搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

本征磁性拓扑绝缘体MnBi2Te4研究进展

谢向男 李成 曾俊炜 周珅 江天

引用本文:
Citation:

本征磁性拓扑绝缘体MnBi2Te4研究进展

谢向男, 李成, 曾俊炜, 周珅, 江天

Research progress of intrinsic magnetic topological insulator MnBi2Te4

Xie Xiang-Nan, Li Cheng, Zeng Jun-Wei, Zhou Shen, Jiang Tian
PDF
HTML
导出引用
  • 本征磁性拓扑绝缘体非平庸拓扑态和磁有序的相互作用使其具备量子反常霍尔效应和轴子绝缘体等奇异物理性质, 在低功耗拓扑自旋电子器件及拓扑量子计算等方面展现广泛应用前景. 自2019年第一种本征磁性拓扑绝缘体MnBi2Te4在实验上被发现以来, 该材料体系领域迅速吸引了大量研究者的目光, 引发了研究热潮. 本文将从MnBi2Te4基本性质出发, 介绍近期本征磁性拓扑绝缘体MnBi2Te4的一些重要研究成果, 着重阐述MnBi2Te4系列的量子反常霍尔效应、轴子绝缘体态和马约拉纳零能模等拓扑量子态, 并列举该材料体系其他研究方向及目前存在的问题. 最后, 总结并展望MnBi2Te4的下一步研究, 期望为相关领域人员的研究提供一定参考价值.
    The interaction between non-trivial topological states and the magnetic order of intrinsic magnetic topological insulators gives rise to various exotic physical properties, including the quantum anomalous Hall effect and axion insulator. These materials possess great potential applications in low-power topological spintronic devices and topological quantum computation. Since the first intrinsic magnetic topological insulator, MnBi2Te4, was discovered in 2019, this material system has received significant attention from researchers and sparked a research boom. This paper begins with discussing the fundamental properties of MnBi2Te4 and then turns to important research findings related to this intrinsic magnetic topological insulator. Specifically, it focuses on the quantum anomalous Hall effect, axion insulating state, and Majorana zero energy mode exhibited by the MnBi2Te4 series. Furthermore, this paper highlights other research directions and current challenges associated with this material system. Finally, this paper provides a summary and outlook for future research on MnBi2Te4, aiming to offer valuable references for researchers in related fields.
      通信作者: 江天, tjiang@nudt.edu.cn
    • 基金项目: 高性能计算国家重点实验室自主开放课题(批准号: 202201-04)资助的课题.
      Corresponding author: Jiang Tian, tjiang@nudt.edu.cn
    • Funds: Project supported by the Independent and Open Subject Fund from State Key Laboratory of High Performance Computing, China (Grant No. 202201-04).
    [1]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [2]

    König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766Google Scholar

    [3]

    Fu L, Kane C L 2007 Phys. Rev. B 76 045302Google Scholar

    [4]

    Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J, Hasan M Z 2008 Nature 452 970Google Scholar

    [5]

    Zhang H, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [6]

    Pesin D, MacDonald A H 2012 Nat. Mater. 11 409Google Scholar

    [7]

    Rajamathi C R, Gupta U, Kumar N, Yang H, Sun Y, Suss V, Shekhar C, Schmidt M, Blumtritt H, Werner P, Yan B H, Parkin S, Felser C, Rao C N R 2017 Adv. Mater. 29 1606202Google Scholar

    [8]

    Kitaev A Y 2003 Ann. Phys. 303 2Google Scholar

    [9]

    Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167Google Scholar

    [10]

    Chang C Z, Zhao W, Kim D Y, Zhang H, Assaf B A, Heiman D, Zhang S C, Liu C, Chan M H W, Moodera J S 2015 Nat. Mater. 14 473Google Scholar

    [11]

    Mogi M, Kawamura M, Yoshimi R, Tsukazaki A, Kozuka Y, Shirakawa N, Takahashi K S, Kawasaki M, Tokura Y 2017 Nat. Mater. 16 516Google Scholar

    [12]

    Xiao D, Jiang J, Shin J H, Wang W, Wang F, Zhao Y F, Liu C, Wu W, Chan M H W, Samarth N, Chang C Z 2018 Phys. Rev. Lett. 120 056801Google Scholar

    [13]

    Lachman E O, Young A F, Richardella A, Cuppens J, Naren H R, Anahory Y, Meltzer A Y, Kandala A, Kempinger S, Myasoedov Y, Huber M E, Samarth N, Zeldov E 2015 Sci. Adv. 1 e1500740Google Scholar

    [14]

    Otrokov M M, Menshchikova T V, Vergniory M G, Rusinov I P, Yu Vyazovskaya A, Koroteev Y M, Bihlmayer G, Ernst A, Echenique P M, Arnau A, Chulkov E V 2017 2D Mater. 4 025082Google Scholar

    [15]

    Zhang D, Shi M, Zhu T, Xing D, Zhang H, Wang J 2019 Phys. Rev. Lett. 122 206401Google Scholar

    [16]

    Li J, Li Y, Du S, Wang Z, Gu B L, Zhang S C, He K, Duan W, Xu Y 2019 Sci. Adv. 5 eaaw5685Google Scholar

    [17]

    Otrokov M M, Rusinov I P, Blanco-Rey M, Hoffmann M, Vyazovskaya A Y, Eremeev S V, Ernst A, Echenique P M, Arnau A, Chulkov E V 2019 Phys. Rev. Lett. 122 107202Google Scholar

    [18]

    Qi X L, Hughes T L, Zhang S C 2008 Phys. Rev. B 78 195424Google Scholar

    [19]

    Peng Y, Xu Y 2019 Phys. Rev. B 99 195431Google Scholar

    [20]

    He Q L, Hughes T L, Armitage N P, Tokura Y, Wang K L 2022 Nat. Mater. 21 15Google Scholar

    [21]

    Chen X, Wang H, Liu H, Wang C, Wei G, Fang C, Wang H, Geng C, Liu S, Li P, Yu H, Zhao W, Miao J, Li Y, Wang L, Nie T, Zhao J, Wu X 2022 Adv. Mater. 34 2106172Google Scholar

    [22]

    Flensberg K, von Oppen F, Stern A 2021 Nat. Rev. Mater. 6 944Google Scholar

    [23]

    Wang Y, Ma X M, Hao Z, Cai Y, Rong H, Zhang F, Chen W, Zhang C, Lin J, Zhao Y, Liu C, Liu Q, Chen C 2023 Natl. Sci. Rev. DOI: 10.1093/nsr/nwad066

    [24]

    Tokura Y, Yasuda K, Tsukazaki A 2019 Nat. Rev. Phys. 1 126Google Scholar

    [25]

    Mogi M, Kawamura M, Tsukazaki A, Yoshimi R, Takahashi K S, Kawasaki M, Tokura Y 2017 Sci. Adv. 3 eaao1669Google Scholar

    [26]

    Lian B, Sun X Q, Vaezi A, Qi X L, Zhang S C 2018 Proc. Natl. Acad. Sci. U. S. A. 115 10938Google Scholar

    [27]

    Mong R S K, Essin A M, Moore J E 2010 Phys. Rev. B 81 245209Google Scholar

    [28]

    Lee D S, Kim T H, Park C H, Chung C Y, Lim Y S, Seo W S, Park H H 2013 CrystEngComm 15 5532Google Scholar

    [29]

    Gong Y, Guo J, Li J, Zhu K, Liao M, Liu X, Zhang Q, Gu L, Tang L, Feng X, Zhang D, Li W, Song C, Wang L, Yu P, Chen X, Wang Y, Yao H, Duan W, Xu Y, Zhang S C, Ma X, Xue Q K, He K 2019 Chin. Phys. Lett. 36 076801Google Scholar

    [30]

    Otrokov M M, Klimovskikh I I, Bentmann H, Estyunin D, Zeugner A, Aliev Z S, Gass S, Wolter A U B, Koroleva A V, Shikin A M, Blanco-Rey M, Hoffmann M, Rusinov I P, Vyazovskaya A Y, Eremeev S V, Koroteev Y M, Kuznetsov V M, Freyse F, Sánchez-Barriga J, Amiraslanov I R, Babanly M B, Mamedov N T, Abdullayev N A, Zverev V N, Alfonsov A, Kataev V, Buchner B, Schwier E F, Kumar S, Kimura A, Petaccia L, Di Santo G, Vidal R C, Schatz S, Kissner K, Unzelmann M, Min C H, Moser S, Peixoto T R F, Reinert F, Ernst A, Echenique P M, Isaeva A, Chulkov E V 2019 Nature 576 416Google Scholar

    [31]

    Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H, Zhang Y 2020 Science 367 895Google Scholar

    [32]

    Liu C, Wang Y, Li H, Wu Y, Li Y, Li J, He K, Xu Y, Zhang J, Wang Y 2020 Nat. Mater. 19 522Google Scholar

    [33]

    Ge J, Liu Y, Li J, Li H, Luo T, Wu Y, Xu Y, Wang J 2020 Natl. Sci. Rev. 7 1280Google Scholar

    [34]

    Li Y, Liu C, Wang Y, Lian Z, Li H, Chun O, Zhang J, Wang Y 2021 arXiv: 2105.10390v1 [cond-mat. mtrl-sci

    [35]

    Liu C, Wang Y, Yang M, Mao J, Li H, Li Y, Li J, Zhu H, Wang J, Li L, Wu Y, Xu Y, Zhang J, Wang Y 2021 Nat. Commun. 12 4647Google Scholar

    [36]

    Wu M, Tu D, Nie Y, Miao S, Gao W, Han Y, Zhu X, Zhou J, Ning W, Tian M 2022 Nano Lett. 22 73Google Scholar

    [37]

    Gao A, Liu Y F, Hu C, Qiu J X, Tzschaschel C, Ghosh B, Ho S C, Bérubé D, Chen R, Sun H, Zhang Z, Zhang X Y, Wang Y X, Wang N, Huang Z, Felser C, Agarwal A, Ding T, Tien H J, Akey A, Gardener J, Singh B, Watanabe K, Taniguchi T, Burch K S, Bell D C, Zhou B B, Gao W, Lu H Z, Bansil A, Lin H, Chang T R, Fu L, Ma Q, Ni N, Xu S Y 2021 Nature 595 521Google Scholar

    [38]

    Tai L, Chong S K, Zhang H, Zhang P, Deng P, Eckberg C, Qiu G, Dai B, He H, wu D, Xu S, Davydov A, Wang K 2021 arXiv: 2103.09878v1 [cond-mat. mtrl-sci

    [39]

    Ye C, Xie X, Lü W, Huang K, Yang A J, Jiang S, Liu X, Zhu D, Qiu X, Tong M, Zhou T, Hsu C H, Chang G, Lin H, Li P, Yang K, Wang Z, Jiang T, Renshaw Wang X 2022 Nano Lett. 22 1366Google Scholar

    [40]

    Zhang Z, Wang N, Cao N, Wang A, Zhou X, Watanabe K, Taniguchi T, Yan B, Gao W B 2022 Nat. Commun. 13 6191Google Scholar

    [41]

    Bartram F M, Leng Y C, Wang Y, Liu L, Chen X, Peng H, Li H, Yu P, Wu Y, Lin M L, Zhang J, Tan P H, Yang L 2022 npj Quantum Mater. 7 84Google Scholar

    [42]

    占国慧, 王怀强, 张海军 2020 物理 49 817Google Scholar

    Zhan G H, Wang H Q, Zhang H J 2020 Physics 49 817Google Scholar

    [43]

    郭文锑, 黄璐, 许桂贵, 钟克华, 张健敏, 黄志高 2021 物理学报 70 047101Google Scholar

    Guo W T, Huang L, Xu G G, Zhong K H, Zhang J M, Huang Z G 2021 Acta Phys. Sin. 70 047101Google Scholar

    [44]

    Wang Y, Zhang F, Zeng M, Sun H, Hao Z, Cai Y, Rong H, Zhang C, Liu C, Ma X, Wang L, Guo S, Lin J, Liu Q, Liu C, Chen C 2023 Front. Phys. 18 21304Google Scholar

    [45]

    Li B, Yan J Q, Pajerowski D M, Gordon E, Nedić A M, Sizyuk Y, Ke L, Orth P P, Vaknin D, McQueeney R J 2020 Phys. Rev. Lett. 124 167204Google Scholar

    [46]

    Yan J Q, Zhang Q, Heitmann T, Huang Z, Chen K Y, Cheng J G, Wu W, Vaknin D, Sales B C, McQueeney R J 2019 Phys. Rev. Mater. 3 064202Google Scholar

    [47]

    Yang S, Xu X, Zhu Y, Niu R, Xu C, Peng Y, Cheng X, Jia X, Huang Y, Xu X, Lu J, Ye Y 2021 Phys. Rev. X 11 011003Google Scholar

    [48]

    Wang P, Ge J, Li J, Liu Y, Xu Y, Wang J 2021 The Innovation 2 100098Google Scholar

    [49]

    Li J, Wang C, Zhang Z, Gu B-L, Duan W, Xu Y 2019 Phys. Rev. B 100 121103Google Scholar

    [50]

    Deng H, Chen Z, Wołoś A, Konczykowski M, Sobczak K, Sitnicka J, Fedorchenko I V, Borysiuk J, Heider T, Pluciński Ł, Park K, Georgescu A B, Cano J, Krusin-Elbaum L 2021 Nat. Phys. 17 36Google Scholar

    [51]

    Fu H, Liu C X, Yan B 2020 Sci. Adv. 6 eaaz0948Google Scholar

    [52]

    Gao R, Qin G, Qi S, Qiao Z, Ren W 2021 Phys. Rev. Mater. 5 114201Google Scholar

    [53]

    Ying Z, Zhang S, Chen B, Jia B, Fei F, Zhang M, Zhang H, Wang X, Song F 2022 Phys. Rev. B 105 085412Google Scholar

    [54]

    Nomura K, Nagaosa N 2011 Phys. Rev. Lett. 106 166802Google Scholar

    [55]

    Li H, Jiang H, Chen C Z, Xie X C 2021 Phys. Rev. Lett. 126 156601Google Scholar

    [56]

    Tse W K, MacDonald A H 2010 Phys. Rev. Lett. 105 057401Google Scholar

    [57]

    Wu L, Salehi M, Koirala N, Moon J, Oh S, Armitage N P 2016 Science 354 1124Google Scholar

    [58]

    Wang J, Lian B, Qi X L, Zhang S C 2015 Phys. Rev. B 92 081107Google Scholar

    [59]

    Morimoto T, Furusaki A, Nagaosa N 2015 Phys. Rev. B 92 085113Google Scholar

    [60]

    Wilczek F 1987 Phys. Rev. Lett. 58 1799Google Scholar

    [61]

    Essin A M, Moore J E, Vanderbilt D 2009 Phys. Rev. Lett. 102 146805Google Scholar

    [62]

    Wang J 2020 Sci. Chin. -Phys. , Mech. Astron. 63 127031Google Scholar

    [63]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [64]

    Qi X L, Hughes T L, Zhang S C 2010 Phys. Rev. B 82 184516Google Scholar

    [65]

    't Hooft G 1976 Phys. Rev. D 14 3421Google Scholar

    [66]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407Google Scholar

    [67]

    Chen C, Jiang K, Zhang Y, Liu C, Liu Y, Wang Z, Wang J 2020 Nat. Phys. 16 536Google Scholar

    [68]

    Lutchyn R M, Sau J D, Das Sarma S 2010 Phys. Rev. Lett. 105 077001Google Scholar

    [69]

    Leijnse M, Flensberg K 2012 Semicond. Sci. Technol. 27 124003Google Scholar

    [70]

    Stone M, Roy R 2004 Phys. Rev. B 69 184511Google Scholar

    [71]

    Wang M X, Liu C, Xu J P, Yang F, Miao L, Yao M Y, Gao C L, Shen C, Ma X, Chen X, Xu Z A, Liu Y, Zhang S C, Qian D, Jia J F, Xue Q K 2012 Science 336 52Google Scholar

    [72]

    Fu L, Kane C L 2009 Phys. Rev. Lett. 102 216403Google Scholar

    [73]

    Sau J D, Lutchyn R M, Tewari S, Das Sarma S 2010 Phys. Rev. Lett. 104 040502Google Scholar

    [74]

    Alicea J 2012 Rep. Prog. Phys. 75 076501Google Scholar

    [75]

    Akhmerov A R, Nilsson J, Beenakker C W J 2009 Phys. Rev. Lett. 102 216404Google Scholar

    [76]

    Oreg Y, Refael G, von Oppen F 2010 Phys. Rev. Lett. 105 177002Google Scholar

    [77]

    Fu L, Kane C L 2009 Phys. Rev. B 79 161408Google Scholar

    [78]

    Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z, Wen J, Gu G D, Ding H, Shin S 2018 Science 360 182Google Scholar

    [79]

    Kong L, Zhu S, Papaj M, Chen H, Cao L, Isobe H, Xing Y, Liu W, Wang D, Fan P, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Gao H J, Ding H 2019 Nat. Phys. 15 1181Google Scholar

    [80]

    König E J, Coleman P 2019 Phys. Rev. Lett. 122 207001Google Scholar

    [81]

    Machida T, Sun Y, Pyon S, Takeda S, Kohsaka Y, Hanaguri T, Sasagawa T, Tamegai T 2019 Nat. Mater. 18 811Google Scholar

    [82]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003Google Scholar

    [83]

    Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P, Xu H Q 2012 Nano Lett. 12 6414Google Scholar

    [84]

    Xu J P, Wang M X, Liu Z L, Ge J F, Yang X, Liu C, Xu Z A, Guan D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K, Jia J F 2015 Phys. Rev. Lett. 114 017001Google Scholar

    [85]

    Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C, Qian D, Zhou Y, Fu L, Li S C, Zhang F C, Jia J F 2016 Phys. Rev. Lett. 116 257003Google Scholar

    [86]

    何映萍, 洪健松, 刘雄军 2020 物理学报 69 110302Google Scholar

    He Y P, Hong J S, Liu X J 2020 Acta Phys. Sin. 69 110302Google Scholar

    [87]

    Strübi G, Belzig W, Choi M S, Bruder C 2011 Phys. Rev. Lett. 107 136403Google Scholar

    [88]

    Chung S B, Qi X L, Maciejko J, Zhang S C 2011 Phys. Rev. B 83 100512Google Scholar

    [89]

    Wang J, Zhou Q, Lian B, Zhang S-C 2015 Phys. Rev. B 92 064520Google Scholar

    [90]

    Maciejko J, Qi X L, Drew H D, Zhang S C 2010 Phys. Rev. Lett. 105 166803Google Scholar

    [91]

    Wang J, Lian B, Zhang S C 2014 Phys. Rev. B 89 085106Google Scholar

    [92]

    Yan Q, Li H, Zeng J, Sun Q F, Xie X C 2021 Commun. Phys. 4 239Google Scholar

    [93]

    Zhang X, Liu F 2021 Phys. Rev. B 103 024405Google Scholar

    [94]

    Chen L, Cao Z, He K, Liu X, Liu D E 2023 Phys. Rev. B 107 165405Google Scholar

    [95]

    Klimovskikh I I, Otrokov M M, Estyunin D, Eremeev S V, Filnov S O, Koroleva A, Shevchenko E, Voroshnin V, Rybkin A G, Rusinov I P, Blanco-Rey M, Hoffmann M, Aliev Z S, Babanly M B, Amiraslanov I R, Abdullayev N A, Zverev V N, Kimura A, Tereshchenko O E, Kokh K A, Petaccia L, Di Santo G, Ernst A, Echenique P M, Mamedov N T, Shikin A M, Chulkov E V 2020 npj Quantum Mater. 5 54Google Scholar

    [96]

    Chen P, Yao Q, Xu J, Sun Q, Grutter A J, Quarterman P, Balakrishnan P P, Kinane C J, Caruana A J, Langridge S, Li A, Achinuq B, Heppell E, Ji Y, Liu S, Cui B, Liu J, Huang P, Liu Z, Yu G, Xiu F, Hesjedal T, Zou J, Han X, Zhang H, Yang Y, Kou X 2023 Nat. Electron. 6 18Google Scholar

    [97]

    Tian S, Gao S, Nie S, Qian Y, Gong C, Fu Y, Li H, Fan W, Zhang P, Kondo T, Shin S, Adell J, Fedderwitz H, Ding H, Wang Z, Qian T, Lei H 2020 Phys. Rev. B 102 035144Google Scholar

    [98]

    Hu C, Ding L, Gordon K N, Ghosh B, Tien H-J, Li H, Linn A G, Lien S W, Huang C Y, Mackey S, Liu J, Reddy P V S, Singh B, Agarwal A, Bansil A, Song M, Li D, Xu S Y, Lin H, Cao H, Chang T R, Dessau D, Ni N 2020 Science advances 6 eaba4275Google Scholar

    [99]

    Wu J, Liu F, Liu C, Wang Y, Li C, Lu Y, Matsuishi S, Hosono H 2020 Adv. Mater. 32 2001815Google Scholar

    [100]

    Shi M Z, Lei B, Zhu C S, Ma D H, Cui J H, Sun Z L, Ying J J, Chen X H 2019 Phys. Rev. B 100 155144Google Scholar

    [101]

    Ding L, Hu C, Ye F, Feng E, Ni N, Cao H 2020 Phys. Rev. B 101 020412Google Scholar

    [102]

    Hu Y, Xu L, Shi M, Luo A, Peng S, Wang Z Y, Ying J J, Wu T, Liu Z K, Zhang C F, Chen Y L, Xu G, Chen X H, He J F 2020 Phys. Rev. B 101 161113Google Scholar

    [103]

    Jo N H, Wang L L, Slager R J, Yan J, Wu Y, Lee K, Schrunk B, Vishwanath A, Kaminski A 2020 Phys. Rev. B 102 045130Google Scholar

    [104]

    Zhang R X, Wu F, Das Sarma S 2020 Phys. Rev. Lett. 124 136407Google Scholar

    [105]

    Yan J Q, Liu Y H, Parker D S, Wu Y, Aczel A A, Matsuda M, McGuire M A, Sales B C 2020 Phys. Rev. Mater. 4 054202Google Scholar

    [106]

    Hu C, Gordon K N, Liu P, Liu J, Zhou X, Hao P, Narayan D, Emmanouilidou E, Sun H, Liu Y, Brawer H, Ramirez A P, Ding L, Cao H, Liu Q, Dessau D, Ni N 2020 Nat. Commun. 11 97Google Scholar

    [107]

    Vidal R C, Zeugner A, Facio J I, Ray R, Haghighi M H, Wolter A U B, Corredor Bohorquez L T, Caglieris F, Moser S, Figgemeier T, Peixoto T R F, Vasili H B, Valvidares M, Jung S, Cacho C, Alfonsov A, Mehlawat K, Kataev V, Hess C, Richter M, Büchner B, van den Brink J, Ruck M, Reinert F, Bentmann H, Isaeva A 2019 Phys. Rev. X 9 041065Google Scholar

    [108]

    He K 2020 npj Quantum Mater. 5 90Google Scholar

    [109]

    Xie H K, Wang D H, Cai Z X, Chen B, Guo J W, Naveed M, Zhang S, Zhang M H, Wang X F, Fei F C, Zhang H J, Song F Q 2020 Appl. Phys. Lett. 116 221902Google Scholar

    [110]

    Xu X, Yang S, Wang H, Guzman R, Gao Y, Zhu Y, Peng Y, Zang Z, Xi M, Tian S, Li Y, Lei H, Luo Z, Yang J, Wang Y, Xia T, Zhou W, Huang Y, Ye Y 2022 Nat. Commun. 13 7646Google Scholar

    [111]

    Wu X, Li J, Ma X M, Zhang Y, Liu Y, Zhou C-S, Shao J, Wang Q, Hao Y J, Feng Y, Schwier E F, Kumar S, Sun H, Liu P, Shimada K, Miyamoto K, Okuda T, Wang K, Xie M, Chen C, Liu Q, Liu C, Zhao Y 2020 Phys. Rev. X 10 031013Google Scholar

    [112]

    Rienks E D L, Wimmer S, Sánchez-Barriga J, Caha O, Mandal P S, Růžička J, Ney A, Steiner H, Volobuev V V, Groiss H, Albu M, Kothleitner G, Michalička J, Khan S A, Minár J, Ebert H, Bauer G, Freyse F, Varykhalov A, Rader O, Springholz G 2019 Nature 576 423Google Scholar

    [113]

    Lu R, Sun H, Kumar S, Wang Y, Gu M, Zeng M, Hao Y J, Li J, Shao J, Ma X M, Hao Z, Zhang K, Mansuer W, Mei J, Zhao Y, Liu C, Deng K, Huang W, Shen B, Shimada K, Schwier E F, Liu C, Liu Q, Chen C 2021 Phys. Rev. X 11 011039Google Scholar

    [114]

    Sun H, Xia B, Chen Z, Zhang Y, Liu P, Yao Q, Tang H, Zhao Y, Xu H, Liu Q 2019 Phys. Rev. Lett. 123 096401Google Scholar

    [115]

    Gu M, Li J, Sun H, Zhao Y, Liu C, Liu J, Lu H, Liu Q 2021 Nat. Commun. 12 3524Google Scholar

    [116]

    Chen B, Fei F, Zhang D, Zhang B, Liu W, Zhang S, Wang P, Wei B, Zhang Y, Zuo Z, Guo J, Liu Q, Wang Z, Wu X, Zong J, Xie X, Chen W, Sun Z, Wang S, Zhang Y, Zhang M, Wang X, Song F, Zhang H, Shen D, Wang B 2019 Nat. Commun. 10 4469Google Scholar

    [117]

    Chong S K, Lei C, Lee S H, Jaroszynski J, Mao Z, Macdonald A H, Wang K 2022 arXiv: 2208.13332v1 [cond-mat. mes-hall

    [118]

    Glazkova D A, Estyunin D A, Klimovskikh I I, Makarova T P, Tereshchenko O E, Kokh K A, Golyashov V A, Koroleva A V, Shikin A M 2022 JETP Lett. 115 286Google Scholar

    [119]

    Liu Y, Wang L L, Zheng Q, Huang Z, Wang X, Chi M, Wu Y, Chakoumakos B C, McGuire M A, Sales B C, Wu W, Yan J 2021 Phys. Rev. X 11 021033Google Scholar

    [120]

    Ge W, Sass P M, Yan J, Lee S H, Mao Z, Wu W 2021 Phys. Rev. B 103 134403Google Scholar

    [121]

    Murakami T, Nambu Y, Koretsune T, Xiangyu G, Yamamoto T, Brown C M, Kageyama H 2019 Phys. Rev. B 100 195103Google Scholar

    [122]

    Glazkova D A, Estyunin D A, Klimovskikh I I, Rybkina A A, Golovchanskiy I A, Tereshchenko O E, Kokh K A, Shchetinin I V, Golyashov V A, Shikin A M 2022 JETP Lett. 116 817Google Scholar

    [123]

    Riberolles S X M, Zhang Q, Gordon E, Butch N P, Ke L, Yan J Q, McQueeney R J 2021 Phys. Rev. B 104 064401Google Scholar

    [124]

    Yan J Q, Okamoto S, McGuire M A, May A F, McQueeney R J, Sales B C 2019 Phys. Rev. B 100 104409Google Scholar

    [125]

    Lei C, Chen S, MacDonald A H 2020 Proc. Natl. Acad. Sci. U.S.A. 117 27224Google Scholar

    [126]

    Wimmer S, Sánchez-Barriga J, Küppers P, Ney A, Schierle E, Freyse F, Caha O, Michalička J, Liebmann M, Primetzhofer D, Hoffman M, Ernst A, Otrokov M M, Bihlmayer G, Weschke E, Lake B, Chulkov E V, Morgenstern M, Bauer G, Springholz G, Rader O 2021 Adv. Mater. 33 2102935Google Scholar

    [127]

    Lee S H, Graf D, Min L, Zhu Y, Yi H, Ciocys S, Wang Y, Choi E S, Basnet R, Fereidouni A, Wegner A, Zhao Y F, Verlinde K, He J, Redwing R, Gopalan V, Churchill H O H, Lanzara A, Samarth N, Chang C Z, Hu J, Mao Z Q 2021 Phys. Rev. X 11 031032Google Scholar

    [128]

    Wang H H, Luo X G, Shi M Z, Peng K L, Lei B, Cui J H, Ma D H, Zhuo W Z, Ying J J, Wang Z Y, Chen X H 2021 Phys. Rev. B 103 085126Google Scholar

    [129]

    Ma X M, Zhao Y, Zhang K, Kumar S, Lu R, Li J, Yao Q, Shao J, Hou F, Wu X, Zeng M, Hao Y J, Hao Z, Wang Y, Liu X R, Shen H, Sun H, Mei J, Miyamoto K, Okuda T, Arita M, Schwier E F, Shimada K, Deng K, Liu C, Lin J, Zhao Y, Chen C, Liu Q, Liu C 2021 Phys. Rev. B 103 L121112Google Scholar

    [130]

    Lee S H, Zhu Y, Wang Y, Miao L, Pillsbury T, Yi H, Kempinger S, Hu J, Heikes C A, Quarterman P, Ratcliff W, Borchers J A, Zhang H, Ke X, Graf D, Alem N, Chang C Z, Samarth N, Mao Z 2019 Phys. Rev. Res. 1 012011Google Scholar

    [131]

    Shikin A M, Estyunin D A, Klimovskikh I I, Filnov S O, Schwier E F, Kumar S, Miyamoto K, Okuda T, Kimura A, Kuroda K, Yaji K, Shin S, Takeda Y, Saitoh Y, Aliev Z S, Mamedov N T, Amiraslanov I R, Babanly M B, Otrokov M M, Eremeev S V, Chulkov E V 2020 Sci. Rep. 10 13226Google Scholar

    [132]

    Vidal R C, Bentmann H, Peixoto T R F, Zeugner A, Moser S, Min C H, Schatz S, Kißner K, Ünzelmann M, Fornari C I, Vasili H B, Valvidares M, Sakamoto K, Mondal D, Fujii J, Vobornik I, Jung S, Cacho C, Kim T K, Koch R J, Jozwiak C, Bostwick A, Denlinger J D, Rotenberg E, Buck J, Hoesch M, Diekmann F, Rohlf S, Kalläne M, Rossnagel K, Otrokov M M, Chulkov E V, Ruck M, Isaeva A, Reinert F 2019 Phys. Rev. B 100 121104Google Scholar

    [133]

    Chen Y J, Xu L X, Li J H, Li Y W, Wang H Y, Zhang C F, Li H, Wu Y, Liang A J, Chen C, Jung S W, Cacho C, Mao Y H, Liu S, Wang M X, Guo Y F, Xu Y, Liu Z K, Yang L X, Chen Y L 2019 Phys. Rev. X 9 041040Google Scholar

    [134]

    Hao Y J, Liu P, Feng Y, Ma X M, Schwier E F, Arita M, Kumar S, Hu C, Lu R e, Zeng M, Wang Y, Hao Z, Sun H Y, Zhang K, Mei J, Ni N, Wu L, Shimada K, Chen C, Liu Q, Liu C 2019 Phys. Rev. X 9 041038Google Scholar

    [135]

    Li H, Gao S Y, Duan S F, Xu Y F, Zhu K J, Tian S J, Gao J C, Fan W H, Rao Z C, Huang J R, Li J J, Yan D Y, Liu Z T, Liu W L, Huang Y B, Li Y L, Liu Y, Zhang G B, Zhang P, Kondo T, Shin S, Lei H C, Shi Y G, Zhang W T, Weng H M, Qian T, Ding H 2019 Phys. Rev. X 9 041039Google Scholar

    [136]

    Swatek P, Wu Y, Wang L L, Lee K, Schrunk B, Yan J, Kaminski A 2020 Phys. Rev. B 101 161109Google Scholar

    [137]

    Nevola D, Li H X, Yan J Q, Moore R G, Lee H N, Miao H, Johnson P D 2020 Phys. Rev. Lett. 125 117205Google Scholar

    [138]

    Yang Z, Zhang H 2022 New J. Phys. 24 073034Google Scholar

    [139]

    Yasuda K, Mogi M, Yoshimi R, Tsukazaki A, Takahashi K S, Kawasaki M, Kagawa F, Tokura Y 2017 Science 358 1311Google Scholar

    [140]

    Garrity K F, Chowdhury S, Tavazza F M 2021 Phys. Rev. Mater. 5 024207Google Scholar

    [141]

    Sass P M, Kim J, Vanderbilt D, Yan J, Wu W 2020 Phys. Rev. Lett. 125 037201Google Scholar

    [142]

    Sass P M, Ge W, Yan J, Obeysekera D, Yang J J, Wu W 2020 Nano Lett. 20 2609Google Scholar

    [143]

    Shikin A M, Estyunin D A, Zaitsev N L, Glazkova D, Klimovskikh I I, Filnov S O, Rybkin A G, Schwier E F, Kumar S, Kimura A, Mamedov N, Aliev Z, Babanly M B, Kokh K, Tereshchenko O E, Otrokov M M, Chulkov E V, Zvezdin K A, Zvezdin A K 2021 Phys. Rev. B 104 115168Google Scholar

    [144]

    Lai Y, Ke L, Yan J, McDonald R D, McQueeney R J 2021 Phys. Rev. B 103 184429Google Scholar

    [145]

    Garnica M, Otrokov M M, Aguilar P C, Klimovskikh I I, Estyunin D, Aliev Z S, Amiraslanov I R, Abdullayev N A, Zverev V N, Babanly M B, Mamedov N T, Shikin A M, Arnau A, de Parga A L V, Chulkov E V, Miranda R 2022 npj Quantum Mater. 7 7Google Scholar

    [146]

    Ma X M, Chen Z, Schwier E F, Zhang Y, Hao Y J, Kumar S, Lu R, Shao J, Jin Y, Zeng M, Liu X R, Hao Z, Zhang K, Mansuer W, Song C, Wang Y, Zhao B, Liu C, Deng K, Mei J, Shimada K, Zhao Y, Zhou X, Shen B, Huang W, Liu C, Xu H, Chen C 2020 Phys. Rev. B 102 245136Google Scholar

    [147]

    Wang D H, Wang H Q, Xing D Y, Zhang H J 2022 arXiv: 2205.08204v1 [cond-mat. mes-hall

    [148]

    Tan H, Yan B 2023 Phys. Rev. Lett. 130 126702Google Scholar

    [149]

    Bai Y, Li Y, Luan J, Liu R, Song W, Chen Y, Ji P F, Zhang Q, Meng F, Tong B, Li L, Jiang Y, Gao Z, Gu L, Zhang J, Wang Y, Xue Q K, He K, Feng Y, Feng X 2022 arXiv: 2206.03773v2 [cond-mat. mes-hall

    [150]

    Liu S, Yu J, Zhang E, Li Z, Sun Q, Zhang Y, Li L, Zhao M, Leng P, Cao X, Zou J, Kou X, Zang J, Xiu F 2021 arXiv: 2110.00540v1 [cond-mat. mtrl-sci

    [151]

    Zhao Y F, Zhou L J, Wang F, Wang G, Song T, Ovchinnikov D, Yi H, Mei R, Wang K, Chan M H W, Liu C X, Xu X, Chang C Z 2021 Nano Lett. 21 7691Google Scholar

    [152]

    Xu Y, Elcoro L, Song Z D, Wieder B J, Vergniory M G, Regnault N, Chen Y, Felser C, Bernevig B A 2020 Nature 586 702Google Scholar

    [153]

    Su Y, Hu J, Cai X, Shi W, Xia Y, Xu Y, Xu X, Chen Y, Li G 2022 npj Comput. Mater. 8 261Google Scholar

    [154]

    Choudhary K, Garrity K F, Ghimire N J, Anand N, Tavazza F 2021 Phys. Rev. B 103 155131Google Scholar

    [155]

    Watanabe H, Po H C, Vishwanath A 2018 Sci. Adv. 4 eaat8685Google Scholar

    [156]

    Elcoro L, Wieder B J, Song Z, Xu Y, Bradlyn B, Bernevig B A 2021 Nat. Commun. 12 5965Google Scholar

  • 图 1  磁性拓扑绝缘体奇异拓扑性质及应用前景[23] (a) 量子反常霍尔效应[9]; (b) 轴子绝缘体态[24,25]; (c) 太赫兹辐射[21]; (d) 手性马约拉纳费米子及拓扑量子计算[26]

    Fig. 1.  Singular topological properties and application prospects of magnetic topological insulators[23]: (a) Quantum anomalous Hall effect[9]; (b) axion insulator state with antiparallel magnetization [24,25]; (c) terahertz radiation[21]; (d) chiral Majorana fermions and topological quantum computation[26].

    图 2  MBT的晶体结构图[15,29] (a) 由两个SLs组成反铁磁MBT的原子结构图[15]. 每个SL内为铁磁性, 相邻SL之间为反铁磁性. 红色箭头表示Mn原子磁矩; 绿色箭头表示空间平移算符τ1/2; (b) 在Si(111)衬底上生长的5 SLs MBT薄膜的横截面HAADF-STEM图像[29]; (c) HAADF-STEM沿(b)中Cut 1的强度分布图[29]; (d)在Si(111)上生长的MBT薄膜的XRD图[29]

    Fig. 2.  Crystal structure in MBT[15,29]: (a) Atomic structure of MBT consists of two SLs, whose magnetic states are ferromagnetic within each SL and antiferromagnetic between adjacent SLs[15]. The red arrows represent the spin moment of Mn atom. The green arrow denotes for the half translation operator τ1/2; (b) cross-sectional HAADF-STEM image of a 5 SLs MBT films grown on a Si(111) substrate[29]; (c) intensity distribution of HAADF-STEM along Cut 1 in panel (b)[29]; (d) XRD pattern of MBT films grown on Si(111)[29].

    图 3  MBT磁相图 (a) MBT薄膜的层数-温度相图[47]; PM代表顺磁区域; A-type AFM代表A型反铁磁区域; (b) 12 SLs MBT/Pt异质结自旋排列随温度和外加磁场的变化[39]; (c) 2 SLs MBT的温度-磁场相图[47]; (d) 3 SLs MBT的温度-磁场相图[47]; 白色圆圈和三角形分别表示在不同温度下计算得到的spin-flop场μ0H1和spin-flip场μ0H2, 即A-AFM/CAFM相和CAFM/FM相的临界转变点; 实验数据点用灰色的球和三角形表示

    Fig. 3.  Magnetic phase diagram of MBT: (a) Layer number-temperature phase diagram of the MBT flake[47]; PM denotes the region where the flake is paramagnetic; A-type AFM denotes the region where adjacent ferromagnetic SLs couple antiferromagnetically with each other; (b) spin configuration of 12 SLs MBT/Pt bilayer as functions of temperature and external magnetic field[39]; (c) temperature-field phase diagram of 2 SLs MBT[47]; (d) temperature-field phase diagram of 3 SLs MBT[47]; the white circles and triangles represent the calculated spin-flop field μ0H1 and spin-flip field μ0H2, respectively, at various temperatures, showing the boundaries of the A-type AFM/CAFM phase and CAFM/FM phase; the experimental data points are represented using grey spheres and triangles with corresponding error bars.

    图 4  MBT表面态能带结构图 (a) 保留S对称性的表面具有无能隙的Dirac锥表面态示意图[42]; (b) MBT(011)方向表面 (保持S对称性)的表面态[15,42]; (c) 破坏S对称性的表面具有有能隙的Dirac锥表面态[42]; (d) MBT (111)方向表面(破坏S对称性)的表面态[15,42]

    Fig. 4.  Energy band structure of MBT with surface state: (a) The Dirac surface state is gapless due to the S symmetry[42]; (b) the surface state on MBT(011) with S symmetry[15,42]; (c) the Dirac surface state is fully gapped due to the S symmetry broken[42]; (d) the surface state on MBT(111) without S symmetry[15,42].

    图 5  MBT丰富的拓扑量子态 (a) MBT薄膜(2D)和块体(3D)在不同磁化状态下丰富的拓扑量子态. QAH, 量子反常霍尔态; AI, 轴子绝缘体; QSH, 量子自旋霍尔态; TI, 拓扑绝缘体; WSM, Weyl半金属; DSM, Dirac半金属[16,48]. (b) MBT (110)面和 (111)面的无带隙和有带隙表面态能带结构[16,48]

    Fig. 5.  Rich MBT topological quantum states. (a) MBT thin films (2D) and bulk (3D) have rich topological quantum states in different magnetic states. QAH, quantum anomalous Hall state; AI, axion insulator; QSH, quantum spin Hall state; TI, topological insulator; WSM, Weyl semimetal; DSM, Dirac semimetal[16,48]. (b) Surface states of the MBT (110) and (111) surfaces, which are gapless and gapped, respectively[16,48].

    图 6  MBT量子反常霍尔效应 (a) 磁性拓扑绝缘体中表面态有带隙的能带结构示意图[24]; (b) 奇数层MBT本征量子反常霍尔绝缘体的示意图[16]; (c) 5 SLs的MBT样品零磁场下的量子反常霍尔效应[31]

    Fig. 6.  Quantum anomalous Hall effect of MBT: (a) Schematic diagram of the energy band structure with a band gap in the surface state in a magnetic topological insulator[24]; (b) illustration of intrinsic QAH insulators in odd layers[16]; (c) quantum anomalous Hall effect under zero magnetic field in 5 SLs MBT[31].

    图 8  MBT轴子绝缘体态[16,32] (a) 偶数层MBT本征轴子绝缘体的示意图[16]. 顶部和底部有带隙的表面具有半整数量子化的霍尔电导, 其符号在偶数层中相反, 导致C = 0; (b) 轴子绝缘态的ρxx$ \dfrac{{\rm{d}}{\rho }_{yx}}{{\rm{d}}H} $与栅极电压的依赖关系[32]; (c) 栅极电压Vg = 25 V时, 不同温度下纵向电阻率和霍尔电阻率随磁场强度的变化关系[32]

    Fig. 8.  Axion insulator state in MBT[16,32]: (a) Illustration of intrinsic axion insulators in even layers[16]. The intrinsically gapped surfaces on the top and bottom sides have half-quantized Hall conductances, whose signs are opposite in even layers, leading to C = 0 ; (b) gate dependence of ρxx and $ \dfrac{{\rm{d}}{\rho }_{yx}}{{\rm{d}}H} $ in axion insulator state[32]; (c) longitudinal and Hall resistivities versus magnetic field strength at various temperatures with gate voltage Vg = 25 V[32].

    图 7  MBT高陈数陈绝缘体态 (a) 5 SLs MBT门电压调控的反常霍尔效应[31]; (b) 5 SLs MBT的顶部和底部表面态的示意图[31]; (c) 10 SLs MBT中C = 2的高陈数陈绝缘体态的RyxRxx与磁场和温度间的关系[33]; (d) 具有两个手性边缘态的高陈数陈绝缘态示意图; 灰色和绿色表示相邻SLs的MBT[33]; (e) 铁磁 MBT能带结构示意图, 其为磁性Weyl 半金属[33]; (f) 计算得到的MBT陈数随膜厚的变化函数[33]

    Fig. 7.  High Chern number of Chern insulator MBT. (a) Anomalous Hall effect of 5 SLs MBT by gate voltage[31]. (b) Schematic band diagrams for the top and bottom surface states of this fivelayer sample[31]. (c) Temperature and magnetic field dependence of Ryx and Rxx in high-Chern-number Chern insulator states with C = 2 in 10 SLs MBT device[33]. (d) Schematic of high-Chern-number Chern insulator states with two chiral edge states across the band gap; gray and green indicate adjacent MBT SLs[33]. (e) Schematic diagram of band structure of the ferromagnetic MBT, which is a magnetic Weyl semimetal[33]. (f) Chern number as a function of film thickness in MBT[33].

    图 9  MBT马约拉纳特性 (a) 无自旋Kitaev一维p波超导紧束缚链[69]; (b) 环上的拓扑p + ip超导体在其内外边界支持手性马约拉纳边缘模式[74]; (c) 无自旋二维p+ip超导体[75], 三维拓扑绝缘体靠近铁磁体(M↓)和超导体(S)时, 沿超导体和铁磁体边缘出现手性马约拉纳模式; (d) 在AFM TI和s波超导SC之间的界面边缘(灰色)的马约拉纳铰链模式(蓝色和红色箭头)[19]; (e) MBT薄膜与顶部表面的s波超导SC耦合[94]

    Fig. 9.  Majorana characteristics in MBT. (a) Sketch of Kitaev one-dimensional p-wave superconducting tight binding chain without spin[69]. (b) The topological p + ip superconductor on an annulus supports chiral Majorana edge modes at its inner and outer boundaries[74]. (c) Spin free two-dimensional p + ip superconductors[75]. When the three-dimensional topological insulator is close to the ferromagnet (M↓) and superconductor (S), the chiral Majorana mode appears along the edge mode superconductor and ferromagnet. (d) Majorana hinge modes (blue and red arrows) at the interface edge (gray) between an AFM TI and an s-wave superconducting SC[19]. (e) The MBT thin film is coupled to s-wave superconducting SC on the top surface[94].

    图 10  (a) MnBi2Te4(Bi2Te3)n[95]和(b) MnBi2Te4(MnTe)m[96]的原子结构排列图

    Fig. 10.  Atomic structure of (a) MnBi2Te4(Bi2Te3)n[95] and (b) MnBi2Te4(MnTe)m[96] .

    图 11  (MnBi2Te4)m(Bi2Te3)n体系丰富的拓扑物相 (a) (MnBi2Te4)m(Bi2Te3)n体系拓扑相图[114]. 灰色、黄色和蓝色分别代表平庸的绝缘体、量子自旋霍尔态和量子反常霍尔态; (b) Mn-Bi-Te体系随层间电子耦合和交换作用的不同展现丰富的拓扑物相[115]

    Fig. 11.  Rich topological phase in (MnBi2Te4)m(Bi2Te3)n system: (a) Topological phase diagram in (MnBi2Te4)m(Bi2Te3)n system[114]. Gray, yellow, and blue represent normal insulators, quantum spin Hall states, and quantum anomalous Hall states, respectively; (b) phase diagram of the multilayer topological heterostructure Mn-Bi-Te systems in terms of relative spacing and magnetization[115]

    图 12  Mn(Bi1–xSbx)2Te4的丰富物理现象及能带结构 (a) Mn(Bi1–xSbx)2Te4的n-p载流子转变和拓扑相变图[116]; (b) 不同Sb掺杂浓度的Mn(Bi1–xSbx)2Te4样品的ARPES测量的能带结构图[116,129]

    Fig. 12.  Rich physical phenomena and band structure of Mn(Bi1–xSbx)2Te4: (a) n-p carrier transition and topological phase transition diagram of Mn(Bi1–xSbx)2Te4[116]; (b) band structure diagram of ARPES measurement of Mn(Bi1–xSbx)2Te4 samples with different Sb doping concentrations[116,129].

  • [1]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [2]

    König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766Google Scholar

    [3]

    Fu L, Kane C L 2007 Phys. Rev. B 76 045302Google Scholar

    [4]

    Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J, Hasan M Z 2008 Nature 452 970Google Scholar

    [5]

    Zhang H, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [6]

    Pesin D, MacDonald A H 2012 Nat. Mater. 11 409Google Scholar

    [7]

    Rajamathi C R, Gupta U, Kumar N, Yang H, Sun Y, Suss V, Shekhar C, Schmidt M, Blumtritt H, Werner P, Yan B H, Parkin S, Felser C, Rao C N R 2017 Adv. Mater. 29 1606202Google Scholar

    [8]

    Kitaev A Y 2003 Ann. Phys. 303 2Google Scholar

    [9]

    Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167Google Scholar

    [10]

    Chang C Z, Zhao W, Kim D Y, Zhang H, Assaf B A, Heiman D, Zhang S C, Liu C, Chan M H W, Moodera J S 2015 Nat. Mater. 14 473Google Scholar

    [11]

    Mogi M, Kawamura M, Yoshimi R, Tsukazaki A, Kozuka Y, Shirakawa N, Takahashi K S, Kawasaki M, Tokura Y 2017 Nat. Mater. 16 516Google Scholar

    [12]

    Xiao D, Jiang J, Shin J H, Wang W, Wang F, Zhao Y F, Liu C, Wu W, Chan M H W, Samarth N, Chang C Z 2018 Phys. Rev. Lett. 120 056801Google Scholar

    [13]

    Lachman E O, Young A F, Richardella A, Cuppens J, Naren H R, Anahory Y, Meltzer A Y, Kandala A, Kempinger S, Myasoedov Y, Huber M E, Samarth N, Zeldov E 2015 Sci. Adv. 1 e1500740Google Scholar

    [14]

    Otrokov M M, Menshchikova T V, Vergniory M G, Rusinov I P, Yu Vyazovskaya A, Koroteev Y M, Bihlmayer G, Ernst A, Echenique P M, Arnau A, Chulkov E V 2017 2D Mater. 4 025082Google Scholar

    [15]

    Zhang D, Shi M, Zhu T, Xing D, Zhang H, Wang J 2019 Phys. Rev. Lett. 122 206401Google Scholar

    [16]

    Li J, Li Y, Du S, Wang Z, Gu B L, Zhang S C, He K, Duan W, Xu Y 2019 Sci. Adv. 5 eaaw5685Google Scholar

    [17]

    Otrokov M M, Rusinov I P, Blanco-Rey M, Hoffmann M, Vyazovskaya A Y, Eremeev S V, Ernst A, Echenique P M, Arnau A, Chulkov E V 2019 Phys. Rev. Lett. 122 107202Google Scholar

    [18]

    Qi X L, Hughes T L, Zhang S C 2008 Phys. Rev. B 78 195424Google Scholar

    [19]

    Peng Y, Xu Y 2019 Phys. Rev. B 99 195431Google Scholar

    [20]

    He Q L, Hughes T L, Armitage N P, Tokura Y, Wang K L 2022 Nat. Mater. 21 15Google Scholar

    [21]

    Chen X, Wang H, Liu H, Wang C, Wei G, Fang C, Wang H, Geng C, Liu S, Li P, Yu H, Zhao W, Miao J, Li Y, Wang L, Nie T, Zhao J, Wu X 2022 Adv. Mater. 34 2106172Google Scholar

    [22]

    Flensberg K, von Oppen F, Stern A 2021 Nat. Rev. Mater. 6 944Google Scholar

    [23]

    Wang Y, Ma X M, Hao Z, Cai Y, Rong H, Zhang F, Chen W, Zhang C, Lin J, Zhao Y, Liu C, Liu Q, Chen C 2023 Natl. Sci. Rev. DOI: 10.1093/nsr/nwad066

    [24]

    Tokura Y, Yasuda K, Tsukazaki A 2019 Nat. Rev. Phys. 1 126Google Scholar

    [25]

    Mogi M, Kawamura M, Tsukazaki A, Yoshimi R, Takahashi K S, Kawasaki M, Tokura Y 2017 Sci. Adv. 3 eaao1669Google Scholar

    [26]

    Lian B, Sun X Q, Vaezi A, Qi X L, Zhang S C 2018 Proc. Natl. Acad. Sci. U. S. A. 115 10938Google Scholar

    [27]

    Mong R S K, Essin A M, Moore J E 2010 Phys. Rev. B 81 245209Google Scholar

    [28]

    Lee D S, Kim T H, Park C H, Chung C Y, Lim Y S, Seo W S, Park H H 2013 CrystEngComm 15 5532Google Scholar

    [29]

    Gong Y, Guo J, Li J, Zhu K, Liao M, Liu X, Zhang Q, Gu L, Tang L, Feng X, Zhang D, Li W, Song C, Wang L, Yu P, Chen X, Wang Y, Yao H, Duan W, Xu Y, Zhang S C, Ma X, Xue Q K, He K 2019 Chin. Phys. Lett. 36 076801Google Scholar

    [30]

    Otrokov M M, Klimovskikh I I, Bentmann H, Estyunin D, Zeugner A, Aliev Z S, Gass S, Wolter A U B, Koroleva A V, Shikin A M, Blanco-Rey M, Hoffmann M, Rusinov I P, Vyazovskaya A Y, Eremeev S V, Koroteev Y M, Kuznetsov V M, Freyse F, Sánchez-Barriga J, Amiraslanov I R, Babanly M B, Mamedov N T, Abdullayev N A, Zverev V N, Alfonsov A, Kataev V, Buchner B, Schwier E F, Kumar S, Kimura A, Petaccia L, Di Santo G, Vidal R C, Schatz S, Kissner K, Unzelmann M, Min C H, Moser S, Peixoto T R F, Reinert F, Ernst A, Echenique P M, Isaeva A, Chulkov E V 2019 Nature 576 416Google Scholar

    [31]

    Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H, Zhang Y 2020 Science 367 895Google Scholar

    [32]

    Liu C, Wang Y, Li H, Wu Y, Li Y, Li J, He K, Xu Y, Zhang J, Wang Y 2020 Nat. Mater. 19 522Google Scholar

    [33]

    Ge J, Liu Y, Li J, Li H, Luo T, Wu Y, Xu Y, Wang J 2020 Natl. Sci. Rev. 7 1280Google Scholar

    [34]

    Li Y, Liu C, Wang Y, Lian Z, Li H, Chun O, Zhang J, Wang Y 2021 arXiv: 2105.10390v1 [cond-mat. mtrl-sci

    [35]

    Liu C, Wang Y, Yang M, Mao J, Li H, Li Y, Li J, Zhu H, Wang J, Li L, Wu Y, Xu Y, Zhang J, Wang Y 2021 Nat. Commun. 12 4647Google Scholar

    [36]

    Wu M, Tu D, Nie Y, Miao S, Gao W, Han Y, Zhu X, Zhou J, Ning W, Tian M 2022 Nano Lett. 22 73Google Scholar

    [37]

    Gao A, Liu Y F, Hu C, Qiu J X, Tzschaschel C, Ghosh B, Ho S C, Bérubé D, Chen R, Sun H, Zhang Z, Zhang X Y, Wang Y X, Wang N, Huang Z, Felser C, Agarwal A, Ding T, Tien H J, Akey A, Gardener J, Singh B, Watanabe K, Taniguchi T, Burch K S, Bell D C, Zhou B B, Gao W, Lu H Z, Bansil A, Lin H, Chang T R, Fu L, Ma Q, Ni N, Xu S Y 2021 Nature 595 521Google Scholar

    [38]

    Tai L, Chong S K, Zhang H, Zhang P, Deng P, Eckberg C, Qiu G, Dai B, He H, wu D, Xu S, Davydov A, Wang K 2021 arXiv: 2103.09878v1 [cond-mat. mtrl-sci

    [39]

    Ye C, Xie X, Lü W, Huang K, Yang A J, Jiang S, Liu X, Zhu D, Qiu X, Tong M, Zhou T, Hsu C H, Chang G, Lin H, Li P, Yang K, Wang Z, Jiang T, Renshaw Wang X 2022 Nano Lett. 22 1366Google Scholar

    [40]

    Zhang Z, Wang N, Cao N, Wang A, Zhou X, Watanabe K, Taniguchi T, Yan B, Gao W B 2022 Nat. Commun. 13 6191Google Scholar

    [41]

    Bartram F M, Leng Y C, Wang Y, Liu L, Chen X, Peng H, Li H, Yu P, Wu Y, Lin M L, Zhang J, Tan P H, Yang L 2022 npj Quantum Mater. 7 84Google Scholar

    [42]

    占国慧, 王怀强, 张海军 2020 物理 49 817Google Scholar

    Zhan G H, Wang H Q, Zhang H J 2020 Physics 49 817Google Scholar

    [43]

    郭文锑, 黄璐, 许桂贵, 钟克华, 张健敏, 黄志高 2021 物理学报 70 047101Google Scholar

    Guo W T, Huang L, Xu G G, Zhong K H, Zhang J M, Huang Z G 2021 Acta Phys. Sin. 70 047101Google Scholar

    [44]

    Wang Y, Zhang F, Zeng M, Sun H, Hao Z, Cai Y, Rong H, Zhang C, Liu C, Ma X, Wang L, Guo S, Lin J, Liu Q, Liu C, Chen C 2023 Front. Phys. 18 21304Google Scholar

    [45]

    Li B, Yan J Q, Pajerowski D M, Gordon E, Nedić A M, Sizyuk Y, Ke L, Orth P P, Vaknin D, McQueeney R J 2020 Phys. Rev. Lett. 124 167204Google Scholar

    [46]

    Yan J Q, Zhang Q, Heitmann T, Huang Z, Chen K Y, Cheng J G, Wu W, Vaknin D, Sales B C, McQueeney R J 2019 Phys. Rev. Mater. 3 064202Google Scholar

    [47]

    Yang S, Xu X, Zhu Y, Niu R, Xu C, Peng Y, Cheng X, Jia X, Huang Y, Xu X, Lu J, Ye Y 2021 Phys. Rev. X 11 011003Google Scholar

    [48]

    Wang P, Ge J, Li J, Liu Y, Xu Y, Wang J 2021 The Innovation 2 100098Google Scholar

    [49]

    Li J, Wang C, Zhang Z, Gu B-L, Duan W, Xu Y 2019 Phys. Rev. B 100 121103Google Scholar

    [50]

    Deng H, Chen Z, Wołoś A, Konczykowski M, Sobczak K, Sitnicka J, Fedorchenko I V, Borysiuk J, Heider T, Pluciński Ł, Park K, Georgescu A B, Cano J, Krusin-Elbaum L 2021 Nat. Phys. 17 36Google Scholar

    [51]

    Fu H, Liu C X, Yan B 2020 Sci. Adv. 6 eaaz0948Google Scholar

    [52]

    Gao R, Qin G, Qi S, Qiao Z, Ren W 2021 Phys. Rev. Mater. 5 114201Google Scholar

    [53]

    Ying Z, Zhang S, Chen B, Jia B, Fei F, Zhang M, Zhang H, Wang X, Song F 2022 Phys. Rev. B 105 085412Google Scholar

    [54]

    Nomura K, Nagaosa N 2011 Phys. Rev. Lett. 106 166802Google Scholar

    [55]

    Li H, Jiang H, Chen C Z, Xie X C 2021 Phys. Rev. Lett. 126 156601Google Scholar

    [56]

    Tse W K, MacDonald A H 2010 Phys. Rev. Lett. 105 057401Google Scholar

    [57]

    Wu L, Salehi M, Koirala N, Moon J, Oh S, Armitage N P 2016 Science 354 1124Google Scholar

    [58]

    Wang J, Lian B, Qi X L, Zhang S C 2015 Phys. Rev. B 92 081107Google Scholar

    [59]

    Morimoto T, Furusaki A, Nagaosa N 2015 Phys. Rev. B 92 085113Google Scholar

    [60]

    Wilczek F 1987 Phys. Rev. Lett. 58 1799Google Scholar

    [61]

    Essin A M, Moore J E, Vanderbilt D 2009 Phys. Rev. Lett. 102 146805Google Scholar

    [62]

    Wang J 2020 Sci. Chin. -Phys. , Mech. Astron. 63 127031Google Scholar

    [63]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [64]

    Qi X L, Hughes T L, Zhang S C 2010 Phys. Rev. B 82 184516Google Scholar

    [65]

    't Hooft G 1976 Phys. Rev. D 14 3421Google Scholar

    [66]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407Google Scholar

    [67]

    Chen C, Jiang K, Zhang Y, Liu C, Liu Y, Wang Z, Wang J 2020 Nat. Phys. 16 536Google Scholar

    [68]

    Lutchyn R M, Sau J D, Das Sarma S 2010 Phys. Rev. Lett. 105 077001Google Scholar

    [69]

    Leijnse M, Flensberg K 2012 Semicond. Sci. Technol. 27 124003Google Scholar

    [70]

    Stone M, Roy R 2004 Phys. Rev. B 69 184511Google Scholar

    [71]

    Wang M X, Liu C, Xu J P, Yang F, Miao L, Yao M Y, Gao C L, Shen C, Ma X, Chen X, Xu Z A, Liu Y, Zhang S C, Qian D, Jia J F, Xue Q K 2012 Science 336 52Google Scholar

    [72]

    Fu L, Kane C L 2009 Phys. Rev. Lett. 102 216403Google Scholar

    [73]

    Sau J D, Lutchyn R M, Tewari S, Das Sarma S 2010 Phys. Rev. Lett. 104 040502Google Scholar

    [74]

    Alicea J 2012 Rep. Prog. Phys. 75 076501Google Scholar

    [75]

    Akhmerov A R, Nilsson J, Beenakker C W J 2009 Phys. Rev. Lett. 102 216404Google Scholar

    [76]

    Oreg Y, Refael G, von Oppen F 2010 Phys. Rev. Lett. 105 177002Google Scholar

    [77]

    Fu L, Kane C L 2009 Phys. Rev. B 79 161408Google Scholar

    [78]

    Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z, Wen J, Gu G D, Ding H, Shin S 2018 Science 360 182Google Scholar

    [79]

    Kong L, Zhu S, Papaj M, Chen H, Cao L, Isobe H, Xing Y, Liu W, Wang D, Fan P, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Gao H J, Ding H 2019 Nat. Phys. 15 1181Google Scholar

    [80]

    König E J, Coleman P 2019 Phys. Rev. Lett. 122 207001Google Scholar

    [81]

    Machida T, Sun Y, Pyon S, Takeda S, Kohsaka Y, Hanaguri T, Sasagawa T, Tamegai T 2019 Nat. Mater. 18 811Google Scholar

    [82]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003Google Scholar

    [83]

    Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P, Xu H Q 2012 Nano Lett. 12 6414Google Scholar

    [84]

    Xu J P, Wang M X, Liu Z L, Ge J F, Yang X, Liu C, Xu Z A, Guan D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K, Jia J F 2015 Phys. Rev. Lett. 114 017001Google Scholar

    [85]

    Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C, Qian D, Zhou Y, Fu L, Li S C, Zhang F C, Jia J F 2016 Phys. Rev. Lett. 116 257003Google Scholar

    [86]

    何映萍, 洪健松, 刘雄军 2020 物理学报 69 110302Google Scholar

    He Y P, Hong J S, Liu X J 2020 Acta Phys. Sin. 69 110302Google Scholar

    [87]

    Strübi G, Belzig W, Choi M S, Bruder C 2011 Phys. Rev. Lett. 107 136403Google Scholar

    [88]

    Chung S B, Qi X L, Maciejko J, Zhang S C 2011 Phys. Rev. B 83 100512Google Scholar

    [89]

    Wang J, Zhou Q, Lian B, Zhang S-C 2015 Phys. Rev. B 92 064520Google Scholar

    [90]

    Maciejko J, Qi X L, Drew H D, Zhang S C 2010 Phys. Rev. Lett. 105 166803Google Scholar

    [91]

    Wang J, Lian B, Zhang S C 2014 Phys. Rev. B 89 085106Google Scholar

    [92]

    Yan Q, Li H, Zeng J, Sun Q F, Xie X C 2021 Commun. Phys. 4 239Google Scholar

    [93]

    Zhang X, Liu F 2021 Phys. Rev. B 103 024405Google Scholar

    [94]

    Chen L, Cao Z, He K, Liu X, Liu D E 2023 Phys. Rev. B 107 165405Google Scholar

    [95]

    Klimovskikh I I, Otrokov M M, Estyunin D, Eremeev S V, Filnov S O, Koroleva A, Shevchenko E, Voroshnin V, Rybkin A G, Rusinov I P, Blanco-Rey M, Hoffmann M, Aliev Z S, Babanly M B, Amiraslanov I R, Abdullayev N A, Zverev V N, Kimura A, Tereshchenko O E, Kokh K A, Petaccia L, Di Santo G, Ernst A, Echenique P M, Mamedov N T, Shikin A M, Chulkov E V 2020 npj Quantum Mater. 5 54Google Scholar

    [96]

    Chen P, Yao Q, Xu J, Sun Q, Grutter A J, Quarterman P, Balakrishnan P P, Kinane C J, Caruana A J, Langridge S, Li A, Achinuq B, Heppell E, Ji Y, Liu S, Cui B, Liu J, Huang P, Liu Z, Yu G, Xiu F, Hesjedal T, Zou J, Han X, Zhang H, Yang Y, Kou X 2023 Nat. Electron. 6 18Google Scholar

    [97]

    Tian S, Gao S, Nie S, Qian Y, Gong C, Fu Y, Li H, Fan W, Zhang P, Kondo T, Shin S, Adell J, Fedderwitz H, Ding H, Wang Z, Qian T, Lei H 2020 Phys. Rev. B 102 035144Google Scholar

    [98]

    Hu C, Ding L, Gordon K N, Ghosh B, Tien H-J, Li H, Linn A G, Lien S W, Huang C Y, Mackey S, Liu J, Reddy P V S, Singh B, Agarwal A, Bansil A, Song M, Li D, Xu S Y, Lin H, Cao H, Chang T R, Dessau D, Ni N 2020 Science advances 6 eaba4275Google Scholar

    [99]

    Wu J, Liu F, Liu C, Wang Y, Li C, Lu Y, Matsuishi S, Hosono H 2020 Adv. Mater. 32 2001815Google Scholar

    [100]

    Shi M Z, Lei B, Zhu C S, Ma D H, Cui J H, Sun Z L, Ying J J, Chen X H 2019 Phys. Rev. B 100 155144Google Scholar

    [101]

    Ding L, Hu C, Ye F, Feng E, Ni N, Cao H 2020 Phys. Rev. B 101 020412Google Scholar

    [102]

    Hu Y, Xu L, Shi M, Luo A, Peng S, Wang Z Y, Ying J J, Wu T, Liu Z K, Zhang C F, Chen Y L, Xu G, Chen X H, He J F 2020 Phys. Rev. B 101 161113Google Scholar

    [103]

    Jo N H, Wang L L, Slager R J, Yan J, Wu Y, Lee K, Schrunk B, Vishwanath A, Kaminski A 2020 Phys. Rev. B 102 045130Google Scholar

    [104]

    Zhang R X, Wu F, Das Sarma S 2020 Phys. Rev. Lett. 124 136407Google Scholar

    [105]

    Yan J Q, Liu Y H, Parker D S, Wu Y, Aczel A A, Matsuda M, McGuire M A, Sales B C 2020 Phys. Rev. Mater. 4 054202Google Scholar

    [106]

    Hu C, Gordon K N, Liu P, Liu J, Zhou X, Hao P, Narayan D, Emmanouilidou E, Sun H, Liu Y, Brawer H, Ramirez A P, Ding L, Cao H, Liu Q, Dessau D, Ni N 2020 Nat. Commun. 11 97Google Scholar

    [107]

    Vidal R C, Zeugner A, Facio J I, Ray R, Haghighi M H, Wolter A U B, Corredor Bohorquez L T, Caglieris F, Moser S, Figgemeier T, Peixoto T R F, Vasili H B, Valvidares M, Jung S, Cacho C, Alfonsov A, Mehlawat K, Kataev V, Hess C, Richter M, Büchner B, van den Brink J, Ruck M, Reinert F, Bentmann H, Isaeva A 2019 Phys. Rev. X 9 041065Google Scholar

    [108]

    He K 2020 npj Quantum Mater. 5 90Google Scholar

    [109]

    Xie H K, Wang D H, Cai Z X, Chen B, Guo J W, Naveed M, Zhang S, Zhang M H, Wang X F, Fei F C, Zhang H J, Song F Q 2020 Appl. Phys. Lett. 116 221902Google Scholar

    [110]

    Xu X, Yang S, Wang H, Guzman R, Gao Y, Zhu Y, Peng Y, Zang Z, Xi M, Tian S, Li Y, Lei H, Luo Z, Yang J, Wang Y, Xia T, Zhou W, Huang Y, Ye Y 2022 Nat. Commun. 13 7646Google Scholar

    [111]

    Wu X, Li J, Ma X M, Zhang Y, Liu Y, Zhou C-S, Shao J, Wang Q, Hao Y J, Feng Y, Schwier E F, Kumar S, Sun H, Liu P, Shimada K, Miyamoto K, Okuda T, Wang K, Xie M, Chen C, Liu Q, Liu C, Zhao Y 2020 Phys. Rev. X 10 031013Google Scholar

    [112]

    Rienks E D L, Wimmer S, Sánchez-Barriga J, Caha O, Mandal P S, Růžička J, Ney A, Steiner H, Volobuev V V, Groiss H, Albu M, Kothleitner G, Michalička J, Khan S A, Minár J, Ebert H, Bauer G, Freyse F, Varykhalov A, Rader O, Springholz G 2019 Nature 576 423Google Scholar

    [113]

    Lu R, Sun H, Kumar S, Wang Y, Gu M, Zeng M, Hao Y J, Li J, Shao J, Ma X M, Hao Z, Zhang K, Mansuer W, Mei J, Zhao Y, Liu C, Deng K, Huang W, Shen B, Shimada K, Schwier E F, Liu C, Liu Q, Chen C 2021 Phys. Rev. X 11 011039Google Scholar

    [114]

    Sun H, Xia B, Chen Z, Zhang Y, Liu P, Yao Q, Tang H, Zhao Y, Xu H, Liu Q 2019 Phys. Rev. Lett. 123 096401Google Scholar

    [115]

    Gu M, Li J, Sun H, Zhao Y, Liu C, Liu J, Lu H, Liu Q 2021 Nat. Commun. 12 3524Google Scholar

    [116]

    Chen B, Fei F, Zhang D, Zhang B, Liu W, Zhang S, Wang P, Wei B, Zhang Y, Zuo Z, Guo J, Liu Q, Wang Z, Wu X, Zong J, Xie X, Chen W, Sun Z, Wang S, Zhang Y, Zhang M, Wang X, Song F, Zhang H, Shen D, Wang B 2019 Nat. Commun. 10 4469Google Scholar

    [117]

    Chong S K, Lei C, Lee S H, Jaroszynski J, Mao Z, Macdonald A H, Wang K 2022 arXiv: 2208.13332v1 [cond-mat. mes-hall

    [118]

    Glazkova D A, Estyunin D A, Klimovskikh I I, Makarova T P, Tereshchenko O E, Kokh K A, Golyashov V A, Koroleva A V, Shikin A M 2022 JETP Lett. 115 286Google Scholar

    [119]

    Liu Y, Wang L L, Zheng Q, Huang Z, Wang X, Chi M, Wu Y, Chakoumakos B C, McGuire M A, Sales B C, Wu W, Yan J 2021 Phys. Rev. X 11 021033Google Scholar

    [120]

    Ge W, Sass P M, Yan J, Lee S H, Mao Z, Wu W 2021 Phys. Rev. B 103 134403Google Scholar

    [121]

    Murakami T, Nambu Y, Koretsune T, Xiangyu G, Yamamoto T, Brown C M, Kageyama H 2019 Phys. Rev. B 100 195103Google Scholar

    [122]

    Glazkova D A, Estyunin D A, Klimovskikh I I, Rybkina A A, Golovchanskiy I A, Tereshchenko O E, Kokh K A, Shchetinin I V, Golyashov V A, Shikin A M 2022 JETP Lett. 116 817Google Scholar

    [123]

    Riberolles S X M, Zhang Q, Gordon E, Butch N P, Ke L, Yan J Q, McQueeney R J 2021 Phys. Rev. B 104 064401Google Scholar

    [124]

    Yan J Q, Okamoto S, McGuire M A, May A F, McQueeney R J, Sales B C 2019 Phys. Rev. B 100 104409Google Scholar

    [125]

    Lei C, Chen S, MacDonald A H 2020 Proc. Natl. Acad. Sci. U.S.A. 117 27224Google Scholar

    [126]

    Wimmer S, Sánchez-Barriga J, Küppers P, Ney A, Schierle E, Freyse F, Caha O, Michalička J, Liebmann M, Primetzhofer D, Hoffman M, Ernst A, Otrokov M M, Bihlmayer G, Weschke E, Lake B, Chulkov E V, Morgenstern M, Bauer G, Springholz G, Rader O 2021 Adv. Mater. 33 2102935Google Scholar

    [127]

    Lee S H, Graf D, Min L, Zhu Y, Yi H, Ciocys S, Wang Y, Choi E S, Basnet R, Fereidouni A, Wegner A, Zhao Y F, Verlinde K, He J, Redwing R, Gopalan V, Churchill H O H, Lanzara A, Samarth N, Chang C Z, Hu J, Mao Z Q 2021 Phys. Rev. X 11 031032Google Scholar

    [128]

    Wang H H, Luo X G, Shi M Z, Peng K L, Lei B, Cui J H, Ma D H, Zhuo W Z, Ying J J, Wang Z Y, Chen X H 2021 Phys. Rev. B 103 085126Google Scholar

    [129]

    Ma X M, Zhao Y, Zhang K, Kumar S, Lu R, Li J, Yao Q, Shao J, Hou F, Wu X, Zeng M, Hao Y J, Hao Z, Wang Y, Liu X R, Shen H, Sun H, Mei J, Miyamoto K, Okuda T, Arita M, Schwier E F, Shimada K, Deng K, Liu C, Lin J, Zhao Y, Chen C, Liu Q, Liu C 2021 Phys. Rev. B 103 L121112Google Scholar

    [130]

    Lee S H, Zhu Y, Wang Y, Miao L, Pillsbury T, Yi H, Kempinger S, Hu J, Heikes C A, Quarterman P, Ratcliff W, Borchers J A, Zhang H, Ke X, Graf D, Alem N, Chang C Z, Samarth N, Mao Z 2019 Phys. Rev. Res. 1 012011Google Scholar

    [131]

    Shikin A M, Estyunin D A, Klimovskikh I I, Filnov S O, Schwier E F, Kumar S, Miyamoto K, Okuda T, Kimura A, Kuroda K, Yaji K, Shin S, Takeda Y, Saitoh Y, Aliev Z S, Mamedov N T, Amiraslanov I R, Babanly M B, Otrokov M M, Eremeev S V, Chulkov E V 2020 Sci. Rep. 10 13226Google Scholar

    [132]

    Vidal R C, Bentmann H, Peixoto T R F, Zeugner A, Moser S, Min C H, Schatz S, Kißner K, Ünzelmann M, Fornari C I, Vasili H B, Valvidares M, Sakamoto K, Mondal D, Fujii J, Vobornik I, Jung S, Cacho C, Kim T K, Koch R J, Jozwiak C, Bostwick A, Denlinger J D, Rotenberg E, Buck J, Hoesch M, Diekmann F, Rohlf S, Kalläne M, Rossnagel K, Otrokov M M, Chulkov E V, Ruck M, Isaeva A, Reinert F 2019 Phys. Rev. B 100 121104Google Scholar

    [133]

    Chen Y J, Xu L X, Li J H, Li Y W, Wang H Y, Zhang C F, Li H, Wu Y, Liang A J, Chen C, Jung S W, Cacho C, Mao Y H, Liu S, Wang M X, Guo Y F, Xu Y, Liu Z K, Yang L X, Chen Y L 2019 Phys. Rev. X 9 041040Google Scholar

    [134]

    Hao Y J, Liu P, Feng Y, Ma X M, Schwier E F, Arita M, Kumar S, Hu C, Lu R e, Zeng M, Wang Y, Hao Z, Sun H Y, Zhang K, Mei J, Ni N, Wu L, Shimada K, Chen C, Liu Q, Liu C 2019 Phys. Rev. X 9 041038Google Scholar

    [135]

    Li H, Gao S Y, Duan S F, Xu Y F, Zhu K J, Tian S J, Gao J C, Fan W H, Rao Z C, Huang J R, Li J J, Yan D Y, Liu Z T, Liu W L, Huang Y B, Li Y L, Liu Y, Zhang G B, Zhang P, Kondo T, Shin S, Lei H C, Shi Y G, Zhang W T, Weng H M, Qian T, Ding H 2019 Phys. Rev. X 9 041039Google Scholar

    [136]

    Swatek P, Wu Y, Wang L L, Lee K, Schrunk B, Yan J, Kaminski A 2020 Phys. Rev. B 101 161109Google Scholar

    [137]

    Nevola D, Li H X, Yan J Q, Moore R G, Lee H N, Miao H, Johnson P D 2020 Phys. Rev. Lett. 125 117205Google Scholar

    [138]

    Yang Z, Zhang H 2022 New J. Phys. 24 073034Google Scholar

    [139]

    Yasuda K, Mogi M, Yoshimi R, Tsukazaki A, Takahashi K S, Kawasaki M, Kagawa F, Tokura Y 2017 Science 358 1311Google Scholar

    [140]

    Garrity K F, Chowdhury S, Tavazza F M 2021 Phys. Rev. Mater. 5 024207Google Scholar

    [141]

    Sass P M, Kim J, Vanderbilt D, Yan J, Wu W 2020 Phys. Rev. Lett. 125 037201Google Scholar

    [142]

    Sass P M, Ge W, Yan J, Obeysekera D, Yang J J, Wu W 2020 Nano Lett. 20 2609Google Scholar

    [143]

    Shikin A M, Estyunin D A, Zaitsev N L, Glazkova D, Klimovskikh I I, Filnov S O, Rybkin A G, Schwier E F, Kumar S, Kimura A, Mamedov N, Aliev Z, Babanly M B, Kokh K, Tereshchenko O E, Otrokov M M, Chulkov E V, Zvezdin K A, Zvezdin A K 2021 Phys. Rev. B 104 115168Google Scholar

    [144]

    Lai Y, Ke L, Yan J, McDonald R D, McQueeney R J 2021 Phys. Rev. B 103 184429Google Scholar

    [145]

    Garnica M, Otrokov M M, Aguilar P C, Klimovskikh I I, Estyunin D, Aliev Z S, Amiraslanov I R, Abdullayev N A, Zverev V N, Babanly M B, Mamedov N T, Shikin A M, Arnau A, de Parga A L V, Chulkov E V, Miranda R 2022 npj Quantum Mater. 7 7Google Scholar

    [146]

    Ma X M, Chen Z, Schwier E F, Zhang Y, Hao Y J, Kumar S, Lu R, Shao J, Jin Y, Zeng M, Liu X R, Hao Z, Zhang K, Mansuer W, Song C, Wang Y, Zhao B, Liu C, Deng K, Mei J, Shimada K, Zhao Y, Zhou X, Shen B, Huang W, Liu C, Xu H, Chen C 2020 Phys. Rev. B 102 245136Google Scholar

    [147]

    Wang D H, Wang H Q, Xing D Y, Zhang H J 2022 arXiv: 2205.08204v1 [cond-mat. mes-hall

    [148]

    Tan H, Yan B 2023 Phys. Rev. Lett. 130 126702Google Scholar

    [149]

    Bai Y, Li Y, Luan J, Liu R, Song W, Chen Y, Ji P F, Zhang Q, Meng F, Tong B, Li L, Jiang Y, Gao Z, Gu L, Zhang J, Wang Y, Xue Q K, He K, Feng Y, Feng X 2022 arXiv: 2206.03773v2 [cond-mat. mes-hall

    [150]

    Liu S, Yu J, Zhang E, Li Z, Sun Q, Zhang Y, Li L, Zhao M, Leng P, Cao X, Zou J, Kou X, Zang J, Xiu F 2021 arXiv: 2110.00540v1 [cond-mat. mtrl-sci

    [151]

    Zhao Y F, Zhou L J, Wang F, Wang G, Song T, Ovchinnikov D, Yi H, Mei R, Wang K, Chan M H W, Liu C X, Xu X, Chang C Z 2021 Nano Lett. 21 7691Google Scholar

    [152]

    Xu Y, Elcoro L, Song Z D, Wieder B J, Vergniory M G, Regnault N, Chen Y, Felser C, Bernevig B A 2020 Nature 586 702Google Scholar

    [153]

    Su Y, Hu J, Cai X, Shi W, Xia Y, Xu Y, Xu X, Chen Y, Li G 2022 npj Comput. Mater. 8 261Google Scholar

    [154]

    Choudhary K, Garrity K F, Ghimire N J, Anand N, Tavazza F 2021 Phys. Rev. B 103 155131Google Scholar

    [155]

    Watanabe H, Po H C, Vishwanath A 2018 Sci. Adv. 4 eaat8685Google Scholar

    [156]

    Elcoro L, Wieder B J, Song Z, Xu Y, Bradlyn B, Bernevig B A 2021 Nat. Commun. 12 5965Google Scholar

  • [1] 李锦芳, 何东山, 王一平. 一维耦合腔晶格中磁子-光子拓扑相变和拓扑量子态的调制. 物理学报, 2024, 73(4): 044203. doi: 10.7498/aps.73.20231519
    [2] 张帅, 宋凤麒. 拓扑绝缘体中量子霍尔效应的研究进展. 物理学报, 2023, 72(17): 177302. doi: 10.7498/aps.72.20230698
    [3] 黄月蕾, 单寅飞, 杜灵杰, 杜瑞瑞. 拓扑激子绝缘体的实验进展. 物理学报, 2023, 72(17): 177101. doi: 10.7498/aps.72.20230634
    [4] 郑智勇, 陈立杰, 向吕, 王鹤, 王一平. 一维超导微波腔晶格中反旋波效应对拓扑相变和拓扑量子态的调制. 物理学报, 2023, 72(24): 244204. doi: 10.7498/aps.72.20231321
    [5] 刘畅, 王亚愚. 磁性拓扑绝缘体中的量子输运现象. 物理学报, 2023, 72(17): 177301. doi: 10.7498/aps.72.20230690
    [6] 王伟, 王一平. 一维超导传输线腔晶格中的拓扑相变和拓扑量子态的调制. 物理学报, 2022, 71(19): 194203. doi: 10.7498/aps.71.20220675
    [7] 郭文锑, 黄璐, 许桂贵, 钟克华, 张健敏, 黄志高. 本征磁性拓扑绝缘体MnBi2Te4电子结构的压力应变调控. 物理学报, 2021, 70(4): 047101. doi: 10.7498/aps.70.20201237
    [8] 王航天, 赵海慧, 温良恭, 吴晓君, 聂天晓, 赵巍胜. 高性能太赫兹发射: 从拓扑绝缘体到拓扑自旋电子. 物理学报, 2020, 69(20): 200704. doi: 10.7498/aps.69.20200680
    [9] 严忠波. 高阶拓扑绝缘体和高阶拓扑超导体简介. 物理学报, 2019, 68(22): 226101. doi: 10.7498/aps.68.20191101
    [10] 刘畅, 刘祥瑞. 强三维拓扑绝缘体与磁性拓扑绝缘体的角分辨光电子能谱学研究进展. 物理学报, 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [11] 郝宁, 胡江平. 铁基超导中拓扑量子态研究进展. 物理学报, 2018, 67(20): 207101. doi: 10.7498/aps.67.20181455
    [12] 李兆国, 张帅, 宋凤麒. 拓扑绝缘体的普适电导涨落. 物理学报, 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [13] 王青, 盛利. 磁场中的拓扑绝缘体边缘态性质. 物理学报, 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [14] 关童, 滕静, 吴克辉, 李永庆. 拓扑绝缘体(Bi0.5Sb0.5)2Te3薄膜中的线性磁阻. 物理学报, 2015, 64(7): 077201. doi: 10.7498/aps.64.077201
    [15] 陈艳丽, 彭向阳, 杨红, 常胜利, 张凯旺, 钟建新. 拓扑绝缘体Bi2Se3中层堆垛效应的第一性原理研究. 物理学报, 2014, 63(18): 187303. doi: 10.7498/aps.63.187303
    [16] 李平原, 陈永亮, 周大进, 陈鹏, 张勇, 邓水全, 崔雅静, 赵勇. 拓扑绝缘体Bi2Te3的热膨胀系数研究. 物理学报, 2014, 63(11): 117301. doi: 10.7498/aps.63.117301
    [17] 丁玥, 沈洁, 庞远, 刘广同, 樊洁, 姬忠庆, 杨昌黎, 吕力. Bi2Te3拓扑绝缘体表面颗粒化铅膜诱导的超导邻近效应. 物理学报, 2013, 62(16): 167401. doi: 10.7498/aps.62.167401
    [18] 张小明, 刘国栋, 杜音, 刘恩克, 王文洪, 吴光恒, 柳忠元. 半Heusler型拓扑绝缘体LaPtBi能带调控的研究. 物理学报, 2012, 61(12): 123101. doi: 10.7498/aps.61.123101
    [19] 曾伦武, 宋润霞. 点电荷在拓扑绝缘体和导体中感应磁单极. 物理学报, 2012, 61(11): 117302. doi: 10.7498/aps.61.117302
    [20] 曾伦武, 张浩, 唐中良, 宋润霞. 拓扑绝缘体椭球粒子的电磁散射. 物理学报, 2012, 61(17): 177303. doi: 10.7498/aps.61.177303
计量
  • 文章访问数:  3956
  • PDF下载量:  342
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-30
  • 修回日期:  2023-06-01
  • 上网日期:  2023-07-18
  • 刊出日期:  2023-09-20

/

返回文章
返回