搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半磁性拓扑绝缘体中的非线性霍尔效应

伍可 朱炅熠 陈锐 周斌

引用本文:
Citation:

半磁性拓扑绝缘体中的非线性霍尔效应

伍可, 朱炅熠, 陈锐, 周斌

Nonlinear Hall effect in semi-magnetic topological insulators

WU Ke, ZHU Jiongyi, CHEN Rui, ZHOU Bin
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 近年来,磁性拓扑绝缘体的线性霍尔效应得到了广泛的研究。然而,磁性拓扑绝缘体中的非线性霍尔效应依然缺乏研究。本文系统地研究了半磁性拓扑绝缘体中的非线性霍尔效应及其调控机制。研究发现半磁性拓扑绝缘体的非线性霍尔效应依赖于系统的磁性层的磁矩方向。数值计算结果表明,相对于线性霍尔电导,系统的非线性霍尔电导对磁矩水平方向的变化较为敏感,该现象可作为实验上辨别磁矩取向变化的表征指标。本研究不仅加深了对半磁性拓扑绝缘体量子输运行为的理解,还为多功能拓扑电子器件的设计提供了理论依据。
    Semi-magnetic topological insulators have garnered significant interest for their unique electronic properties, including the emergent half-quantized linear Hall effect. However, nonlinear Hall effects in these materials remain unexplored. This work systematically investigates the nonlinear Hall effect in semi-magnetic topological insulators and explores its dependence on the orientation of the magnetic moment in the magnetic layers. Using both analytical and numerical methods, we demonstrate that the nonlinear Hall conductance is more sensitive to the horizontal components of the magnetic moment compared to the linear Hall conductance, which predominantly depends on the vertical component of the magnetic moment. Our results reveal that the nonlinear Hall conductance can serve as a sensitive probe to detect changes in the orientation of the magnetic moment in experiments. Specifically, we show that the nonlinear Hall effect is governed by the Berry dipole moment, whose magnitude and direction vary with the tilt of the magnetic moment, offering a unique signature of its orientation. This work highlights the potential for using both linear and nonlinear Hall effects to map the direction of the magnetic moment in semi-magnetic topological insulators. Besides, the measurement of the nonlinear Hall effect can be directly implemented using existing experimental setups, without the need for additional modifications. The findings provide insights into the quantum transport behavior of the semi-magnetic topological insulator and pave the way for new experimental techniques to manipulate and probe their magnetic properties.
  • [1]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [2]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [3]

    Bansil A, Lin H, Das T 2016 Rev. Mod. Phys. 88 021004

    [4]

    Bernevig B A, Felser C, Beidenkopf H 2022 Nature 603 41

    [5]

    Tokura Y, Yasuda K, Tsukazaki A 2019 Nat. Rev. Phys. 1 126

    [6]

    Liu J, Hesjedal T 2021 Adv. Mater. 35 2102427

    [7]

    Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167

    [8]

    Mogi M, Kawamura M, Yoshimi R, Tsukazaki A, Kozuka Y, Shirakawa N, Takahashi K S, Kawasaki M, Tokura Y 2017 Nat. Mater. 16 516

    [9]

    Mogi M, Okamura Y, Kawamura M, Yoshimi R, Yasuda K, Tsukazaki A, Takahashi K S, Morimoto T, Nagaosa N, Kawasaki M, Takahashi Y, Tokura Y 2022 Nat. Phys. 18 390

    [10]

    Chang C Z, Liu C X, MacDonald A H 2023 Rev. Mod. Phys. 95 011002

    [11]

    Qi X L, Hughes T L, Zhang S C 2008 Phys. Rev. B 78 195424

    [12]

    Essin A M, Moore J E, Vanderbilt D 2009 Phys. Rev. Lett. 102 146805

    [13]

    Varnava N, Vanderbilt D 2018 Phys. Rev. B 98 245117

    [14]

    Chen R, Li S, Sun H P, Liu Q, Zhao Y, Lu H Z, Xie X C 2021 Phys. Rev. B 103 L241409

    [15]

    Liu C, Wang Y, Li H, Wu Y, Li Y, Li J, He K, Xu Y, Zhang J, Wang Y 2020 Nat. Mater. 19 522

    [16]

    Mogi M, Kawamura M, Tsukazaki A, Yoshimi R, Takahashi K S, Kawasaki M, Tokura Y 2017 Sci. Adv. 3 eaao1669

    [17]

    Xiao D, Jiang J, Shin J H, Wang W, Wang F, Zhao Y F, Liu C, Wu W, Chan M H, Samarth N, Chang C Z 2018 Phys. Rev. Lett. 120 056801

    [18]

    Lian Z, Wang Y, Wang Y, Dong W H, Feng Y, Dong Z, Ma M, Yang S, Xu L, Li Y, Fu B, Li Y, Jiang W, Xu Y, Liu C, Zhang J, Wang Y 2025 Nature 641 70

    [19]

    Zhu K, Cheng Y, Liao M, Chong S K, Zhang D, He K, Wang K L, Chang K, Deng P 2024 Nano Letters 24 2181

    [20]

    Du Z Z, Lu H Z, Xie X C 2021 Nat. Rev. Phys. 3 744

    [21]

    SuSrez-Rodr[guez M, Juan F, Souza I, Gobbi M, Casanova F, Hueso L 2025 Nat. Mater. 24 1005

    [22]

    Du L, Huang Z, Zhang J, Ye F, Dai Q, Deng H, Zhang G, Sun Z 2024 Nat. Mater. 23 1179

    [23]

    Wu F, Xu Q, Wang Q, Chu Y, Li L, Tang J, Liu J, Tian J, Ji Y, Liu L, Yuan Y, Huang Z, Zhao J, Zan X, Watanabe K, Taniguchi T, Shi D, Gu G, Xu Y, Xian L, Yang W, Du L, Zhang G 2023 Phys. Rev. Lett. 131 256201

    [24]

    Gao Y, Yang S A, Niu Q 2014 Phys. Rev. Lett. 112 166601

    [25]

    Sodemann I, Fu L 2015 Phys. Rev. Lett. 115 216806

    [26]

    Shvetsov O O, Esin V D, Timonina A V, Kolesnikov N N, Deviatov E V 2019 JETP Lett. 109 715

    [27]

    Dzsaber S, Yan X, Taupin M, Eguchi G, Prokofiev A, Shiroka T, Blaha P, Rubel O, Grefe S E, Lai H H, Si Q, Paschen S 2021 Proc. Natl. Acad. Sci. 118 e2013386118

    [28]

    Qin M S, Zhu P E, Ye X G, Xu W Z, Song Z H, Liang J, Liu K, Liao Z M 2021 Chinese Phys. Lett. 38 017301

    [29]

    Huang M, Wu Z, Hu J, Cai X, Li E, An L, Feng X, Ye Z, Lin N, Law K T, Wang N 2022 Natl. Sci. Rev. 10 nwac232

    [30]

    Ho S C, Chang C H, Hsieh Y C, Lo S T, Huang B, Vu T H Y, Ortix C, Chen T M 2021 Nat. Elec. 4 116

    [31]

    Shen S Q 2017 Topological Insulators (Springer: Singapore)

    [32]

    Wang J, Lian B, Qi X L, Zhang S C 2015 Phys. Rev. B 92 081107(R)

    [33]

    Morimoto T, Furusaki A, Nagaosa N 2015 Phys. Rev. B 92 085113

    [34]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959

    [35]

    Li R H, Heinonen O, Burkov A, Zhang S 2021 Phys. Rev. B 103 045105

    [36]

    Nandy S, Zeng C, Tewari S 2021 Phys. Rev. B 104 205124

    [37]

    Wang Y, Zhang Z, Zhu Z G, Su G 2024 Phys. Rev. B 109 085419

  • [1] 王玉, 梁钰林, 邢燕霞. 石墨烯中的拓扑安德森绝缘体相. 物理学报, doi: 10.7498/aps.74.20241031
    [2] 曾然, 方世超, 高泰吉, 李浩珍, 杨淑娜, 羊亚平. 光子拓扑绝缘体多层系统中的Casimir效应. 物理学报, doi: 10.7498/aps.74.20250088
    [3] 金哲珺雨, 曾钊卓, 曹云姗, 严鹏. 磁子霍尔效应. 物理学报, doi: 10.7498/aps.73.20231589
    [4] 巴佳燕, 陈复洋, 段后建, 邓明勋, 王瑞强. 拓扑材料中的平面霍尔效应. 物理学报, doi: 10.7498/aps.72.20230905
    [5] 谢向男, 李成, 曾俊炜, 周珅, 江天. 本征磁性拓扑绝缘体MnBi2Te4研究进展. 物理学报, doi: 10.7498/aps.72.20230704
    [6] 黄月蕾, 单寅飞, 杜灵杰, 杜瑞瑞. 拓扑激子绝缘体的实验进展. 物理学报, doi: 10.7498/aps.72.20230634
    [7] 刘畅, 王亚愚. 磁性拓扑绝缘体中的量子输运现象. 物理学报, doi: 10.7498/aps.72.20230690
    [8] 张帅, 宋凤麒. 拓扑绝缘体中量子霍尔效应的研究进展. 物理学报, doi: 10.7498/aps.72.20230698
    [9] 郭文锑, 黄璐, 许桂贵, 钟克华, 张健敏, 黄志高. 本征磁性拓扑绝缘体MnBi2Te4电子结构的压力应变调控. 物理学报, doi: 10.7498/aps.70.20201237
    [10] 刘雨亭, 贺文宇, 刘军伟, 邵启明. 二维材料中贝里曲率诱导的磁性响应. 物理学报, doi: 10.7498/aps.70.20202132
    [11] 韦博元, 步海军, 张帅, 宋凤麒. 拓扑半金属ZrSiSe器件中面内霍尔效应的观测. 物理学报, doi: 10.7498/aps.68.20191501
    [12] 刘畅, 刘祥瑞. 强三维拓扑绝缘体与磁性拓扑绝缘体的角分辨光电子能谱学研究进展. 物理学报, doi: 10.7498/aps.68.20191450
    [13] 李兆国, 张帅, 宋凤麒. 拓扑绝缘体的普适电导涨落. 物理学报, doi: 10.7498/aps.64.097202
    [14] 王青, 盛利. 磁场中的拓扑绝缘体边缘态性质. 物理学报, doi: 10.7498/aps.64.097302
    [15] 关童, 滕静, 吴克辉, 李永庆. 拓扑绝缘体(Bi0.5Sb0.5)2Te3薄膜中的线性磁阻. 物理学报, doi: 10.7498/aps.64.077201
    [16] 陈艳丽, 彭向阳, 杨红, 常胜利, 张凯旺, 钟建新. 拓扑绝缘体Bi2Se3中层堆垛效应的第一性原理研究. 物理学报, doi: 10.7498/aps.63.187303
    [17] 曾伦武, 张浩, 唐中良, 宋润霞. 拓扑绝缘体椭球粒子的电磁散射. 物理学报, doi: 10.7498/aps.61.177303
    [18] 张小明, 刘国栋, 杜音, 刘恩克, 王文洪, 吴光恒, 柳忠元. 半Heusler型拓扑绝缘体LaPtBi能带调控的研究. 物理学报, doi: 10.7498/aps.61.123101
    [19] 周青春, 王嘉赋, 徐荣青. 自旋-轨道耦合对磁性绝缘体磁光Kerr效应的影响. 物理学报, doi: 10.7498/aps.51.1639
    [20] 谢秉川, 高雷. 非线性正常导体-绝缘体无规网络渡越指数的研究. 物理学报, doi: 10.7498/aps.49.365
计量
  • 文章访问数:  76
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2025-08-16

/

返回文章
返回