搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

波长锁定878.9 nm激光二极管抽运内腔式YVO4/BaWO4连续波拉曼激光器

张蕴川 樊莉 魏晨飞 顾晓敏 任思贤

引用本文:
Citation:

波长锁定878.9 nm激光二极管抽运内腔式YVO4/BaWO4连续波拉曼激光器

张蕴川, 樊莉, 魏晨飞, 顾晓敏, 任思贤

Continuous-wave intracavity YVO4/BaWO4 Raman laser pumped by a wavelength-locked 878.9 nm laser diode

Zhang Yun-Chuan, Fan Li, Wei Chen-Fei, Gu Xiao-Min, Ren Si-Xian
PDF
导出引用
  • 采用波长锁定878.9 nm激光二极管共振抽运复合Nd:YVO4激光晶体,改善热效应的同时提高抽运吸收率,分别以YVO4和BaWO4晶体作为拉曼介质,实验和理论研究了晶体性能、谐振腔结构和稳定性对内腔分体式连续波拉曼激光器性能的影响.结果表明:由于内腔分体式拉曼激光器腔长较长,谐振腔稳定性对激光器性能影响较大,选择高增益的拉曼晶体,不仅可获得高拉曼转换效率,还能一定程度上减轻热效应.而平凹腔结构中输出镜的曲率半径越小,拉曼晶体中基频光的功率密度越大,腔的动态稳定区越宽,获得的拉曼激光输出功率更高.最终以30 mm的BaWO4晶体作为拉曼介质,在抽运功率25.1 W时,获得了3.02 W的连续拉曼激光输出,光-光转换效率达到12%.
    In this paper, the composite Nd:YVO4 laser crystal is in-band pumped by a wavelength-locked laser diode at 878.9 nm, with the purpose of reducing thermal effects and improving pump absorption simultaneously. By using the YVO4 and BaWO4 crystals as Raman media, the influences of crystal properties, resonator structure and stability on the performance of continuous-wave intracavity Raman laser are investigated experimentally and theoretically. The results show that the resonator stability greatly affects laser performance due to the long cavity length of intracavity Raman laser. By choosing the Raman medium with high Raman gain, we can not only obtain higher Raman conversion efficiency, but also reduce the thermal effect to a certain extent. Furthermore, the smaller the curvature radius of the output mirror in the plano-concave cavity structure, the greater the power density of the fundamental laser in the Raman crystal is and the wider the dynamic stability region of the resonator, and hence the higher output power of the Raman laser can be achieved. Finally, by using 30-mm BaWO4 crystal as Raman medium, a highest Raman output of 3.02 W is obtained at a pump power of 25.1 W, corresponding to a diode-to-Stokes optical conversion efficiency of 12%.
      通信作者: 樊莉, 025201-20170845
    • 基金项目: 国家自然科学基金(批准号:11774301)、江苏省自然科学基金青年科学基金(批准号:BK20130453)和南京大学固体微结构物理国家重点实验室开放课题(批准号:M29027)资助的课题.
      Corresponding author: Fan Li, 025201-20170845
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11774301), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20130453), and the State Key Laboratory for Solid State Microstructures, Nanjing University, China (Grant No. M29027).
    [1]

    Pask H M 2003 Prog. Quant. Electron. 27 3

    [2]

    Cerny P, Jelinkova H, Zverev P G, Basiev T T 2004 Prog. Quant. Electron. 28 113

    [3]

    Piper J A, Pask H M 2007 IEEE J. Sel. Top. Quant. 13 692

    [4]

    Grabtchikov A S, Lisinetskii V A, Orlovich V A, Schmitt M, Maksimenka R, Kiefer W 2004 Opt. Lett. 29 2524

    [5]

    Bonne G M, Lin J P, Kemp A J, Wang J Y Zhang H J Spence D J, Pask H M 2014 Opt. Express 22 7492

    [6]

    Neto J J, Artlett C, Lee A, Lin J P, Spence D, Piper J Wetter N U, Pask H 2014 Opt. Mater. Express 4 889

    [7]

    Tang C Y, Zhuang W Z, Su K W, Chen Y F 2015 IEEE J. Sel. Top. Quant. 21 142

    [8]

    Lee C Y, Chang C C, Sung C L, Chen Y F 2015 Opt. Express 23 22765

    [9]

    Kores C C, Jakutis-Neto J, Geskus D, Pask H M, Wetter N U 2015 Opt. Lett. 40 3524

    [10]

    Sarang S, Williams R J, Lux O, Kitzler O, Mckay A, Jasbeer H, Mildren R P 2016 Opt. Express 24 21463

    [11]

    Pask H M 2005 Opt. Lett. 30 2454

    [12]

    Orlovich V A, Burakevich V N, Grabtchikov A S, Lisinetskii V A, Demidovich A A, Eichler H J, Turpin P Y 2005 Laser Phys. Lett. 3 71

    [13]

    Dekker P, Pask H M, Piper J A 2007 Opt. Lett. 32 1114

    [14]

    Fan L, Fan Y X, Duan Y H, Wang H T, Jia G H, Tu C Y 2009 Appl. Phys. B 94 553

    [15]

    Fan L, Fan Y X, Li Y Q, Zhang H J, Wang Q, Wang J, Wang H T 2009 Opt. Lett. 34 1687

    [16]

    Lee A J, Pask H M, Piper J A, Zhang H J, Wang J Y 2010 Opt. Express 18 5984

    [17]

    Jakutis-Neto J, Lin J P, Wetter N U, Pask H 2012 Opt. Express 20 9841

    [18]

    Wang X L, Dong J, Wang X J, Xu J, Ueda K I, Kaminskii A A 2016 Opt. Lett. 41 3559

    [19]

    Ding X, Fan C, Sheng Q, Li B, Yu X Y, Zhang G Z, Sun B, Wu L, Zhang H Y, Liu J, Jiang P B, Zhang W, Zhao C, Yao J Q 2014 Opt. Express 22 29121

    [20]

    Sheng Q, Ding X, Li B, Yu X Y, Fan C, Zhang H Y, Liu J, Jiang P B, Zhang W, Wen W Q, Sun B, Yao J Q 2014 J. Opt. 16 105206

    [21]

    Li B, Lei P, Sun B, Bai Y B 2017 Appl. Opt. 56 1542

    [22]

    Zhang X, Zhang Y C, Li J, Li R J, Song Q K, Zhang J L, Fan L 2017 Acta Phys. Sin. 66 194203 (in Chinese)[张鑫, 张蕴川, 李建, 李仁杰, 宋庆坤, 张佳乐, 樊莉 2017 物理学报 66 194203]

    [23]

    Innocenzi M E, Yura H T, Fincher C L, Fields R A 1990 Appl. Phys. Lett. 56 1831

    [24]

    Shang C 2013 M. S. Dissertation (Tianjin: Tianjin University) (in Chinese)[尚策 2013 硕士学位论文(天津: 天津大学)]

    [25]

    Mao Y F, Zhang H L, Xu L, Deng B, Sang S H, He J L, Xing J C, Xin J G, Jiang Y 2015 Acta Phys. Sin. 64 014203 (in Chinese)[毛叶飞, 张恒利, 徐浏, 邓波, 桑思晗, 何京良, 邢冀川, 辛建国, 江毅 2015 物理学报 64 014203]

    [26]

    Sheng Q, Ding X, Li B, Yu X Y, Fan C, Zhang H Y, Liu J, Jiang P B, Zhang W, Wen W Q, Sun B, Yao J Q 2014 J. Opt. 16 105206

    [27]

    Kaminskii A A, Ueda K, Eichler H J 2001 Opt. Commun. 194 201

    [28]

    Zverev P G, Basiev T T, Sobol A A 2000 Quantum Electron 30 55

  • [1]

    Pask H M 2003 Prog. Quant. Electron. 27 3

    [2]

    Cerny P, Jelinkova H, Zverev P G, Basiev T T 2004 Prog. Quant. Electron. 28 113

    [3]

    Piper J A, Pask H M 2007 IEEE J. Sel. Top. Quant. 13 692

    [4]

    Grabtchikov A S, Lisinetskii V A, Orlovich V A, Schmitt M, Maksimenka R, Kiefer W 2004 Opt. Lett. 29 2524

    [5]

    Bonne G M, Lin J P, Kemp A J, Wang J Y Zhang H J Spence D J, Pask H M 2014 Opt. Express 22 7492

    [6]

    Neto J J, Artlett C, Lee A, Lin J P, Spence D, Piper J Wetter N U, Pask H 2014 Opt. Mater. Express 4 889

    [7]

    Tang C Y, Zhuang W Z, Su K W, Chen Y F 2015 IEEE J. Sel. Top. Quant. 21 142

    [8]

    Lee C Y, Chang C C, Sung C L, Chen Y F 2015 Opt. Express 23 22765

    [9]

    Kores C C, Jakutis-Neto J, Geskus D, Pask H M, Wetter N U 2015 Opt. Lett. 40 3524

    [10]

    Sarang S, Williams R J, Lux O, Kitzler O, Mckay A, Jasbeer H, Mildren R P 2016 Opt. Express 24 21463

    [11]

    Pask H M 2005 Opt. Lett. 30 2454

    [12]

    Orlovich V A, Burakevich V N, Grabtchikov A S, Lisinetskii V A, Demidovich A A, Eichler H J, Turpin P Y 2005 Laser Phys. Lett. 3 71

    [13]

    Dekker P, Pask H M, Piper J A 2007 Opt. Lett. 32 1114

    [14]

    Fan L, Fan Y X, Duan Y H, Wang H T, Jia G H, Tu C Y 2009 Appl. Phys. B 94 553

    [15]

    Fan L, Fan Y X, Li Y Q, Zhang H J, Wang Q, Wang J, Wang H T 2009 Opt. Lett. 34 1687

    [16]

    Lee A J, Pask H M, Piper J A, Zhang H J, Wang J Y 2010 Opt. Express 18 5984

    [17]

    Jakutis-Neto J, Lin J P, Wetter N U, Pask H 2012 Opt. Express 20 9841

    [18]

    Wang X L, Dong J, Wang X J, Xu J, Ueda K I, Kaminskii A A 2016 Opt. Lett. 41 3559

    [19]

    Ding X, Fan C, Sheng Q, Li B, Yu X Y, Zhang G Z, Sun B, Wu L, Zhang H Y, Liu J, Jiang P B, Zhang W, Zhao C, Yao J Q 2014 Opt. Express 22 29121

    [20]

    Sheng Q, Ding X, Li B, Yu X Y, Fan C, Zhang H Y, Liu J, Jiang P B, Zhang W, Wen W Q, Sun B, Yao J Q 2014 J. Opt. 16 105206

    [21]

    Li B, Lei P, Sun B, Bai Y B 2017 Appl. Opt. 56 1542

    [22]

    Zhang X, Zhang Y C, Li J, Li R J, Song Q K, Zhang J L, Fan L 2017 Acta Phys. Sin. 66 194203 (in Chinese)[张鑫, 张蕴川, 李建, 李仁杰, 宋庆坤, 张佳乐, 樊莉 2017 物理学报 66 194203]

    [23]

    Innocenzi M E, Yura H T, Fincher C L, Fields R A 1990 Appl. Phys. Lett. 56 1831

    [24]

    Shang C 2013 M. S. Dissertation (Tianjin: Tianjin University) (in Chinese)[尚策 2013 硕士学位论文(天津: 天津大学)]

    [25]

    Mao Y F, Zhang H L, Xu L, Deng B, Sang S H, He J L, Xing J C, Xin J G, Jiang Y 2015 Acta Phys. Sin. 64 014203 (in Chinese)[毛叶飞, 张恒利, 徐浏, 邓波, 桑思晗, 何京良, 邢冀川, 辛建国, 江毅 2015 物理学报 64 014203]

    [26]

    Sheng Q, Ding X, Li B, Yu X Y, Fan C, Zhang H Y, Liu J, Jiang P B, Zhang W, Wen W Q, Sun B, Yao J Q 2014 J. Opt. 16 105206

    [27]

    Kaminskii A A, Ueda K, Eichler H J 2001 Opt. Commun. 194 201

    [28]

    Zverev P G, Basiev T T, Sobol A A 2000 Quantum Electron 30 55

  • [1] 关晓通, 傅文杰, 鲁钝, 杨同斌, 鄢扬, 袁学松. 双共焦波导结构二次谐波太赫兹回旋管谐振腔设计. 物理学报, 2020, 69(6): 068401. doi: 10.7498/aps.69.20191222
    [2] 刘海旭, 侯满宏, 李新胜. X频段连续波100 kW吸收式谐波滤波器研制. 物理学报, 2018, 67(19): 198401. doi: 10.7498/aps.67.20180577
    [3] 张鑫, 张蕴川, 李建, 李仁杰, 宋庆坤, 张佳乐, 樊莉. 波长锁定激光二极管共振泵浦Nd:YVO4晶体连续波自拉曼激光器的设计与研究. 物理学报, 2017, 66(19): 194203. doi: 10.7498/aps.66.194203
    [4] 刘俊, 张天恩, 张伟, 雷龙海, 薛晨阳, 张文栋, 唐军. 平面环形谐振腔微光学陀螺结构设计与优化. 物理学报, 2015, 64(10): 107802. doi: 10.7498/aps.64.107802
    [5] 于永吉, 陈薪羽, 成丽波, 王超, 吴春婷, 董渊, 李述涛, 金光勇. 基于MgO:APLN的1.57m/3.84m连续波内腔多光参量振荡器研究. 物理学报, 2015, 64(22): 224215. doi: 10.7498/aps.64.224215
    [6] 樊莉, 陈海涛, 朱骏. 激光二极管抽运的Nd:YVO4连续自拉曼1175nm激光器. 物理学报, 2014, 63(15): 154208. doi: 10.7498/aps.63.154208
    [7] 张会云, 刘蒙, 张玉萍, 申端龙, 吴志心, 尹贻恒, 李德华. 连续波抽运气体波导产生太赫兹激光的理论研究. 物理学报, 2014, 63(2): 020702. doi: 10.7498/aps.63.020702
    [8] 刘欢, 王巍, 巩马理. 角抽运Nd:YAG复合板条946 nm连续运转激光器 . 物理学报, 2013, 62(14): 144205. doi: 10.7498/aps.62.144205
    [9] 刁其龙, 黄春琳. 抑制穿过具有倾斜角度的介质探测成像时产生的寄生干涉条纹现象. 物理学报, 2012, 61(21): 210204. doi: 10.7498/aps.61.210204
    [10] 宗楠, 崔大复, 李成明, 彭钦军, 许祖彦, 秦莉, 李特, 宁永强, 晏长岭, 王立军. 光抽运垂直扩展腔面发射激光器腔内倍频理论研究. 物理学报, 2009, 58(6): 3903-3908. doi: 10.7498/aps.58.3903
    [11] 刘欢, 巩马理. 紧凑型LD端面抽运Nd:YAG内腔三倍频准连续355 nm紫外激光器. 物理学报, 2009, 58(8): 5443-5449. doi: 10.7498/aps.58.5443
    [12] 鲁远甫, 谢仕永, 薄勇, 崔前进, 宗楠, 高宏伟, 彭钦军, 崔大复, 许祖彦. 高功率准连续波腔内和频全固态黄光激光器. 物理学报, 2009, 58(2): 970-974. doi: 10.7498/aps.58.970
    [13] 刘欢, 巩马理. 紧凑型激光二极管抽运全固态355 nm连续波紫外激光器. 物理学报, 2009, 58(10): 7000-7004. doi: 10.7498/aps.58.7000
    [14] 张玉萍, 张会云, 何志红, 王鹏, 李喜福, 姚建铨. 36 W侧面抽运腔内倍频Nd:YAG/KTP连续绿光激光器. 物理学报, 2009, 58(7): 4647-4651. doi: 10.7498/aps.58.4647
    [15] 张显斌, 施 卫. 用短谐振腔结构优化THz电磁波参量振荡器的输出特性. 物理学报, 2006, 55(10): 5237-5241. doi: 10.7498/aps.55.5237
    [16] 耿爱丛, 薄 勇, 毕 勇, 孙志培, 杨晓冬, 鲁远甫, 陈亚辉, 郭 林, 王桂玲, 崔大复, 许祖彦. V型腔腔内和频产生3 W连续波589 nm黄光激光器. 物理学报, 2006, 55(10): 5227-5231. doi: 10.7498/aps.55.5227
    [17] 佟存柱, 牛智川, 韩 勤, 吴荣汉. 1.3μm GaAs基量子点垂直腔面发射激光器结构设计与分析. 物理学报, 2005, 54(8): 3651-3656. doi: 10.7498/aps.54.3651
    [18] 刘劲松, 梁昌洪, 安毓英, 李铭华, 金婵, 徐玉恒, 吴仲康. 掺杂铌酸锂双相位共轭镜光学谐振腔的最佳抽运比. 物理学报, 1995, 44(8): 1217-1221. doi: 10.7498/aps.44.1217
    [19] 叶碧青, 马忠林. 激光谐振腔内光学元件的热光效应. 物理学报, 1980, 29(6): 756-763. doi: 10.7498/aps.29.756
    [20] 王之江, 方洪烈. 直角稜镜谐振腔的共振模. 物理学报, 1975, 24(6): 454-457. doi: 10.7498/aps.24.454
计量
  • 文章访问数:  3169
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-16
  • 修回日期:  2017-09-19
  • 刊出日期:  2019-01-20

波长锁定878.9 nm激光二极管抽运内腔式YVO4/BaWO4连续波拉曼激光器

  • 1. 扬州大学物理科学与技术学院, 应用光子技术研究所, 扬州 225002;
  • 2. 南京大学, 固体微结构物理国家重点实验室, 南京 210093
  • 通信作者: 樊莉, 025201-20170845
    基金项目: 国家自然科学基金(批准号:11774301)、江苏省自然科学基金青年科学基金(批准号:BK20130453)和南京大学固体微结构物理国家重点实验室开放课题(批准号:M29027)资助的课题.

摘要: 采用波长锁定878.9 nm激光二极管共振抽运复合Nd:YVO4激光晶体,改善热效应的同时提高抽运吸收率,分别以YVO4和BaWO4晶体作为拉曼介质,实验和理论研究了晶体性能、谐振腔结构和稳定性对内腔分体式连续波拉曼激光器性能的影响.结果表明:由于内腔分体式拉曼激光器腔长较长,谐振腔稳定性对激光器性能影响较大,选择高增益的拉曼晶体,不仅可获得高拉曼转换效率,还能一定程度上减轻热效应.而平凹腔结构中输出镜的曲率半径越小,拉曼晶体中基频光的功率密度越大,腔的动态稳定区越宽,获得的拉曼激光输出功率更高.最终以30 mm的BaWO4晶体作为拉曼介质,在抽运功率25.1 W时,获得了3.02 W的连续拉曼激光输出,光-光转换效率达到12%.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回