搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拓扑绝缘体(Bi0.5Sb0.5)2Te3薄膜中的线性磁阻

关童 滕静 吴克辉 李永庆

引用本文:
Citation:

拓扑绝缘体(Bi0.5Sb0.5)2Te3薄膜中的线性磁阻

关童, 滕静, 吴克辉, 李永庆

Linear magnetoresistance in topological insulator (Bi0.5Sb0.5)2Te3 thin films

Guan Tong, Teng Jing, Wu Ke-Hui, Li Yong-Qing
PDF
导出引用
  • 本文报道了拓扑绝缘体(Bi0.5Sb0.5)2Te3薄膜中线性磁阻问题的系统性研究工作. 此体系中, 线性磁阻在很宽的温度和磁场范围内出现: 磁场高达18 T时磁阻仍没有饱和趋势, 并且当温度不高于50 K时, 线性磁阻的大小对温度的变化不敏感. 栅压调控化学势可明显改变线性磁阻的大小. 当化学势接近狄拉克点时, 线性磁阻最为显著. 这些结果说明电荷分布的不均匀性是引起该材料线性磁阻的根源.
    Linear magnetoresistance (LMR) observed in a topological insulator {(Bi0.5Sb0.5)2Te3} thin film is systematically studied. LMR exists in very large ranges of temperature and magnetic field. It shows no trend toward saturation in the magnetic field of up to 18 T nor temperature dependence. LMR can be changed effectively by tuning the chemical potential through gate voltage. LMR shows a largest value when the chemical potential approaches to the Dirac point. These phenomena indicate that charge inhomogeneity is the origin of the LMR in this material.
    • 基金项目: 国家自然科学基金(批准号: 91121003, 11374337)、国家重点基础研究发展计划(973计划) (批准号: 2012CB921703)和中国科学院资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91121003, 11374337), the National Basic Research Program of China(Grant No. 2012CB921703), and the Chinese Academy of Sciences.
    [1]

    Pippard A B 1989 Magnetoresistance in metals (Cambridge: Cambridge University Press)

    [2]

    Kapitza P 1928 Proc. R. Soc. London, Ser. A 119 358

    [3]

    Abrikosov A A 1969 JETP 29 746

    [4]

    Xu R, Husmann A, Rosenbaum T F, Saboungi M -L, Enderby J E, Littlewood P B 1997 Nature 390 57

    [5]

    Abrikosov A A 1998 Phys. Rev. B 58 2788

    [6]

    Parish M M, Littlewood P B 2003 Nature 426 162

    [7]

    Hu J S, Rosenbaum T F 2008 Nat. Mater. 76 97

    [8]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [9]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [10]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [11]

    Cho S, Fuhrer M S 2008 Phys. Rev. B 77 081402

    [12]

    Ping J L, Yudhistira I, Ramakrishnan N, Cho S, Adam S, Fuhrer M S 2014 Phys. Rev. Lett. 113 047206

    [13]

    Jia Z Z, Zhang R, Han Q, Yan Q J, Zhu R, Yu D P, Wu X S 2014 Appl. Phys. Lett. 105 143103

    [14]

    Qu D X, Hor Y S, Xiong J, Cava R J, Ong N P 2010 Science 329 821

    [15]

    Zhang G H, Qin H J, Chen J, He X Y, Lu L, Li Y Q, Wu K H 2011 Adv. Funct. Mater. 21 2351

    [16]

    Tang H, Liang D, Qiu R L J, Gao X P A 2011 ACS Nano 5 7510

    [17]

    Wang J, DaSilva A M, Chang C Z, He K, Jain J K, Samarth N, Ma X C, Xue Q K, Chan M H W 2011 Phys. Rev. B 83 245438

    [18]

    He H T, Li B K, Liu H C, Guo X, Wang Z Y, Xie M H, Wang J N 2012 Appl. Phys. Lett. 100 032105

    [19]

    Gao B F, Gehring P, Burghard M, Kern K 2012 Appl. Phys. Lett. 100 212402

    [20]

    He X Y, Guan T, Wang X X, Feng B J, Cheng P, Chen L, Li Y Q, Wu K H 2012 Appl. Phys. Lett. 101 123111

    [21]

    Zhang S X, McDonald R D, Shekhter A, Bi Z X, Li Y, Jia X Q, Picraux S T 2012 Appl. Phys. Lett. 101 202403

    [22]

    Assaf B A, Cardinal T, Wei P, Katmis F, Moodera J S, Heiman D 2013 Appl. Phys. Lett. 102 012102

    [23]

    Zhao Y F, Chang C Z, Jiang Y, DaSilva A M, Sun Y, Wang H C, Xing Y, Wang Y, He K, Ma X C, Xue Q K, Wang J 2013 Sci. Rep. 3 3060

    [24]

    Tian J F, Chang C Z, Cao H L, He K, Ma X C, Xue Q K, Chen Y P 2014 Sci. Rep. 4 4859

    [25]

    Wang Z H, Yang L, Li X J, Zhao X T, Wang H L, Zhang Z D, Gao X P A 2014 Nano Lett. 14 6510

    [26]

    Wang H C, Liu H W, Chang C Z, Zuo H K, Zhao Y F, Sun Y, Xia Z C, He K, Ma X C, Xie X C, Xue Q K, Wang J 2014 Sci. Rep. 4 5817

    [27]

    Kong D S, Chen Y L, Cha J J, Zhang Q F, Analytis J G, Lai K J, Liu Z K, Hong S S, Koski K J, Mo S K, Hussain Z, Fisher I R, Shen Z X, Cui Y 2011 Nat. Nanotech. 6 705

    [28]

    Zhang J S, Chang C Z, Zhang Z C, Wen J, Feng X, Li K, Liu M H, He K, Wang L L, Chen X, Xue Q K, Ma X C, Wang Y Y 2011 Nat. Commun. 2 574

    [29]

    Neville R C, Hoeneisen B, Mead C A 1972 J. Appl. Phys. 43 2124

    [30]

    Caviglia A D, Gariglio S, Reyren N, Jaccard D, Schneider T, Gabay M, Thiel S, Hammerl G, Mannhart J, Triscone J M 2008 Nature 456 624

    [31]

    Chen J, Qin H J, Yang F, Liu J, Guan T, Qu F M, Zhang G H, Shi J R, Xie X C, Yang C L, Wu K H, Li Y Q, Lu L 2010 Phys. Rev. Lett. 105 176602

    [32]

    Yang W M, Lin C J, Liao J, Li Y Q 2013 Chin. Phys. B 22 097202

    [33]

    Liu M H, Chang C Z, Zhang Z C, Zhang Y, Ruan W, He K, Wang L L, Chen X, Jia J F, Zhang S C, Xue Q K, Ma X C, Wang Y Y 2011 Phys. Rev. B 83 165440

    [34]

    Liu Y, Ma Z, Zhao Y F, Meenakshi S, Wang J 2013 Chin. Phys. B 22 067302

    [35]

    Chen J, He X Y, Wu K H, Ji Z Q, Lu L, Shi J R, Smet J H, Li Y Q 2011 Phys. Rev. B 83 241304

    [36]

    Lin C J, He X Y, Liao J, Wang X X, Sacksteder IV V, Yang W M, Guan T, Zhang Q M, Gu L, Zhang G Y, Zeng C G, Dai X, Wu K H, Li Y Q 2013 Phys. Rev. B 88 041307

    [37]

    Skinner B, Chen T R, Shklovskii B I 2013 J. Exp. Theor. Phys. 117 579

    [38]

    Wang C M, Lei X L 2012 Phys. Rev. B 86 035442

    [39]

    Martin J, Akerman N, Ulbricht G, Lohmann T, Smet J H, Klitzing K von, Yacoby A 2008 Nat. Phys. 4 144

    [40]

    Kastl C, Guan T, He X Y, Wu K H, Li Y Q, Holleitner A W 2012 Appl. Phys. Lett. 101 251110

  • [1]

    Pippard A B 1989 Magnetoresistance in metals (Cambridge: Cambridge University Press)

    [2]

    Kapitza P 1928 Proc. R. Soc. London, Ser. A 119 358

    [3]

    Abrikosov A A 1969 JETP 29 746

    [4]

    Xu R, Husmann A, Rosenbaum T F, Saboungi M -L, Enderby J E, Littlewood P B 1997 Nature 390 57

    [5]

    Abrikosov A A 1998 Phys. Rev. B 58 2788

    [6]

    Parish M M, Littlewood P B 2003 Nature 426 162

    [7]

    Hu J S, Rosenbaum T F 2008 Nat. Mater. 76 97

    [8]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [9]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [10]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [11]

    Cho S, Fuhrer M S 2008 Phys. Rev. B 77 081402

    [12]

    Ping J L, Yudhistira I, Ramakrishnan N, Cho S, Adam S, Fuhrer M S 2014 Phys. Rev. Lett. 113 047206

    [13]

    Jia Z Z, Zhang R, Han Q, Yan Q J, Zhu R, Yu D P, Wu X S 2014 Appl. Phys. Lett. 105 143103

    [14]

    Qu D X, Hor Y S, Xiong J, Cava R J, Ong N P 2010 Science 329 821

    [15]

    Zhang G H, Qin H J, Chen J, He X Y, Lu L, Li Y Q, Wu K H 2011 Adv. Funct. Mater. 21 2351

    [16]

    Tang H, Liang D, Qiu R L J, Gao X P A 2011 ACS Nano 5 7510

    [17]

    Wang J, DaSilva A M, Chang C Z, He K, Jain J K, Samarth N, Ma X C, Xue Q K, Chan M H W 2011 Phys. Rev. B 83 245438

    [18]

    He H T, Li B K, Liu H C, Guo X, Wang Z Y, Xie M H, Wang J N 2012 Appl. Phys. Lett. 100 032105

    [19]

    Gao B F, Gehring P, Burghard M, Kern K 2012 Appl. Phys. Lett. 100 212402

    [20]

    He X Y, Guan T, Wang X X, Feng B J, Cheng P, Chen L, Li Y Q, Wu K H 2012 Appl. Phys. Lett. 101 123111

    [21]

    Zhang S X, McDonald R D, Shekhter A, Bi Z X, Li Y, Jia X Q, Picraux S T 2012 Appl. Phys. Lett. 101 202403

    [22]

    Assaf B A, Cardinal T, Wei P, Katmis F, Moodera J S, Heiman D 2013 Appl. Phys. Lett. 102 012102

    [23]

    Zhao Y F, Chang C Z, Jiang Y, DaSilva A M, Sun Y, Wang H C, Xing Y, Wang Y, He K, Ma X C, Xue Q K, Wang J 2013 Sci. Rep. 3 3060

    [24]

    Tian J F, Chang C Z, Cao H L, He K, Ma X C, Xue Q K, Chen Y P 2014 Sci. Rep. 4 4859

    [25]

    Wang Z H, Yang L, Li X J, Zhao X T, Wang H L, Zhang Z D, Gao X P A 2014 Nano Lett. 14 6510

    [26]

    Wang H C, Liu H W, Chang C Z, Zuo H K, Zhao Y F, Sun Y, Xia Z C, He K, Ma X C, Xie X C, Xue Q K, Wang J 2014 Sci. Rep. 4 5817

    [27]

    Kong D S, Chen Y L, Cha J J, Zhang Q F, Analytis J G, Lai K J, Liu Z K, Hong S S, Koski K J, Mo S K, Hussain Z, Fisher I R, Shen Z X, Cui Y 2011 Nat. Nanotech. 6 705

    [28]

    Zhang J S, Chang C Z, Zhang Z C, Wen J, Feng X, Li K, Liu M H, He K, Wang L L, Chen X, Xue Q K, Ma X C, Wang Y Y 2011 Nat. Commun. 2 574

    [29]

    Neville R C, Hoeneisen B, Mead C A 1972 J. Appl. Phys. 43 2124

    [30]

    Caviglia A D, Gariglio S, Reyren N, Jaccard D, Schneider T, Gabay M, Thiel S, Hammerl G, Mannhart J, Triscone J M 2008 Nature 456 624

    [31]

    Chen J, Qin H J, Yang F, Liu J, Guan T, Qu F M, Zhang G H, Shi J R, Xie X C, Yang C L, Wu K H, Li Y Q, Lu L 2010 Phys. Rev. Lett. 105 176602

    [32]

    Yang W M, Lin C J, Liao J, Li Y Q 2013 Chin. Phys. B 22 097202

    [33]

    Liu M H, Chang C Z, Zhang Z C, Zhang Y, Ruan W, He K, Wang L L, Chen X, Jia J F, Zhang S C, Xue Q K, Ma X C, Wang Y Y 2011 Phys. Rev. B 83 165440

    [34]

    Liu Y, Ma Z, Zhao Y F, Meenakshi S, Wang J 2013 Chin. Phys. B 22 067302

    [35]

    Chen J, He X Y, Wu K H, Ji Z Q, Lu L, Shi J R, Smet J H, Li Y Q 2011 Phys. Rev. B 83 241304

    [36]

    Lin C J, He X Y, Liao J, Wang X X, Sacksteder IV V, Yang W M, Guan T, Zhang Q M, Gu L, Zhang G Y, Zeng C G, Dai X, Wu K H, Li Y Q 2013 Phys. Rev. B 88 041307

    [37]

    Skinner B, Chen T R, Shklovskii B I 2013 J. Exp. Theor. Phys. 117 579

    [38]

    Wang C M, Lei X L 2012 Phys. Rev. B 86 035442

    [39]

    Martin J, Akerman N, Ulbricht G, Lohmann T, Smet J H, Klitzing K von, Yacoby A 2008 Nat. Phys. 4 144

    [40]

    Kastl C, Guan T, He X Y, Wu K H, Li Y Q, Holleitner A W 2012 Appl. Phys. Lett. 101 251110

  • [1] 张帅, 宋凤麒. 拓扑绝缘体中量子霍尔效应的研究进展. 物理学报, 2023, 72(17): 177302. doi: 10.7498/aps.72.20230698
    [2] 刘畅, 王亚愚. 磁性拓扑绝缘体中的量子输运现象. 物理学报, 2023, 72(17): 177301. doi: 10.7498/aps.72.20230690
    [3] 许佳玲, 贾利云, 刘超, 吴佺, 赵领军, 马丽, 侯登录. Li(Na)AuS体系拓扑绝缘体材料的能带结构. 物理学报, 2021, 70(2): 027101. doi: 10.7498/aps.70.20200885
    [4] 王航天, 赵海慧, 温良恭, 吴晓君, 聂天晓, 赵巍胜. 高性能太赫兹发射: 从拓扑绝缘体到拓扑自旋电子. 物理学报, 2020, 69(20): 200704. doi: 10.7498/aps.69.20200680
    [5] 向天, 程亮, 齐静波. 拓扑绝缘体中的超快电荷自旋动力学. 物理学报, 2019, 68(22): 227202. doi: 10.7498/aps.68.20191433
    [6] 贾鼎, 葛勇, 袁寿其, 孙宏祥. 基于蜂窝晶格声子晶体的双频带声拓扑绝缘体. 物理学报, 2019, 68(22): 224301. doi: 10.7498/aps.68.20190951
    [7] 刘畅, 刘祥瑞. 强三维拓扑绝缘体与磁性拓扑绝缘体的角分辨光电子能谱学研究进展. 物理学报, 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [8] 高艺璇, 张礼智, 张余洋, 杜世萱. 二维有机拓扑绝缘体的研究进展. 物理学报, 2018, 67(23): 238101. doi: 10.7498/aps.67.20181711
    [9] 李兆国, 张帅, 宋凤麒. 拓扑绝缘体的普适电导涨落. 物理学报, 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [10] 王青, 盛利. 磁场中的拓扑绝缘体边缘态性质. 物理学报, 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [11] 陈艳丽, 彭向阳, 杨红, 常胜利, 张凯旺, 钟建新. 拓扑绝缘体Bi2Se3中层堆垛效应的第一性原理研究. 物理学报, 2014, 63(18): 187303. doi: 10.7498/aps.63.187303
    [12] 李平原, 陈永亮, 周大进, 陈鹏, 张勇, 邓水全, 崔雅静, 赵勇. 拓扑绝缘体Bi2Te3的热膨胀系数研究. 物理学报, 2014, 63(11): 117301. doi: 10.7498/aps.63.117301
    [13] 韦庞, 李康, 冯硝, 欧云波, 张立果, 王立莉, 何珂, 马旭村, 薛其坤. 在预刻蚀的衬底上通过分子束外延直接生长出拓扑绝缘体薄膜的微器件. 物理学报, 2014, 63(2): 027303. doi: 10.7498/aps.63.027303
    [14] 王怀强, 杨运友, 鞠艳, 盛利, 邢定钰. 铁磁绝缘体间的极薄Bi2Se3薄膜的相变研究. 物理学报, 2013, 62(3): 037202. doi: 10.7498/aps.62.037202
    [15] 张小明, 刘国栋, 杜音, 刘恩克, 王文洪, 吴光恒, 柳忠元. 半Heusler型拓扑绝缘体LaPtBi能带调控的研究. 物理学报, 2012, 61(12): 123101. doi: 10.7498/aps.61.123101
    [16] 曾伦武, 宋润霞. 点电荷在拓扑绝缘体和导体中感应磁单极. 物理学报, 2012, 61(11): 117302. doi: 10.7498/aps.61.117302
    [17] 曾伦武, 张浩, 唐中良, 宋润霞. 拓扑绝缘体椭球粒子的电磁散射. 物理学报, 2012, 61(17): 177303. doi: 10.7498/aps.61.177303
    [18] 王文静, 萧淑琴, 刘宜华, 陈卫平, 代由勇, 姜 山, 袁慧敏, 颜世申. 射频溅射功率对FeZrBCu软磁合金薄膜巨磁阻抗效应的影响. 物理学报, 2005, 54(4): 1821-1825. doi: 10.7498/aps.54.1821
    [19] 刘元富, 韩建民, 张谷令, 王久丽, 陈光良, 李雪明, 冯文然, 范松华, 刘赤子, 杨思泽. 脉冲高能量密度等离子体沉积(Ti, Al)N薄膜组织及其性能研究. 物理学报, 2005, 54(3): 1301-1305. doi: 10.7498/aps.54.1301
    [20] 张谷令, 王久丽, 杨武保, 范松华, 刘赤子, 杨思泽. 内表面栅极等离子体源离子注入TiN薄膜及其特性研究. 物理学报, 2003, 52(9): 2213-2218. doi: 10.7498/aps.52.2213
计量
  • 文章访问数:  7646
  • PDF下载量:  872
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-06
  • 修回日期:  2015-02-11
  • 刊出日期:  2015-04-05

/

返回文章
返回