搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

本征磁性拓扑绝缘体MnBi2Te4电子结构的压力应变调控

郭文锑 黄璐 许桂贵 钟克华 张健敏 黄志高

引用本文:
Citation:

本征磁性拓扑绝缘体MnBi2Te4电子结构的压力应变调控

郭文锑, 黄璐, 许桂贵, 钟克华, 张健敏, 黄志高

Pressure strain control of electronic structure of intrinsic magnetic topological insulator MnBi2Te4

Guo Wen-Ti, Huang Lu, Xu Gui-Gui, Zhong Ke-Hua, Zhang Jian-Min, Huang Zhi-Gao
PDF
HTML
导出引用
  • 由于MnBi2Te4电子结构具有对晶格常数的改变相当敏感的特性, 本文采用基于密度泛函理论的第一性原理方法对MnBi2Te4反铁磁块体的电子结构施加等体积应变调控. 研究发现体系能带结构在材料等体积拉伸和压缩作用下变化灵敏, 体系出现绝缘体-金属相变. 特别地, 当施加特定应变后导带和价带在Γ处出现交叉, 体系呈零带隙状态. 在此应变下仍可观察到能带反转的现象, 具有非平庸的能带拓扑性质. 根据不同应变下的电荷密度图, 发现等体积应变会影响体系七倍层层间距, 其中等体积压缩和拉伸应变可分别增大和减小Te原子层间距, 表明等体积压缩有利于降低反铁磁层间耦合. 通过等体积压力应变调控, 掌握了MnBi2Te4的电子结构的变化规律, 这对本征磁性拓扑绝缘体MnBi2Te4的物性研究和实验制备具有重要的指导意义.
    MnBi2Te4 as an intrinsic magnetic topological insulator has attracted lots of attention. Since the electronic structure of MnBi2Te4 is quite sensitive to the change of lattice constant, here in this work, we use a first-principles method based on density functional theory to implement the isometric strain control of the electronic structure of MnBi2Te4 antiferromagnetic bulk. The so-called isometric strain is to change the lattice constant under the premise that the volume of the crystal remains unchanged. Our results show that the energy band structure of the system changes sensitively under the action of isometric tension and compression strains of the material, and the system has an insulator-metal phase transition. In particular, when a certain strain is applied, the conduction band and the valence band cross at Γ, and the system presents a zero band gap state. Under this strain, the band inversion can still be observed, showing non-trivial energy band topological properties. According to the charge density and local charge density maps under different strains, it is found that the isometric strain will affect the interlayer spacing of the system's seven-fold layers. The isometric compression and tensile strain can increase and reduce the Te atomic layer spacing respectively, indicating that isometric compression is beneficial to reducing the antiferromagnetic interlayer coupling. Through the control of isometric pressure and strain, we can master the change law of the electronic structure of MnBi2Te4, which has important guiding significance for the research of physical properties and experimental preparation of the intrinsic magnetic topological insulator MnBi2Te4.
      通信作者: 张健敏, jmzhang@fjnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11874113, 61574037)和福建省自然科学基金(批准号: 2020J02018)资助的课题
      Corresponding author: Zhang Jian-Min, jmzhang@fjnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874113, 61574037) and Natural Science Foundation of Fujian Province of China (Grant No. 2020J02018)
    [1]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [2]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [3]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015Google Scholar

    [4]

    Yu R, Zhang W, Zhang H J, Zhang S C, Dai X, Fang Z 2010 Science 329 61Google Scholar

    [5]

    Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167Google Scholar

    [6]

    Nomura K, Nagaosa N 2011 Phys. Rev. Lett. 106 166802Google Scholar

    [7]

    Majorana E, Cimento N 1937 Nuovo Cim. 14 171Google Scholar

    [8]

    Li J H, Li Y, Du S Q, Wang Z, Gu B L, Zhang S C, He K, Duan W H, Xu Y 2019 Sci. Adv. 5 eaaw5685Google Scholar

    [9]

    Eremeev S V, Otrokov M M, Chulkov E V 2018 Nano Lett. 18 6521Google Scholar

    [10]

    Zhang D, Shi M, Zhu T, Xing D, Zhang H, Wang J 2019 Phys. Rev. Lett. 122 206401Google Scholar

    [11]

    Teng J, Liu N, Li Y 2019 J. Semicond. 40 081507Google Scholar

    [12]

    Li H, Liu S S, Liu C, Zhang J S, Xu Y, Yu R, Wu Y, Zhang Y G, Fan S S 2020 Phys. Chem. Chem. Phys. 22 556Google Scholar

    [13]

    Rani P, Saxena A, Sultana R, Nagpal V, Islam S S, Patnaik S, Awana V P S 2019 J. Supercond. Novel Magn. 32 3705Google Scholar

    [14]

    Yan J Q, Zhang Q, Heitmann T, Huang Z L, Chen K Y, Cheng J G, Wu W, Vaknin D, Sales B C, McQueeney R J 2019 Phys. Rev. Mater. 3 064202Google Scholar

    [15]

    Ning J L, Zhu Y L, Kidd J, Guan Y D, Wang Y, Mao Z Q, Sun J W 2019 arXiv: 1912.01173

    [16]

    Zeugner A, Nietschke F, Wolter A U B, Gaß S, Vidal R C, Peixoto T R F, Pohl D, Damm C, Lubk A, Hentrich R, Moser S K, Fornari C, Min C H, Schatz S, Kißner K, Ünzelmann M, Kaiser M, Scaravaggi F, Rellinghaus B, Nielsch K, Hess C, Büchner B, Reinert F, Bentmann H, Oeckler O, Doert T, Ruck M, Anna I 2019 Chem. Mater. 31 2795Google Scholar

    [17]

    Lee D S, Kim T, Park C, Chung C Y, Lim Y S, Seo W S, Park H 2013 CrystEngComm 15 5532Google Scholar

    [18]

    Gong Y, Guo J W, Li J H, Zhu K J, Liao M H, Liu X Z, Zhang Q H, Gu L, Tang L, Feng X, Zhang D, Li W, Song C L, Wang L l, Yu P, Chen X, Wang Y Y, Yao H, Duan W H, Xu Y, Zhang S C, Ma X C, Xue Q K, He K 2019 Chin. Phys. Lett. 36 89901Google Scholar

    [19]

    Yan J, Okamoto S, Mcguire M A, May A F, Mcqueeney R, Sales B C 2019 Phys. Rev. B 100 104409Google Scholar

    [20]

    Chen B, Fei F C, Zhang D, Zhang B, Liu W L, Zhang S, Wang P D, Wei B Y, Zhang Y, Zuo Z W, Guo J W, Liu Q Q, Wang Z L, Wu X C, Zong J Y, Xie X D, Chen W, Sun Z, Wang S C, Zhang Y, Zhang M H, Wang X F, Song F Q, Zhang H J, Shen D W, Wang B G 2019 Nat. Commun. 10 4469Google Scholar

    [21]

    Tokura Y, Yasuda K, Tsukazaki A 2019 Nat. Rev. Phys. 1 126Google Scholar

    [22]

    Klimovskikh I I, Otrokov M M, Estyunin D, Eremeev S V, Filnov S O, Koroleva A, Shevchenko E, Voroshnin V, Rusinov I P, BlancoRey M, Hoffmann M, Aliev Z S, Babanly M B, Amiraslanov I R, Abdullayev N A, Zverev V N, Kimura A, Tereshchenko O E, Kokh K A, Petaccia L, Santo G D, Ernst A, Echenique P M, Mamedov N T, Shikin A M, Chulkov E V 2020 npj Quantum Mater. 5 54Google Scholar

    [23]

    Shi M, Lei B, Zhu C S, Ma D H, Cui J H, Sun Z, Ying J J, Chen X H 2019 Phys. Rev. B 100 155144Google Scholar

    [24]

    Xu L X, Mao Y H, Wang H Y, Li J H, Chen Y J, Xia Y Y Y, Li Y W, Zhang J, Zheng H J, Huang K, Zhang C F, Cui S T, Liang A J, Xia W, Su H, Jung S W, Cacho C, Wang M X, Li G, Xu Y, Guo Y F, Yang L X, Liu Z K, Chen Y L 2019 arXiv: 1910.11014

    [25]

    Hu C W, Ding L, Gordon K, Ghosh B, Li H X, Lian S W, Linn A G, Tien H, Huang C Y, Reddy S P V, Bahadur S, Amit A, A B, Xu S Y, Hsin L, Cao H B, Chang T, Dessau D, Ni N 2020 Sci. Adv. 6 eaba4275Google Scholar

    [26]

    Ma X M, Chen Z J, Schwier E F, Zhang Y, Hao Y J, Lu R, Shao J F, Jin Y J, Zeng M, Liu X R, Hao Z Y, Zhang K, Wumiti M, Shiv K, Song C Y, Wang Y, Zhao B Y, Liu C, Deng K, Mei J W, K S, Zhao Y, Zhou X J, Shen B, Huang W, Liu C, Xu H, Chen C Y 2020 Phys. Rev. B 102 245136Google Scholar

    [27]

    Ding L, Hu C W, Ye F, Feng E X, Ni N, Cao H B 2020 Phys. Rev. B 101 020412Google Scholar

    [28]

    Yuan Y H, Wang X F, Li H, Li J H, Ji Y, Hao Z Q, Wu Y, He K, Wang Y Y, Xu Y, Duan W H, Li W, Xue Q 2020 Nano Lett 20 3271Google Scholar

    [29]

    Zhang S, Wang R, Wang X P, Wei B Y, Chen B, Wang H Q, Shi G, Wang F, Jia B, Ouyang Y P, Xie F J, Fei F C, Zhang M H, Wang X F, Wu D, Wan X G, Song F Q, Zhang H J, Wang B G 2020 Nano Lett. 20 709Google Scholar

    [30]

    Ge J, Liu Y Z, Li J H, Li H, Luo T C, Wu Y, Xu Y, Wang J 2020 Natl. Sci. Rev. 7 1280Google Scholar

    [31]

    Fu H X, Liu C X, Yan B H 2020 Sci. Adv. 6 aaz0948Google Scholar

    [32]

    Swatek P, Wu Y, Wang L L, Lee K, Schrunk B, Yan J Q, Kaminski A 2020 Phys. Rev. B 101 161109Google Scholar

    [33]

    Chen Y J, Xu L X, Li J H, Li Y W, Zhang C F, Li H, Wu Y, Liang A J, Chen C, Jung S W, Cacho C, Wang H Y, Mao Y H, Liu S, Wang M X, Guo Y F, Xu Y, Liu Z K, Yang L X, Chen Y L 2019 Phys. Rev. X 9 041040Google Scholar

    [34]

    Li J H, Wang C, Zhang Z T, Gu B L, Duan W H, Xu Y 2019 Phys. Rev. B 100 121103Google Scholar

    [35]

    Liu C, Wang Y C, Li H, Wu Y, Li Y X, Li J H, He K, Xu Y, Zhang J S, Wang Y Y 2020 Nat. Mater. 19 522Google Scholar

    [36]

    Wu J Z, Liu F C, Sasase M, Ienaga K, Obata Y, Yukawa R, Horiba K, Kumigashira H, Okuma S, Inoshita T, Hideo H 2019 Sci. Adv. 5 eaax9989Google Scholar

    [37]

    Hu C W, Gordon K, Liu P F, Liu J Y, Zhou X Q, Hao P P, Narayan D, Emmanouilidou E, Sun H Y, Liu Y T, Harlan B, P R A, Ding L, Cao H B, Liu Q H, S D D, Ni N 2020 Nat. Commun. 11 97Google Scholar

    [38]

    Chen K Y, Wang B S, Yan J Q, Parker D S, Zhou J S, Uwatoko Y, Cheng J G 2019 Phys. Rev. Mater. 3 094201Google Scholar

    [39]

    Pei C Y, Xia Y Y Y, Wu J Z, Yi Zhao L L G, Ying T P, Gao B, Li N N, Yang W G, Zhang D Z, Gou H Y, Chen Y L, Hosono H, Li G, Qi Y P 2020 Chin. Phys. Lett. 37 66401Google Scholar

    [40]

    Yu J B, Zang J D, Liu C X 2019 Phys. Rev. B 100 075303Google Scholar

    [41]

    Liu Y, Li Y Y, Rajput S, Gilks D, Lari L, Galindo P L, Weinert M, Lazarov V K, Li L 2014 Nat. Phys. 10 294Google Scholar

    [42]

    Inamoto T, Takashiri M 2016 J. Appl. Phys. 120 125105Google Scholar

    [43]

    Hajji M, Absike H, Labrim H, Ez-Zahraouy H, Benaissa M, Benyoussef A 2018 Comput. Condens. Matter 16 e00299Google Scholar

    [44]

    Ruan Y R, Yang Y M, Zhou Y B, Huang L, Xu G G, Zhong K H, Huang Z G, Zhang J M 2019 J. Phys.: Condens. Matter 31 385501Google Scholar

    [45]

    Peng X, Wei Q, Andrew C 2014 Phys. Rev. B 90 085402Google Scholar

    [46]

    Yang Y M, Zhong K H, Xu G G, Zhang J M, Huang Z G 2019 J. Phys.: Condens. Matter 31 405501Google Scholar

    [47]

    Yang Y M, Zhong K H, Xu G G, Zhang J M, Huang Z G 2018 Materials 11 2002Google Scholar

    [48]

    Narayan A 2020 J. Phys.: Condens. Matter 32 125501Google Scholar

    [49]

    Jiang X X, Feng Y X, Chen K Q, Tang L M 2020 J. Phys.: Condens. Matter 32 105501Google Scholar

    [50]

    Guan S, Liu G B, Ge Y, Wan W, Liu C, Li S, ZHang Z Y, Zhou X D, Yao Y G 2019 SCIENTIA SINICA Technologica 49 1133Google Scholar

    [51]

    Shen Z H, Fan X L, Yang D X, Gong Y H, Ma S G, Guo N J, Hu Y, Benassi E, Lau W 2020 J. Phys.: Condens. Matter 32 085801Google Scholar

    [52]

    Jiang S W, Xie H C, Shan J, Mak K F 2020 arXiv: 2001.03153

    [53]

    Zhang Z, You J Y, Gu B, Su G 2020 J. Phys. Chem. C 124 19219Google Scholar

    [54]

    Shi L B, Cao S, Yang M, You Q, Zhang K C, Bao Y, Zhang Y J, Niu Y Y, Qian P 2020 J. Phys.: Condens. Matter 32 065306Google Scholar

    [55]

    Ren Y L, Li Q Q, Wan W H, Liu Y, Ge Y F 2020 Phys. Rev. B 101 134421Google Scholar

    [56]

    Kresse G, Hafner J 1993 Phys. Rev. B 48 13115Google Scholar

    [57]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [58]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [59]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [60]

    Wang V, Xu N, Liu J C, Tang G, Geng W T 2019 arXiv: 1908.08269

    [61]

    Otrokov M M, Klimovskikh I I, Bentmann H, Estyunin D A, Zeugner A, Aliev Z S, Gas S, Wolter A U B, Koroleva A V, Shikin A M, Blanco-Rey M, Hoffmann M, Rusinov I P, Vyazovskaya A Y, Eremeev S V, Koroteev Y M, Kuznetsov V M, Freyse F, Sánchez-Barriga J, Amiraslanov I R, Babanly M B, Mamedov N T, Abdullayev N A, Zverev V N, Alfonsov A, Kataev V, Büchner B, Schwier E F, Kumar S, Kimura A, Petaccia L, Santo G D, Vidal R C, Schatz S, Kißner K, ünzelmann M, H M C, Moser S, Peixoto T R F, Reinert F, Ernst A, Echenique P M, Isaeva A, Chulkov E V 2019 Nature 576 416Google Scholar

    [62]

    Rienks E D L, Wimmer S, Sánchez-Barriga J, Caha O, Mandal P S, Ruzicka J, Ney A, Steiner H, Volobuev V V, Groiss H, Albu M, Kothleitner G, Michalicka J, Khan S A, Minár J, Ebert H, Bauer G, Freyse F, Varykhalov A, Rader O, Springholz G 2019 Nature 576 423Google Scholar

    [63]

    Hao Y J, Liu P F, Feng Y, Ma X M, Schwier E F, Arita M, Kumar S, Hu C, Lu R, Zeng M, Wang Y, Hao Z Y, Sun H Y, Zhang K, Mei J W, Ni N, Wu L S, Shimada K, Chen C Y, Liu Q H, Chang L 2019 Phys. Rev. X 9 041038Google Scholar

  • 图 1  (a) MnBi2Te4反铁磁结构(上下自旋由不同颜色的箭头标出)及其(b)顶部视图; (c) 包含能带计算过程每个高对称点的第一布里渊区

    Fig. 1.  (a) MnBi2Te4 antiferromagnetic structure (the upper and lower spins are marked by arrows of different colors) and its (b) top view; (c) the first Brillouin zone containing each high symmetry point in the energy band calculation process.

    图 2  (a)−(f)等体积拉伸应变作用下的能带结构图

    Fig. 2.  (a)−(f) The band structure diagram under isometric tensile strains.

    图 3  (a)−(f) 等体积压缩应变作用下的能带结构图

    Fig. 3.  (a)−(f) The band structure diagram under isometric compression strains.

    图 4  (a) 体系总能随应变的变化趋势; (b)单胞晶格常数随应变的演变规律; (c)等体积应变对带隙的影响; (d)图(c)虚线框处的局部放大图(CBM和VBM随应变的演变趋势也被给出)

    Fig. 4.  (a) Variation trend of total energy of the system with strain; (b) evolution regular of unit cell lattice constant with strain; (c) the effect of isometric strain on the band gap; (d) part a enlarged view of the dotted frame in Fig.4 (c). (The evolution trends of the bottom of CBM and VBM with strain are also given)

    图 5  不同等体积应变作用后的电荷密度图 (a) –10%; (b) –5%; (c) 无应变体系; (d) 5%; (e) 10%. Mn, Bi, Te原子的位置用不同颜色的球对应标出; (1$\bar{1}$0)和(001)晶面距离原点所在平面分别为0 $\times \;{d}$及0.41 $\times\;{d}$ (对于饱和度: 红色取13%表示电荷增加, 蓝色取7%代表电荷减少)

    Fig. 5.  Charge density diagram after different isometric strains: (a) –10%; (b) –5%; (c) unstrained system; (d) 5%; (e) 10%. The positions of Mn, Bi and Te atoms are correspondingly marked with balls of different colors; The crystal plane (1 $ \bar{1} $ 0) and (001) are 0 $\times\;{d}$ and 0.41 $\times\;{d}$ respectively. For saturation: red takes 13% means charge increase, blue takes 7% means charge decrease

    图 6  最高价带的局部电荷密度随不同等体积应变的演变图(并相应给出ab平面的平均面电荷密度曲线) (图中三维局部电荷密度的isosurface值均取0.0006 e/bohr3, 黄色代表电荷积累, 蓝色表示电荷减少)

    Fig. 6.  The evolution diagram of the local charge density of the highest valence band with different isometric strains and correspondingly give the average surface charge density curve of the ab plane. (The isosurface values of the three-dimensional local charge density in the figure are all 0.0006 e/bohr3. The yellow color represents the accumulation of charge, while the blue color represents the decrease of the charge)

    图 7  (a)七倍层间距结构示意图; (b)七倍层层间距和(c)Te-Te原子间距随应变的变化规律曲线. 图(b)和图(c)中具体距离也相应标出

    Fig. 7.  (a) Schematic diagram of the structure of the sevenfold interval; Variation of the curve of (b) the interval of the sevenfold interval and (c) Te-Te interatomic distance with strain. The specific distance in Fig. (b) and Fig. (c) is also marked accordingly

    图 8  施加2.26%等体积压缩应变时的(a) 总能带结构图, (b) 每类原子的态密度及总态密度, (c) Bi和Te的p轨道能带投影, (d) Bi-p和Te-p轨道分波态密度. 图(c)中含$\varGamma$点费米能级附近的放大图, 由虚线框标出并由箭头指示

    Fig. 8.  When 2.26% isometric compressive strain is applied: (a) Structure diagram of the total energy band; (b) state density and total state density of each type of atom; (c) the p orbital energy band projection of Bi and Te; (d) Bi-p and Te-porbit partial wave density. Fig. (c) contains an enlarged view of the $\varGamma$ point near the Fermi level, marked by a dotted frame and indicated by an arrow

    图 9  –2.26%等体积应变作用后同无应变体系2 × 2 × 2超胞的差分电荷密度 (a)三维图(黄色表电荷增加, 而蓝色表电荷减少); (b) (100)晶面切面二维图(红色和蓝色分别表示电荷增加及减少, 饱和度的值由图中标尺标出). 图(a)取isosurface = 0.008 e/bohr3, 图(b)的切面取原点所在平面(即0 × d)

    Fig. 9.  Differential charge density of –2.26% isometric strain and unstrained system: (a) Three dimensinal graph (yellow color represents charge accumulation and blue color charge depletion); (b) two dimensional drawing of crystal plane (100). (Red and blue indicate charge increase and decrease respectively. The values of saturation are marked on the scale in the figure). Fig. (a) takes isosurface = 0.008 e/bohr3, the cut plane of Fig. (b) takes the plane of the origin (ie 0 $ \times$ d)

    表 1  不同等体积应变下体系的晶格常数

    Table 1.  The lattice constants of the system under different isometric strains.

    拉伸应变
    $ \eta$/%
    a = bc压缩应变
    $ \eta$/%
    a = bc
    04.36040.60004.36040.600
    14.40439.793–14.31641.432
    24.44739.027–24.27342.270
    34.49138.266–34.22943.154
    44.53437.544–44.18644.045
    54.57836.825–54.14244.986
    64.62236.134–64.09845.948
    74.66535.462–74.05546.942
    84.70934.808–84.01147.968
    94.75234.172–93.96849.028
    104.80033.554–103.92450.123
    下载: 导出CSV
  • [1]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [2]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [3]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015Google Scholar

    [4]

    Yu R, Zhang W, Zhang H J, Zhang S C, Dai X, Fang Z 2010 Science 329 61Google Scholar

    [5]

    Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167Google Scholar

    [6]

    Nomura K, Nagaosa N 2011 Phys. Rev. Lett. 106 166802Google Scholar

    [7]

    Majorana E, Cimento N 1937 Nuovo Cim. 14 171Google Scholar

    [8]

    Li J H, Li Y, Du S Q, Wang Z, Gu B L, Zhang S C, He K, Duan W H, Xu Y 2019 Sci. Adv. 5 eaaw5685Google Scholar

    [9]

    Eremeev S V, Otrokov M M, Chulkov E V 2018 Nano Lett. 18 6521Google Scholar

    [10]

    Zhang D, Shi M, Zhu T, Xing D, Zhang H, Wang J 2019 Phys. Rev. Lett. 122 206401Google Scholar

    [11]

    Teng J, Liu N, Li Y 2019 J. Semicond. 40 081507Google Scholar

    [12]

    Li H, Liu S S, Liu C, Zhang J S, Xu Y, Yu R, Wu Y, Zhang Y G, Fan S S 2020 Phys. Chem. Chem. Phys. 22 556Google Scholar

    [13]

    Rani P, Saxena A, Sultana R, Nagpal V, Islam S S, Patnaik S, Awana V P S 2019 J. Supercond. Novel Magn. 32 3705Google Scholar

    [14]

    Yan J Q, Zhang Q, Heitmann T, Huang Z L, Chen K Y, Cheng J G, Wu W, Vaknin D, Sales B C, McQueeney R J 2019 Phys. Rev. Mater. 3 064202Google Scholar

    [15]

    Ning J L, Zhu Y L, Kidd J, Guan Y D, Wang Y, Mao Z Q, Sun J W 2019 arXiv: 1912.01173

    [16]

    Zeugner A, Nietschke F, Wolter A U B, Gaß S, Vidal R C, Peixoto T R F, Pohl D, Damm C, Lubk A, Hentrich R, Moser S K, Fornari C, Min C H, Schatz S, Kißner K, Ünzelmann M, Kaiser M, Scaravaggi F, Rellinghaus B, Nielsch K, Hess C, Büchner B, Reinert F, Bentmann H, Oeckler O, Doert T, Ruck M, Anna I 2019 Chem. Mater. 31 2795Google Scholar

    [17]

    Lee D S, Kim T, Park C, Chung C Y, Lim Y S, Seo W S, Park H 2013 CrystEngComm 15 5532Google Scholar

    [18]

    Gong Y, Guo J W, Li J H, Zhu K J, Liao M H, Liu X Z, Zhang Q H, Gu L, Tang L, Feng X, Zhang D, Li W, Song C L, Wang L l, Yu P, Chen X, Wang Y Y, Yao H, Duan W H, Xu Y, Zhang S C, Ma X C, Xue Q K, He K 2019 Chin. Phys. Lett. 36 89901Google Scholar

    [19]

    Yan J, Okamoto S, Mcguire M A, May A F, Mcqueeney R, Sales B C 2019 Phys. Rev. B 100 104409Google Scholar

    [20]

    Chen B, Fei F C, Zhang D, Zhang B, Liu W L, Zhang S, Wang P D, Wei B Y, Zhang Y, Zuo Z W, Guo J W, Liu Q Q, Wang Z L, Wu X C, Zong J Y, Xie X D, Chen W, Sun Z, Wang S C, Zhang Y, Zhang M H, Wang X F, Song F Q, Zhang H J, Shen D W, Wang B G 2019 Nat. Commun. 10 4469Google Scholar

    [21]

    Tokura Y, Yasuda K, Tsukazaki A 2019 Nat. Rev. Phys. 1 126Google Scholar

    [22]

    Klimovskikh I I, Otrokov M M, Estyunin D, Eremeev S V, Filnov S O, Koroleva A, Shevchenko E, Voroshnin V, Rusinov I P, BlancoRey M, Hoffmann M, Aliev Z S, Babanly M B, Amiraslanov I R, Abdullayev N A, Zverev V N, Kimura A, Tereshchenko O E, Kokh K A, Petaccia L, Santo G D, Ernst A, Echenique P M, Mamedov N T, Shikin A M, Chulkov E V 2020 npj Quantum Mater. 5 54Google Scholar

    [23]

    Shi M, Lei B, Zhu C S, Ma D H, Cui J H, Sun Z, Ying J J, Chen X H 2019 Phys. Rev. B 100 155144Google Scholar

    [24]

    Xu L X, Mao Y H, Wang H Y, Li J H, Chen Y J, Xia Y Y Y, Li Y W, Zhang J, Zheng H J, Huang K, Zhang C F, Cui S T, Liang A J, Xia W, Su H, Jung S W, Cacho C, Wang M X, Li G, Xu Y, Guo Y F, Yang L X, Liu Z K, Chen Y L 2019 arXiv: 1910.11014

    [25]

    Hu C W, Ding L, Gordon K, Ghosh B, Li H X, Lian S W, Linn A G, Tien H, Huang C Y, Reddy S P V, Bahadur S, Amit A, A B, Xu S Y, Hsin L, Cao H B, Chang T, Dessau D, Ni N 2020 Sci. Adv. 6 eaba4275Google Scholar

    [26]

    Ma X M, Chen Z J, Schwier E F, Zhang Y, Hao Y J, Lu R, Shao J F, Jin Y J, Zeng M, Liu X R, Hao Z Y, Zhang K, Wumiti M, Shiv K, Song C Y, Wang Y, Zhao B Y, Liu C, Deng K, Mei J W, K S, Zhao Y, Zhou X J, Shen B, Huang W, Liu C, Xu H, Chen C Y 2020 Phys. Rev. B 102 245136Google Scholar

    [27]

    Ding L, Hu C W, Ye F, Feng E X, Ni N, Cao H B 2020 Phys. Rev. B 101 020412Google Scholar

    [28]

    Yuan Y H, Wang X F, Li H, Li J H, Ji Y, Hao Z Q, Wu Y, He K, Wang Y Y, Xu Y, Duan W H, Li W, Xue Q 2020 Nano Lett 20 3271Google Scholar

    [29]

    Zhang S, Wang R, Wang X P, Wei B Y, Chen B, Wang H Q, Shi G, Wang F, Jia B, Ouyang Y P, Xie F J, Fei F C, Zhang M H, Wang X F, Wu D, Wan X G, Song F Q, Zhang H J, Wang B G 2020 Nano Lett. 20 709Google Scholar

    [30]

    Ge J, Liu Y Z, Li J H, Li H, Luo T C, Wu Y, Xu Y, Wang J 2020 Natl. Sci. Rev. 7 1280Google Scholar

    [31]

    Fu H X, Liu C X, Yan B H 2020 Sci. Adv. 6 aaz0948Google Scholar

    [32]

    Swatek P, Wu Y, Wang L L, Lee K, Schrunk B, Yan J Q, Kaminski A 2020 Phys. Rev. B 101 161109Google Scholar

    [33]

    Chen Y J, Xu L X, Li J H, Li Y W, Zhang C F, Li H, Wu Y, Liang A J, Chen C, Jung S W, Cacho C, Wang H Y, Mao Y H, Liu S, Wang M X, Guo Y F, Xu Y, Liu Z K, Yang L X, Chen Y L 2019 Phys. Rev. X 9 041040Google Scholar

    [34]

    Li J H, Wang C, Zhang Z T, Gu B L, Duan W H, Xu Y 2019 Phys. Rev. B 100 121103Google Scholar

    [35]

    Liu C, Wang Y C, Li H, Wu Y, Li Y X, Li J H, He K, Xu Y, Zhang J S, Wang Y Y 2020 Nat. Mater. 19 522Google Scholar

    [36]

    Wu J Z, Liu F C, Sasase M, Ienaga K, Obata Y, Yukawa R, Horiba K, Kumigashira H, Okuma S, Inoshita T, Hideo H 2019 Sci. Adv. 5 eaax9989Google Scholar

    [37]

    Hu C W, Gordon K, Liu P F, Liu J Y, Zhou X Q, Hao P P, Narayan D, Emmanouilidou E, Sun H Y, Liu Y T, Harlan B, P R A, Ding L, Cao H B, Liu Q H, S D D, Ni N 2020 Nat. Commun. 11 97Google Scholar

    [38]

    Chen K Y, Wang B S, Yan J Q, Parker D S, Zhou J S, Uwatoko Y, Cheng J G 2019 Phys. Rev. Mater. 3 094201Google Scholar

    [39]

    Pei C Y, Xia Y Y Y, Wu J Z, Yi Zhao L L G, Ying T P, Gao B, Li N N, Yang W G, Zhang D Z, Gou H Y, Chen Y L, Hosono H, Li G, Qi Y P 2020 Chin. Phys. Lett. 37 66401Google Scholar

    [40]

    Yu J B, Zang J D, Liu C X 2019 Phys. Rev. B 100 075303Google Scholar

    [41]

    Liu Y, Li Y Y, Rajput S, Gilks D, Lari L, Galindo P L, Weinert M, Lazarov V K, Li L 2014 Nat. Phys. 10 294Google Scholar

    [42]

    Inamoto T, Takashiri M 2016 J. Appl. Phys. 120 125105Google Scholar

    [43]

    Hajji M, Absike H, Labrim H, Ez-Zahraouy H, Benaissa M, Benyoussef A 2018 Comput. Condens. Matter 16 e00299Google Scholar

    [44]

    Ruan Y R, Yang Y M, Zhou Y B, Huang L, Xu G G, Zhong K H, Huang Z G, Zhang J M 2019 J. Phys.: Condens. Matter 31 385501Google Scholar

    [45]

    Peng X, Wei Q, Andrew C 2014 Phys. Rev. B 90 085402Google Scholar

    [46]

    Yang Y M, Zhong K H, Xu G G, Zhang J M, Huang Z G 2019 J. Phys.: Condens. Matter 31 405501Google Scholar

    [47]

    Yang Y M, Zhong K H, Xu G G, Zhang J M, Huang Z G 2018 Materials 11 2002Google Scholar

    [48]

    Narayan A 2020 J. Phys.: Condens. Matter 32 125501Google Scholar

    [49]

    Jiang X X, Feng Y X, Chen K Q, Tang L M 2020 J. Phys.: Condens. Matter 32 105501Google Scholar

    [50]

    Guan S, Liu G B, Ge Y, Wan W, Liu C, Li S, ZHang Z Y, Zhou X D, Yao Y G 2019 SCIENTIA SINICA Technologica 49 1133Google Scholar

    [51]

    Shen Z H, Fan X L, Yang D X, Gong Y H, Ma S G, Guo N J, Hu Y, Benassi E, Lau W 2020 J. Phys.: Condens. Matter 32 085801Google Scholar

    [52]

    Jiang S W, Xie H C, Shan J, Mak K F 2020 arXiv: 2001.03153

    [53]

    Zhang Z, You J Y, Gu B, Su G 2020 J. Phys. Chem. C 124 19219Google Scholar

    [54]

    Shi L B, Cao S, Yang M, You Q, Zhang K C, Bao Y, Zhang Y J, Niu Y Y, Qian P 2020 J. Phys.: Condens. Matter 32 065306Google Scholar

    [55]

    Ren Y L, Li Q Q, Wan W H, Liu Y, Ge Y F 2020 Phys. Rev. B 101 134421Google Scholar

    [56]

    Kresse G, Hafner J 1993 Phys. Rev. B 48 13115Google Scholar

    [57]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [58]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [59]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [60]

    Wang V, Xu N, Liu J C, Tang G, Geng W T 2019 arXiv: 1908.08269

    [61]

    Otrokov M M, Klimovskikh I I, Bentmann H, Estyunin D A, Zeugner A, Aliev Z S, Gas S, Wolter A U B, Koroleva A V, Shikin A M, Blanco-Rey M, Hoffmann M, Rusinov I P, Vyazovskaya A Y, Eremeev S V, Koroteev Y M, Kuznetsov V M, Freyse F, Sánchez-Barriga J, Amiraslanov I R, Babanly M B, Mamedov N T, Abdullayev N A, Zverev V N, Alfonsov A, Kataev V, Büchner B, Schwier E F, Kumar S, Kimura A, Petaccia L, Santo G D, Vidal R C, Schatz S, Kißner K, ünzelmann M, H M C, Moser S, Peixoto T R F, Reinert F, Ernst A, Echenique P M, Isaeva A, Chulkov E V 2019 Nature 576 416Google Scholar

    [62]

    Rienks E D L, Wimmer S, Sánchez-Barriga J, Caha O, Mandal P S, Ruzicka J, Ney A, Steiner H, Volobuev V V, Groiss H, Albu M, Kothleitner G, Michalicka J, Khan S A, Minár J, Ebert H, Bauer G, Freyse F, Varykhalov A, Rader O, Springholz G 2019 Nature 576 423Google Scholar

    [63]

    Hao Y J, Liu P F, Feng Y, Ma X M, Schwier E F, Arita M, Kumar S, Hu C, Lu R, Zeng M, Wang Y, Hao Z Y, Sun H Y, Zhang K, Mei J W, Ni N, Wu L S, Shimada K, Chen C Y, Liu Q H, Chang L 2019 Phys. Rev. X 9 041038Google Scholar

  • [1] 严志, 方诚, 王芳, 许小红. 过渡金属元素掺杂对SmCo3合金结构和磁性能影响的第一性原理计算. 物理学报, 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [2] 谢向男, 李成, 曾俊炜, 周珅, 江天. 本征磁性拓扑绝缘体MnBi2Te4研究进展. 物理学报, 2023, 72(18): 187101. doi: 10.7498/aps.72.20230704
    [3] 陈光平, 杨金妮, 乔昌兵, 黄陆君, 虞静. Er3+掺杂TiO2的局域结构及电子性质的第一性原理研究. 物理学报, 2022, 71(24): 246102. doi: 10.7498/aps.71.20221847
    [4] 梁婷, 王阳阳, 刘国宏, 符汪洋, 王怀璋, 陈静飞. V掺杂二维MoS2体系气体吸附性能的第一性原理研究. 物理学报, 2021, 70(8): 080701. doi: 10.7498/aps.70.20202043
    [5] 钟淑琳, 仇家豪, 罗文崴, 吴木生. 稀土掺杂对LiFePO4性能影响的第一性原理研究. 物理学报, 2021, 70(15): 158203. doi: 10.7498/aps.70.20210227
    [6] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算. 物理学报, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [7] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [8] 高淼, 孔鑫, 卢仲毅, 向涛. Li2C2中电声耦合及超导电性的第一性原理计算研究. 物理学报, 2015, 64(21): 214701. doi: 10.7498/aps.64.214701
    [9] 彭琼, 何朝宇, 李金, 钟建新. MoSi2薄膜电子性质的第一性原理研究. 物理学报, 2015, 64(4): 047102. doi: 10.7498/aps.64.047102
    [10] 陈家华, 刘恩克, 李勇, 祁欣, 刘国栋, 罗鸿志, 王文洪, 吴光恒. Ga2基Heusler合金Ga2XCr(X = Mn, Fe, Co, Ni, Cu)的四方畸变、电子结构、磁性及声子谱的第一性原理计算. 物理学报, 2015, 64(7): 077104. doi: 10.7498/aps.64.077104
    [11] 王啸天, 代学芳, 贾红英, 王立英, 刘然, 李勇, 刘笑闯, 张小明, 王文洪, 吴光恒, 刘国栋. Heusler型X2RuPb (X=Lu, Y)合金的反带结构和拓扑绝缘性. 物理学报, 2014, 63(2): 023101. doi: 10.7498/aps.63.023101
    [12] 焦照勇, 郭永亮, 牛毅君, 张现周. 缺陷黄铜矿结构Xga2S4 (X=Zn, Cd, Hg)晶体电子结构和光学性质的第一性原理研究. 物理学报, 2013, 62(7): 073101. doi: 10.7498/aps.62.073101
    [13] 李荣, 罗小玲, 梁国明, 付文升. 掺杂Fe对VH2解氢性能影响的第一性原理研究. 物理学报, 2011, 60(11): 117105. doi: 10.7498/aps.60.117105
    [14] 李沛娟, 周薇薇, 唐元昊, 张华, 施思齐. CeO2的电子结构,光学和晶格动力学性质:第一性原理研究. 物理学报, 2010, 59(5): 3426-3431. doi: 10.7498/aps.59.3426
    [15] 顾牡, 林玲, 刘波, 刘小林, 黄世明, 倪晨. M’型GdTaO4电子结构的第一性原理研究. 物理学报, 2010, 59(4): 2836-2842. doi: 10.7498/aps.59.2836
    [16] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算. 物理学报, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [17] 胡方, 明星, 范厚刚, 陈岗, 王春忠, 魏英进, 黄祖飞. 梯形化合物NaV2O4F电子结构的第一性原理研究. 物理学报, 2009, 58(2): 1173-1178. doi: 10.7498/aps.58.1173
    [18] 宋庆功, 王延峰, 宋庆龙, 康建海, 褚 勇. 插层化合物Ag1/4TiSe2电子结构的第一性原理研究. 物理学报, 2008, 57(12): 7827-7832. doi: 10.7498/aps.57.7827
    [19] 侯清玉, 张 跃, 陈 粤, 尚家香, 谷景华. 锐钛矿(TiO2)半导体的氧空位浓度对导电性能影响的第一性原理计算. 物理学报, 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
    [20] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算. 物理学报, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
计量
  • 文章访问数:  7865
  • PDF下载量:  296
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-01
  • 修回日期:  2020-09-23
  • 上网日期:  2021-02-04
  • 刊出日期:  2021-02-20

/

返回文章
返回