搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自拉曼混频黄绿波段三波长可切换激光

孙瑛璐 段延敏 程梦瑶 袁先漳 张立 张栋 朱海永

引用本文:
Citation:

自拉曼混频黄绿波段三波长可切换激光

孙瑛璐, 段延敏, 程梦瑶, 袁先漳, 张立, 张栋, 朱海永

Triple wavelength-switchable lasing in yellow-green based on frequency mixing of self-Raman operation

Sun Ying-Lu, Duan Yan-Min, Cheng Meng-Yao, Yuan Xian-Zhang, Zhang Li, Zhang Dong, Zhu Hai-Yong
PDF
HTML
导出引用
  • 报道了高效的Nd:YVO4晶体自拉曼结合二阶非线性光学混频实现黄绿波段三波长可选输出. 从改善热效应和增加拉曼介质长度出发, 设计双端键合的YVO4/Nd:YVO4/YVO4晶体用于自拉曼变频. 考虑混频转换效率和混频波长切换的便捷性, 选用临界相位匹配的BaB2O4 (BBO)晶体作为二阶非线性光学混频晶体. 只需微调BBO晶体匹配角度在1.4°内, 就可成功实现基频光和一阶斯托克斯光之间的倍频与和频, 获得高效的532 nm绿光、559 nm黄绿光和588 nm黄光三个波长可切换输出. 在19.5 W抽运功率和60 kHz的重复频率下, 三个波长激光的最高平均输出功率分别为4.37 W, 2.03 W和3.43 W, 对应抽运光到可见光的转换效率分别达22.4%, 10.4%和17.6%, 对应脉冲宽度分别为36 ns, 12.2 ns和12.7 ns. 可见波段波长可切换激光器可满足激光医疗、显示、光谱成像和生物光子学等领域对多种波长激光的应用需求.
    An efficient Nd:YVO4 crystal self-Raman laser combined with second-order nonlinear frequency conversion is demonstrated to achieve an switchable output of three wavelengths in the yellow-green band. In order to improve the thermal effect and increase the length of Raman medium, a three-stage diffusion-bonded YVO4/Nd:YVO4/YVO4 crystal is designed for high power and efficient self-Raman laser operation. Selective frequency mixing mechanisms between the fundamental wave and the first Stokes wave using the LiB3O5 (LBO) and BaB2O4 (BBO) crystals are comparatively studied by temperature tuning and angle tuning, respectively. Considering the frequency mixing conversion efficiency and a relatively fast wavelength switching, the BBO crystal with critical phase matching is selected as the second order nonlinear optical crystal for frequency conversion. It only needs to fine-tune the phase match angle of BBO crystal within 1.4°, and thus successfully realizing all second harmonic and sum frequency generation between the fundamental wave and the first Stokes wave. Therefore the efficient-switchable output of the three wavelengths of 532 nm green light, 559 nm lime light and 588 nm yellow light is obtained. Under the incident pump power of 19.5 W and the pulse repetition rate of 60 kHz, maximum average output power of 4.37 W at 532 nm, 2.03 W at 559 nm, 3.43 W at 588 nm are achieved. The conversion efficiency values of the corresponding pump light to visible light are 22.4%, 10.4% and 17.6%, respectively. The corresponding pulse widths are 36 ns, 12.2 ns and 12.7 ns, respectively. The results show that the selective frequency mixing of self-Raman operation is an efficient approach to achieving the wavelength-switchable emission in visible waveband. This wavelength-switchable laser source has important applications in the areas of laser therapy, visual display, spectral imaging and biological medicine.
      通信作者: 朱海永, hyzhu@wzu.edu.cn
    • 基金项目: 省部级-浙江省自然科学基金(LY19F050012)
      Corresponding author: Zhu Hai-Yong, hyzhu@wzu.edu.cn
    [1]

    Kaminskii A A, Ueda K, Eichler H J, Kuwano Y, Kouta H, Bagaev S N, Chyba T H, Barnes J C, Gad G M A, Murai T, Lu J 2001 Opt. Commun. 194 201Google Scholar

    [2]

    Chen Y F 2004 Appl. Phys. B 78 685Google Scholar

    [3]

    Chen Y F 2004 Opt. Lett. 29 1251Google Scholar

    [4]

    Pask H M, Dekker P, Mildren R P, Spence D J, Piper J A 2008 Prog. Quantum Electron. 32 121Google Scholar

    [5]

    Cai W Y, Duan Y M, Li J T, Yan L F, Mao M J, Zhao B, Zhu H Y 2015 Chin. Phys. Lett. 32 034206Google Scholar

    [6]

    朱海永, 张戈, 张耀举, 黄呈辉, 段延敏, 魏勇, 尉鹏飞, 于永丽 2011 物理学报 60 094209Google Scholar

    Zhu H Y, Zhang G, Zhang Y J, Huang C H, Duan Y M, Wei Y, Wei P F, Yu Y L 2011 Acta Phys. Sin. 60 094209Google Scholar

    [7]

    张鑫, 张蕴川, 李建, 李仁杰, 宋庆坤, 张佳乐, 樊莉 2017 物理学报 66 194203Google Scholar

    Zhang X, Zhang Y C, Li J, Li R J, Song Q K, Zhang J L, Fan L 2017 Acta Phys. Sin. 66 194203Google Scholar

    [8]

    Zhou Q Q, Shi S C, Chen S M, Duan Y M, Zhang X M, Guo J, Zhao B, Zhu H Y 2019 Chin. Phys. Lett. 36 014205Google Scholar

    [9]

    Chen Y F, Liu Y C, Pan Y Y, Gu D Y, Cheng H P, Tsou C H, Liang H C 2019 Opt. Lett. 44 1323Google Scholar

    [10]

    Chen M T, Dai S B, Zhu S Q, Yin H, Li Z, Chen Z Q 2019 J. Opt. Soc. Am. B 36 524Google Scholar

    [11]

    Zhu H Y, Duan Y M, Zhang G, Huang C H, Wei Y, Shen H Y, Zheng Y Q, Huang L X, Chen Z Q 2009 Opt. Express 17 21544Google Scholar

    [12]

    Liu J, Ding X, Jiang P B, Sheng Q, Yu X Y, Sun B, Wang J B, Shi R, Zhao L, Bai Y T 2018 Appl. Opt. 57 3154Google Scholar

    [13]

    Spence D J, Li X L, Lee A J, Pask H M 2012 Opt. Commun. 285 3849Google Scholar

    [14]

    Mao T W, Duan Y M, Chen S M, Chen M Y, Zhang X M, Zhou Q Q, Zhu H Y 2019 IEEE Photonics Technol. Lett. 31 1112Google Scholar

    [15]

    Li X L 2016 Chin. Opt. Lett. 14 021404Google Scholar

    [16]

    Chen Y F, Pan Y Y, Liu Y C, Cheng H P, Tsou C H, Liang H C 2019 Opt. Express 27 2029Google Scholar

    [17]

    Chen S M, Cheng M Y, Zhu H Y, Mao T W, Zhang X M, Zhou Q Q, Zhang G, Duan Y M 2019 J. Lumin. 214 116555Google Scholar

    [18]

    Mildren R P, Pask H M, Ogilvy H, Piper J A 2005 Opt. Lett. 30 1500Google Scholar

    [19]

    Lee A J, Spence D J, Piper J A, Pask H M 2010 Opt. Express 18 20013Google Scholar

    [20]

    樊莉, 陈海涛, 朱骏 2014 物理学报 63 154208Google Scholar

    Fan L, Chen H T, Zhu J 2014 Acta Phys. Sin. 63 154208Google Scholar

    [21]

    Zhu H Y, Guo J H, Duan Y M, Zhang J, Zhang Y C, Xu C W, Wang H Y, Fan D Y 2018 Opt. Lett. 43 345Google Scholar

    [22]

    Zhu H Y, Guo J H, Ruan X K, Xu C W, Duan Y M, Zhang Y J, Tang D Y 2017 IEEE Photonics J. 9 1500807Google Scholar

    [23]

    Liu Y, Liu Z J, Cong Z H, Men S J, Rao H, Xia J B, Zhang S S, Zhang H J 2016 Opt. Laser Technol. 81 184Google Scholar

    [24]

    Guo J, Zhu H Y, Chen S M, Duan Y M, Xu X R, Xu C W, Tang D Y 2018 Laser Phys. Lett. 15 075803Google Scholar

    [25]

    Runcorn T H, Gorlitz F G, Murray R T, Kelleher E J R 2018 IEEE J. Sel. Top. Quantum Electron. 24 1400208Google Scholar

    [26]

    Staples G, Wu H, Qian J 2015 Laser Focus World 51 61

    [27]

    刘文陆, 周传清, 任秋实 2012 中国医疗器械杂志 36 326

    Liu W L, Zhou C Q, Ren Q S 2012 Chinese Journal of Instrumentation 36 326

  • 图 1  可见光三波长可切换激光实验装置示意图(AO, 声光Q开头; RP, 旋转平台; LD, 激光二极管)

    Fig. 1.  Experimental arrangement of the three visible wavelength switchable laser (AO, acousto-optic Q-switcher; RP, rotating platform; LD, laser diode).

    图 2  双端键合YVO4/Nd:YVO4/YVO4晶体照片(上方两个晶体图片是本实验所用的同一块晶体, 下方的晶体图片是另一块键合面散射严重的键合晶体)

    Fig. 2.  An image of the double-end diffusion-bonded YVO4/ Nd:YVO4/YVO4 crystals (the top two are the same crystal used in the experiment, the bottom one is another crystal with defective bonding).

    图 3  实验测量的可见波段三波长激光光谱和光斑照片

    Fig. 3.  Measured spectrum and shooting spots of the three visible emissions.

    图 4  可见波段三个波长平均输出功率随入射抽运功率的关系

    Fig. 4.  Average output power of the three visible emissions versus the incident pump power.

    图 5  可见波段三个波长输出的激光脉冲波形

    Fig. 5.  Temporal pulse profiles of the three visible laser output.

    表 1  不同混频机制的LBO和BBO相位匹配参数(SHG, 倍频; SFM, 和频)

    Table 1.  Phase-matching (PM) angles for frequency mixing mechanism (SHG, second harmonic generation; SFM, sum frequency generation).

    Wavelength conversion1064 nm SHG1064 nm & 1176 nm SFM1176 nm SHG
    Output wavelength/nm532559588
    LBO PM temperature/℃1498941
    LBO PM angleθ = 90°, φ = 11.3°θ = 90°, φ = 7.9°θ = 90°, φ = 3.7°
    BBO PM angleθ = 22.9°, φ = 0°θ = 22.1°, φ = 0°θ = 21.5°, φ = 0°
    下载: 导出CSV
  • [1]

    Kaminskii A A, Ueda K, Eichler H J, Kuwano Y, Kouta H, Bagaev S N, Chyba T H, Barnes J C, Gad G M A, Murai T, Lu J 2001 Opt. Commun. 194 201Google Scholar

    [2]

    Chen Y F 2004 Appl. Phys. B 78 685Google Scholar

    [3]

    Chen Y F 2004 Opt. Lett. 29 1251Google Scholar

    [4]

    Pask H M, Dekker P, Mildren R P, Spence D J, Piper J A 2008 Prog. Quantum Electron. 32 121Google Scholar

    [5]

    Cai W Y, Duan Y M, Li J T, Yan L F, Mao M J, Zhao B, Zhu H Y 2015 Chin. Phys. Lett. 32 034206Google Scholar

    [6]

    朱海永, 张戈, 张耀举, 黄呈辉, 段延敏, 魏勇, 尉鹏飞, 于永丽 2011 物理学报 60 094209Google Scholar

    Zhu H Y, Zhang G, Zhang Y J, Huang C H, Duan Y M, Wei Y, Wei P F, Yu Y L 2011 Acta Phys. Sin. 60 094209Google Scholar

    [7]

    张鑫, 张蕴川, 李建, 李仁杰, 宋庆坤, 张佳乐, 樊莉 2017 物理学报 66 194203Google Scholar

    Zhang X, Zhang Y C, Li J, Li R J, Song Q K, Zhang J L, Fan L 2017 Acta Phys. Sin. 66 194203Google Scholar

    [8]

    Zhou Q Q, Shi S C, Chen S M, Duan Y M, Zhang X M, Guo J, Zhao B, Zhu H Y 2019 Chin. Phys. Lett. 36 014205Google Scholar

    [9]

    Chen Y F, Liu Y C, Pan Y Y, Gu D Y, Cheng H P, Tsou C H, Liang H C 2019 Opt. Lett. 44 1323Google Scholar

    [10]

    Chen M T, Dai S B, Zhu S Q, Yin H, Li Z, Chen Z Q 2019 J. Opt. Soc. Am. B 36 524Google Scholar

    [11]

    Zhu H Y, Duan Y M, Zhang G, Huang C H, Wei Y, Shen H Y, Zheng Y Q, Huang L X, Chen Z Q 2009 Opt. Express 17 21544Google Scholar

    [12]

    Liu J, Ding X, Jiang P B, Sheng Q, Yu X Y, Sun B, Wang J B, Shi R, Zhao L, Bai Y T 2018 Appl. Opt. 57 3154Google Scholar

    [13]

    Spence D J, Li X L, Lee A J, Pask H M 2012 Opt. Commun. 285 3849Google Scholar

    [14]

    Mao T W, Duan Y M, Chen S M, Chen M Y, Zhang X M, Zhou Q Q, Zhu H Y 2019 IEEE Photonics Technol. Lett. 31 1112Google Scholar

    [15]

    Li X L 2016 Chin. Opt. Lett. 14 021404Google Scholar

    [16]

    Chen Y F, Pan Y Y, Liu Y C, Cheng H P, Tsou C H, Liang H C 2019 Opt. Express 27 2029Google Scholar

    [17]

    Chen S M, Cheng M Y, Zhu H Y, Mao T W, Zhang X M, Zhou Q Q, Zhang G, Duan Y M 2019 J. Lumin. 214 116555Google Scholar

    [18]

    Mildren R P, Pask H M, Ogilvy H, Piper J A 2005 Opt. Lett. 30 1500Google Scholar

    [19]

    Lee A J, Spence D J, Piper J A, Pask H M 2010 Opt. Express 18 20013Google Scholar

    [20]

    樊莉, 陈海涛, 朱骏 2014 物理学报 63 154208Google Scholar

    Fan L, Chen H T, Zhu J 2014 Acta Phys. Sin. 63 154208Google Scholar

    [21]

    Zhu H Y, Guo J H, Duan Y M, Zhang J, Zhang Y C, Xu C W, Wang H Y, Fan D Y 2018 Opt. Lett. 43 345Google Scholar

    [22]

    Zhu H Y, Guo J H, Ruan X K, Xu C W, Duan Y M, Zhang Y J, Tang D Y 2017 IEEE Photonics J. 9 1500807Google Scholar

    [23]

    Liu Y, Liu Z J, Cong Z H, Men S J, Rao H, Xia J B, Zhang S S, Zhang H J 2016 Opt. Laser Technol. 81 184Google Scholar

    [24]

    Guo J, Zhu H Y, Chen S M, Duan Y M, Xu X R, Xu C W, Tang D Y 2018 Laser Phys. Lett. 15 075803Google Scholar

    [25]

    Runcorn T H, Gorlitz F G, Murray R T, Kelleher E J R 2018 IEEE J. Sel. Top. Quantum Electron. 24 1400208Google Scholar

    [26]

    Staples G, Wu H, Qian J 2015 Laser Focus World 51 61

    [27]

    刘文陆, 周传清, 任秋实 2012 中国医疗器械杂志 36 326

    Liu W L, Zhou C Q, Ren Q S 2012 Chinese Journal of Instrumentation 36 326

  • [1] 段延敏, 周玉明, 孙瑛璐, 李志红, 张耀举, 王鸿雁, 朱海永. 声光调Q Nd:YVO4晶体级联拉曼倍频窄脉宽657 nm激光器. 物理学报, 2021, 70(22): 224209. doi: 10.7498/aps.70.20210695
    [2] 谭凡教, 苏金宇, 侯晴宇, 王佳轩, 王一惠. 基于时谱信号分析的在轨空间目标姿态感知. 物理学报, 2020, 69(21): 214201. doi: 10.7498/aps.69.20200098
    [3] 张蕴川, 樊莉, 魏晨飞, 顾晓敏, 任思贤. 波长锁定878.9 nm激光二极管抽运内腔式YVO4/BaWO4连续波拉曼激光器. 物理学报, 2018, 67(2): 024206. doi: 10.7498/aps.67.20171848
    [4] 张鑫, 张蕴川, 李建, 李仁杰, 宋庆坤, 张佳乐, 樊莉. 波长锁定激光二极管共振泵浦Nd:YVO4晶体连续波自拉曼激光器的设计与研究. 物理学报, 2017, 66(19): 194203. doi: 10.7498/aps.66.194203
    [5] 刘欢, 曹士英, 孟飞, 林百科, 方占军. 覆盖可见光波长的掺Er光纤飞秒光学频率梳. 物理学报, 2015, 64(9): 094204. doi: 10.7498/aps.64.094204
    [6] 王东, 马迎军, 刘泉, 史祎诗. 可见光域多波长叠层衍射成像的实验研究. 物理学报, 2015, 64(8): 084203. doi: 10.7498/aps.64.084203
    [7] 樊莉, 陈海涛, 朱骏. 激光二极管抽运的Nd:YVO4连续自拉曼1175nm激光器. 物理学报, 2014, 63(15): 154208. doi: 10.7498/aps.63.154208
    [8] 张心贲, 罗兴, 程兰, 李海清, 彭景刚, 戴能利, 李进延. 双零色散光子晶体光纤中可见光超连续谱的产生. 物理学报, 2014, 63(3): 034204. doi: 10.7498/aps.63.034204
    [9] 冯鑫, 李川, 胡开群. 基于深度玻尔兹曼模型的红外与可见光图像融合. 物理学报, 2014, 63(18): 184202. doi: 10.7498/aps.63.184202
    [10] 李斌, 丁欣, 孙冰, 盛泉, 姜鹏波, 张巍, 刘简, 范琛, 张海永, 姚建铨. 28.2 W波长锁定878.6 nm激光二极管共振抽运双晶体1064 nm激光器. 物理学报, 2014, 63(21): 214206. doi: 10.7498/aps.63.214206
    [11] 赵兴涛, 郑义, 韩颖, 周桂耀, 侯峙云, 沈建平, 王春, 侯蓝田. 光子晶体光纤包层可见光及红外宽带色散波产生. 物理学报, 2013, 62(6): 064215. doi: 10.7498/aps.62.064215
    [12] 朱海永, 张戈, 张耀举, 黄呈辉, 段延敏, 魏勇, 尉鹏飞, 于永丽. LD端面抽运c切Nd:YVO4自拉曼倍频589 nm黄光激光研究. 物理学报, 2011, 60(9): 094209. doi: 10.7498/aps.60.094209
    [13] 赵延, 相建凯, 李飒, 赵晓鹏. 基于双鱼网结构的可见光波段超材料. 物理学报, 2011, 60(5): 054211. doi: 10.7498/aps.60.054211
    [14] 相建凯, 马忠洪, 赵延, 赵晓鹏. 可见光波段超材料的平面聚焦效应. 物理学报, 2010, 59(6): 4023-4029. doi: 10.7498/aps.59.4023
    [15] 韩 琳, 宋 峰, 万从尚, 邹昌光, 闫立华, 张 康, 田建国. 自受激拉曼晶体Nd3+:SrMoO4的光谱性质研究. 物理学报, 2007, 56(3): 1751-1757. doi: 10.7498/aps.56.1751
    [16] 顾培夫, 黄弼勤, 郑臻荣. 用于可见光区的薄膜光子晶体全角度反射器. 物理学报, 2005, 54(8): 3707-3710. doi: 10.7498/aps.54.3707
    [17] 徐文兰, 张栓勤, 徐 怡. 可见光隐身涂料设计. 物理学报, 2004, 53(9): 3215-3219. doi: 10.7498/aps.53.3215
    [18] 尚连聚. 激光二极管端面抽运的1.34μm Nd:YVO4平凹腔型激光器. 物理学报, 2003, 52(10): 2476-2480. doi: 10.7498/aps.52.2476
    [19] 禹宣伊, 丁欣, 李卓, 许京军, 张光寅. 可见光红外图像转换薄膜的研究. 物理学报, 2002, 51(6): 1307-1311. doi: 10.7498/aps.51.1307
    [20] 尚连聚, 郑义. 激光二极管端面抽运的1.34μm Nd:YVO4三镜折叠腔型激光器. 物理学报, 2002, 51(9): 2015-2017. doi: 10.7498/aps.51.2015
计量
  • 文章访问数:  7473
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-02
  • 修回日期:  2020-03-26
  • 刊出日期:  2020-06-20

/

返回文章
返回