng H P, Tsou C H, Liang H C 2019 Opt. Lett. 44 1323Google Scholar
[10] Chen M T, Dai S B, Zhu S Q, Yin H, Li Z, Chen Z Q 2019 J. Opt. Soc. Am. B 36 524Google Scholar
[11] Zhu H Y, Duan Y M, Zhang G, Huang C H, Wei Y, Shen H Y, Zheng Y Q, Huang L X, Chen Z Q 2009 Opt. Express 17 21544Google Scholar
[12] Liu J, Ding X, Jiang P B, Sheng Q, Yu X Y, Sun B, Wang J B, Shi R, Zhao L, Bai Y T 2018 Appl. Opt. 57 3154Google Scholar
[13] Spence D J, Li X L, Lee A J, Pask H M 2012 Opt. Commun. 285 3849Google Scholar
[14] Mao T W, Duan Y M, Chen S M, Chen M Y, Zhang X M, Zhou Q Q, Zhu H Y 2019 IEEE Photonics Technol. Lett. 31 1112Google Scholar
[15] Li X L 2016 Chin. Opt. Lett. 14 021404Google Scholar
[16] Chen Y F, Pan Y Y, Liu Y C, Cheng H P, Tsou C H, Liang H C 2019 Opt. Express 27 2029Google Scholar
[17] Chen S M, Cheng M Y, Zhu H Y, Mao T W, Zhang X M, Zhou Q Q, Zhang G, Duan Y M 2019 J. Lumin. 214 116555Google Scholar
[18] Mildren R P, Pask H M, Ogilvy H, Piper J A 2005 Opt. Lett. 30 1500Google Scholar
[19] Lee A J, Spence D J, Piper J A, Pask H M 2010 Opt. Express 18 20013Google Scholar
[20] 樊莉, 陈海涛, 朱骏 2014 物理学报 63 154208Google Scholar
Fan L, Chen H T, Zhu J 2014 Acta Phys. Sin. 63 154208Google Scholar
[21] Zhu H Y, Guo J H, Duan Y M, Zhang J, Zhang Y C, Xu C W, Wang H Y, Fan D Y 2018 Opt. Lett. 43 345Google Scholar
[22] Zhu H Y, Guo J H, Ruan X K, Xu C W, Duan Y M, Zhang Y J, Tang D Y 2017 IEEE Photonics J. 9 1500807Google Scholar
[23] Liu Y, Liu Z J, Cong Z H, Men S J, Rao H, Xia J B, Zhang S S, Zhang H J 2016 Opt. Laser Technol. 81 184Google Scholar
[24] Guo J, Zhu H Y, Chen S M, Duan Y M, Xu X R, Xu C W, Tang D Y 2018 Laser Phys. Lett. 15 075803Google Scholar
[25] Runcorn T H, Gorlitz F G, Murray R T, Kelleher E J R 2018 IEEE J. Sel. Top. Quantum Electron. 24 1400208Google Scholar
[26] Staples G, Wu H, Qian J 2015 Laser Focus World 51 61
[27] 刘文陆, 周传清, 任秋实 2012 中国医疗器械杂志 36 326
Liu W L, Zhou C Q, Ren Q S 2012 Chinese Journal of Instrumentation 36 326
计量
- 文章访问数: 6445
- PDF下载量: 81
- 被引次数: 0