搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分子聚集体中激子-激子湮灭过程

茅江奇 范旭阳 路彦珍 王鹿霞

引用本文:
Citation:

分子聚集体中激子-激子湮灭过程

茅江奇, 范旭阳, 路彦珍, 王鹿霞

Exciton-exciton annihilation in molecular aggregations

Mao Jiang-Qi, Fan Xu-Yang, Lu Yan-Zhen, Wang Lu-Xia
PDF
HTML
导出引用
  • 分子的激发能量转移和电荷转移是提高光伏电池和发光二极管效率的关键问题, 其中分子聚集体中的激子-激子湮灭过程是影响分子激发能量转移的重要方面, 细致研究激子-激子湮灭的动力学过程并与相关的瞬间吸收谱信号对比对相关的理论和实验都有重要意义. 本文在分子间弱耦合近似下, 用经典的率方程, 应用方酸分子的基本参数对激子-激子湮灭过程做了微观描述, 通过改变相关参数, 研究了外场激发强度、聚集体的偶极矩位形、分子内的衰变率等因素对激子-激子湮灭过程的影响, 分析了激子在第一激发态和高阶激发态的驰豫时间、电荷转移相干时间、激子融合和湮灭时间之间的关系, 得到的结论适用于高阶激发态能级能量约为第一激发态能级能量的2倍的分子组成的分子聚集体. 研究发现, J型聚集体由于相干能量转移时间较短, 比H型聚集体有更高的湮灭率. 激发场强越强, 激子-激子湮灭的效率越高. 分子高阶激发态的衰变率是激子-激子湮灭过程的关键因素.
    It is of ongoing interest to uncover energy and charge transfer processes in molecular systems, which are essentially important for photovoltaic cells or light emitting diodes. The exciton-exciton annihilation is one of the important aspects in excitation energy transfer in molecular aggregations, so it is important to study its dynamics of exciton-exciton annihilation, and to compare the theoretical parameters with the related transient absorption signal. Upon the excitation of laser pulses, multiple excitons can be produced in molecular aggregations, and its annihilation process is composed of two steps. The first step is that two excitations existing in the first excited state of the molecules move together so that their excitation energy can be used to create a high excited state in one molecule, called exciton fussion. The second step is that an ultrafast internal conversion process brings the molecule which is in the higher excited state back to the first excited state. This paper uses the scheme of classical rate equation in the approximation of weak coupling among molecules to describe the dynamics of exciton-exciton annihilation. With the parameters of squaraine, the effects of external or internal parameters such as the intensity of external field, the dipole configuration in aggregations, the decay rate of molecules on the annihilation process are studied. The relationship between the relaxation time of exciton in the first excited state and the high excited state, between their times of coherent charge transfer, and between their times of exciton and annihilation are studied. These conclusions are suitable to the aggregations with their single molecule having an energy level of ${E_{\rm fm}} \approx 2{E_{\rm em}}$. It is found that the J-aggregate has a higher rate of annihilation than the H-aggregate because its coherent energy transfer time is shorter than H-aggregate’s. The high-intensity external field makes high exciton-exciton annihilation rate. The dipole configuration and the decay rate of higher excited state of molecules have strong effects on the annihilation, so one can adjust these factors to control the exciton-exciton annihilation in molecular aggregations.
      通信作者: 路彦珍, yzlu@ustb.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 21961132023, 11774026)资助的课题
      Corresponding author: Lu Yan-Zhen, yzlu@ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21961132023, 11774026)
    [1]

    Knox R S 1963 Theory of Excitons, Solid State Physics, Adv. in Research and Applications (New York: Academic Press) pp1−15

    [2]

    Davydov A S 1971 Theory of Molecular Excitons (New York: Plenum Press) pp1−21

    [3]

    Savoie M B, Jackson N E, Chen X L, Marks J T, Ratner A M 2014 Acc. Chem. Res. 47 3385Google Scholar

    [4]

    Spano C F, Silva C 2014 Annu. Rev. Phys. Chem. 65 477Google Scholar

    [5]

    Tamai Y, Ohkita H, Benten H, Ito S 2015 J. Phys. Chem. Lett. 6 3417Google Scholar

    [6]

    Reineke S, Thomschke M, Lüssem B, Leo K 2013 Rev. Mod. Phys. 85 1245Google Scholar

    [7]

    Brédas L J, Beljonne D, Coropceanu V, Cornil J 2004 Chem. Rev. 104 4971Google Scholar

    [8]

    Wasielewski R M 2009 Acc. Chem. Res. 42 1910Google Scholar

    [9]

    Hader K, May V, Lambert C, Engel V 2016 PCCP 18 13368Google Scholar

    [10]

    Odom T W, Schatz G C 2011 Chem. Rev. 11 3667

    [11]

    Feist J, Garcia-Vidal F J 2015 Phys. Rev. Lett. 114 196402Google Scholar

    [12]

    Schachenmayer J, Genes C, Tignone E, Pupillo G 2015 Phys. Rev. Lett. 114 196403Google Scholar

    [13]

    Han D, Du J, Kobayashi T, Miyatake T, Tamiaki H, Li Y 2015 J. Phys. Chem. B 119 12265Google Scholar

    [14]

    Ma F 2018 J. Phys. Chem. B 122 10746Google Scholar

    [15]

    Wang L, May V 2016 Phys. Rev. B 94 195413Google Scholar

    [16]

    May V 2014 J. Chem. Phys. 140 054103Google Scholar

    [17]

    Wang L, Plehn T, May V 2020 Phys. Rev. B 102 075401Google Scholar

    [18]

    Tempelaar R, Jansen T L C, Knoester J 2017 J. Phys. Chem. Lett. 8 6113Google Scholar

    [19]

    May V, Kühn O 2011 Charge and Energy Transfer Dynamics in Molecular Systems (Weinheim: Wiley-VCH) pp12−22

    [20]

    Völker S F, Schmiedel A, Holzapfel M, Renziehausen K, Engel V, Lambert C 2014 J. Phys. Chem. C 31 17467

  • 图 1  激子-激子湮灭过程的能级示意图. 能级结构分别为基态(${{\rm{S}}_0}$)、第一激发态(${{\rm{S}}_1}$)和高阶激发态(${{\rm{S}}_n}$), 蓝色小球表示激发电子. 左图: 两个分子都处于第一激发态; 中图: 激子融合, 右边分子回到基态, 左边分子至高阶激发态; 右图: 左边分子回到第一激发态的内转换过程[16]

    Fig. 1.  Energy level diagram of exciton-exciton annihilation. Shown are the ground state (${{\rm{S}}_0}$), the first excited state (${{\rm{S}}_1}$) and the higher order excited state (${{\rm{S}}_n}$) of a pair of molecules. The blue balls represent excited electrons. Left panel: Both molecules are in their first excited state; Middle panel: Exciton fusion, the right molecule returns to the ground state, and the left molecule goes to a higher excited state; Right panel: The internal conversion process of the left molecule back to the first excited state[16].

    图 2  不同高阶激发态衰变率r下J型分子聚集体的第一激发态和高阶激发态占据数动力学 (a)第一激发态; (b)高阶激发态

    Fig. 2.  The population dynamics of the first excited state and the higher excited state of the J-type molecular aggregate with different decay rate r: (a) The first excited state; (b) the higher excited state.

    图 3  在高级衰变率r = 15 ps–1时J型与H型分子聚集体第一激发态和高阶激发态占据数动力学 (a)第一激发态; (b)高阶激发态

    Fig. 3.  The first excited state and higher excited state population dynamics of J-type and H-type molecular aggregates at r = 15 ps–1. (a) The first excited state; (b) the higher excited state.

    图 4  不同${P_m}(0)$下的占据数动力学 (a)第一激发态占据数; (b)高阶激发态占据数

    Fig. 4.  population dynamics under different ${P_m}(0)$ (a) First excited state population; (b) higher excited state population.

    图 5  J型与H型分子聚集体的激子-激子湮灭率随分子数变化曲线. (a) $P(0) = \displaystyle\sum\nolimits_m {{P_m}} (0){{ = 6}}$时J型与H型湮灭率曲线; (b) $P(0){{ = 6}}$时J型与H型湮灭率的比值; (c) 不同$P(0)$下J型湮灭率曲线

    Fig. 5.  The curve of exciton-exciton annihilation rate of J-type and H-type molecular aggregates with the number of molecules. (a) J-type and H-type annihilation rate curve when $P(0) = \displaystyle\sum\nolimits_m {{P_m}} (0){{ = 6}}$; (b) The ratio of J-type and H-type annihilation rate when $P(0){{ = 6}}$; (c) J-type annihilation rate curve under different $P(0)$.

    表 1  率方程的输入参数

    Table 1.  Input parameters of the rate equation.

    ${\rm{Rate} }/{\rm{p} }{ {\rm{s} }^{ - 1} }$${\rm{Lifetime} }/{\rm{ps} }$
    k${10^{ - 3}}$$1000$
    r$10-20$$0.1-0.05$
    $\gamma _{mn}^{\rm{J}}$$1.3 \times {10^{ - 2}}$$76.9$
    $\gamma _{mn}^{\rm{H}}$$3.37 \times {10^{ - 3}}$$296.7$
    $\varUpsilon _{mn}^{\rm{J}}$$2.98$$0.33$
    $\varUpsilon _{mn}^{\rm{H}}$$7.44 \times {10^{ - 1}}$$1.33$
    下载: 导出CSV
  • [1]

    Knox R S 1963 Theory of Excitons, Solid State Physics, Adv. in Research and Applications (New York: Academic Press) pp1−15

    [2]

    Davydov A S 1971 Theory of Molecular Excitons (New York: Plenum Press) pp1−21

    [3]

    Savoie M B, Jackson N E, Chen X L, Marks J T, Ratner A M 2014 Acc. Chem. Res. 47 3385Google Scholar

    [4]

    Spano C F, Silva C 2014 Annu. Rev. Phys. Chem. 65 477Google Scholar

    [5]

    Tamai Y, Ohkita H, Benten H, Ito S 2015 J. Phys. Chem. Lett. 6 3417Google Scholar

    [6]

    Reineke S, Thomschke M, Lüssem B, Leo K 2013 Rev. Mod. Phys. 85 1245Google Scholar

    [7]

    Brédas L J, Beljonne D, Coropceanu V, Cornil J 2004 Chem. Rev. 104 4971Google Scholar

    [8]

    Wasielewski R M 2009 Acc. Chem. Res. 42 1910Google Scholar

    [9]

    Hader K, May V, Lambert C, Engel V 2016 PCCP 18 13368Google Scholar

    [10]

    Odom T W, Schatz G C 2011 Chem. Rev. 11 3667

    [11]

    Feist J, Garcia-Vidal F J 2015 Phys. Rev. Lett. 114 196402Google Scholar

    [12]

    Schachenmayer J, Genes C, Tignone E, Pupillo G 2015 Phys. Rev. Lett. 114 196403Google Scholar

    [13]

    Han D, Du J, Kobayashi T, Miyatake T, Tamiaki H, Li Y 2015 J. Phys. Chem. B 119 12265Google Scholar

    [14]

    Ma F 2018 J. Phys. Chem. B 122 10746Google Scholar

    [15]

    Wang L, May V 2016 Phys. Rev. B 94 195413Google Scholar

    [16]

    May V 2014 J. Chem. Phys. 140 054103Google Scholar

    [17]

    Wang L, Plehn T, May V 2020 Phys. Rev. B 102 075401Google Scholar

    [18]

    Tempelaar R, Jansen T L C, Knoester J 2017 J. Phys. Chem. Lett. 8 6113Google Scholar

    [19]

    May V, Kühn O 2011 Charge and Energy Transfer Dynamics in Molecular Systems (Weinheim: Wiley-VCH) pp12−22

    [20]

    Völker S F, Schmiedel A, Holzapfel M, Renziehausen K, Engel V, Lambert C 2014 J. Phys. Chem. C 31 17467

  • [1] 李斌, 张国峰, 陈瑞云, 秦成兵, 胡建勇, 肖连团, 贾锁堂. 单量子点光谱与激子动力学研究进展. 物理学报, 2022, 71(6): 067802. doi: 10.7498/aps.71.20212050
    [2] 熊振宇, 蔡远文, 吴昊, 刘通, 刘政良, 任元. 环形泵浦激发下微腔激子极化激元的涡旋叠加态演化分析. 物理学报, 2021, 70(24): 240304. doi: 10.7498/aps.70.20210971
    [3] 范旭阳, 陈瀚超, 王鹿霞. 弱耦合近似下激子-激子湮灭动力学研究. 物理学报, 2021, 70(22): 227302. doi: 10.7498/aps.70.20211242
    [4] 吴昊, 任元, 刘通, 王元钦, 刑朝洋. 旋转二维激子极化激元凝聚涡旋叠加态的动力学特性. 物理学报, 2020, 69(23): 230303. doi: 10.7498/aps.69.20200697
    [5] 赵磊, 张琦, 董敬伟, 吕航, 徐海峰. 不同原子在飞秒强激光场中的里德堡态激发和双电离. 物理学报, 2016, 65(22): 223201. doi: 10.7498/aps.65.223201
    [6] 朱孟龙, 董玉兰, 钟海政, 何军. CdTe量子点的室温激子自旋弛豫动力学. 物理学报, 2014, 63(12): 127202. doi: 10.7498/aps.63.127202
    [7] 曾宽宏, 王登龙, 佘彦超, 张蔚曦. 计及激子-双激子相干下半导体单量子点中的空间光孤子对. 物理学报, 2013, 62(14): 147801. doi: 10.7498/aps.62.147801
    [8] 王艳文, 吴花蕊. 闪锌矿GaN/AlGaN量子点中激子态及光学性质的研究. 物理学报, 2012, 61(10): 106102. doi: 10.7498/aps.61.106102
    [9] 乔士柱, 赵俊卿, 贾振锋, 张宁玉, 王凤翔, 付刚, 季燕菊. 自旋极化有机电致发光器件中单线态与三线态激子的形成及调控. 物理学报, 2010, 59(5): 3564-3570. doi: 10.7498/aps.59.3564
    [10] 孙震, 安忠, 李元, 刘文, 刘德胜, 解士杰. 高聚物中极化子和三重态激子的碰撞过程研究. 物理学报, 2009, 58(6): 4150-4155. doi: 10.7498/aps.58.4150
    [11] 王晓雷, 张 楠, 赵友博, 李智磊, 翟宏琛, 朱晓农. 飞秒激光激发空气电离的阈值研究. 物理学报, 2008, 57(1): 354-357. doi: 10.7498/aps.57.354
    [12] 赵晓辉, 马 菲, 吴义室, 艾希成, 张建平. 飞秒时间分辨拉曼光谱用于研究β-胡萝卜素单重激发态内转换和振动弛豫过程. 物理学报, 2008, 57(1): 298-306. doi: 10.7498/aps.57.298
    [13] 刘绍鼎, 程木田, 王 霞, 王取泉. 激子自旋弛豫对简并量子点发射光子对纠缠度的影响. 物理学报, 2007, 56(8): 4924-4929. doi: 10.7498/aps.56.4924
    [14] 黄桂芹, 刘 楣, 陈凌孚. KMgF3晶体的色心和自陷态激子研究. 物理学报, 2005, 54(4): 1702-1706. doi: 10.7498/aps.54.1702
    [15] 高 琨, 付吉永, 刘德胜, 解士杰. 链间耦合对聚合物中双激子态反向极化的影响. 物理学报, 2005, 54(2): 665-668. doi: 10.7498/aps.54.665
    [16] 史庆藩, 闫学群. 非线性激发的磁激子对的振荡特性. 物理学报, 2003, 52(1): 225-228. doi: 10.7498/aps.52.225
    [17] 陈 科, 赵二海, 孙 鑫, 付柔励. 高分子中激子和双激子的极化率(解析计算). 物理学报, 2000, 49(9): 1778-1785. doi: 10.7498/aps.49.1778
    [18] 黄洪斌. 半导体中激子的叠加态及其复合辐射. 物理学报, 1993, 42(7): 1141-1148. doi: 10.7498/aps.42.1141
    [19] 黄洪斌. 半导体中激子的叠加态及其复合辐射. 物理学报, 1991, 40(7): 1141-1148. doi: 10.7498/aps.40.1141
    [20] 黄洪斌. 半导体中的双激子压缩态及其复合辐射. 物理学报, 1990, 39(12): 1970-1981. doi: 10.7498/aps.39.1970
计量
  • 文章访问数:  8382
  • PDF下载量:  189
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-25
  • 修回日期:  2020-10-10
  • 上网日期:  2021-02-04
  • 刊出日期:  2021-02-20

/

返回文章
返回