-
胶体半导体量子点具有宽带吸收、窄带发射、发光量子产率高、发射波长连续可调等优点, 是制备发光二极管、太阳能电池、探测器、激光器等光电器件的优质材料. 单量子点光谱能够消除系综平均效应, 可以在单粒子水平上获取量子点材料的结构和动力学信息及与其他材料间的电荷、能量转移动力学等. 相关研究结果能够指引量子点材料的设计和为量子点的相关应用提供机理基础. 另外基于单量子点可以开展纳米尺度上光与物质的相互作用研究, 制备单光子源和纠缠光子源等. 本文综述了单量子点光谱与激子动力学近期的相关研究进展, 主要包括单量子点的光致发光闪烁特性和调控方式、单激子和多激子动力学研究及双激子辐射特性的调控等. 最后简要地讨论了单量子点光谱未来可能的发展趋势.Colloidal semiconductor quantum dots (QDs) have strong light absorption, continuously adjustable narrowband emission, and high photoluminescence quantum yields, thereby making them promising materials for light-emitting diodes, solar cells, detectors, and lasers. Single-QD photoluminescence spectroscopy can remove the ensemble average to reveal the structure information and exciton dynamics of QD materials at a single-particle level. The study of single-QD spectroscopy can provide guidelines for rationally designing the QDs and giving the mechanism basis for QD-based applications. We can also carry out the research of the interaction between light and single QDs on a nanoscale, and prepare QD-based single-photon sources and entangled photon sources. Here, we review the recent research progress of single-QD photoluminescence spectroscopy and exciton dynamics, mainly including photoluminescence blinking dynamics, and exciton and multi-exciton dynamics of single colloidal CdSe-based QDs and perovskite QDs. Finally, we briefly discuss the possible future development trends of single-QD spectroscopy and exciton dynamics.
-
Keywords:
- single quantum-dot spectroscopy /
- exciton dynamics /
- photoluminescence blinking /
- biexciton emission
[1] Pietryga J M, Park Y S, Lim J H, Fidler A F, Bae W K, Brovelli S, Klimov V I 2016 Chem. Rev. 116 10513Google Scholar
[2] Efros A L, Nesbitt D J 2016 Nat. Nanotechnol. 11 661Google Scholar
[3] García de Arquer F P, Talapin D V, Klimov V I, Arakawa Y, Bayer M, Sargent E H 2021 Science 373 640Google Scholar
[4] Kagan C R, Lifshitz E, Sargent E H, Talapin D V 2016 Science 353 6302Google Scholar
[5] Carey G H, Abdelhady A L, Ning Z, Thon S M, Bakr O M, Sargent E H 2015 Chem. Rev. 115 12732Google Scholar
[6] Lin Y H, Sakai N, Da P, Wu J, Sansom H C, Ramadan A J, Mahesh S, Liu J, Oliver R D J, Lim J, Aspitarte L, Sharma K, Madhu P K, Morales-Vilches A B, Nayak P K, Bai S, Gao F, Grovenor C R M, Johnston M B, Labram J G, Durrant J R, Ball J M, Wenger B, Stannowski B, Snaith H J 2020 Science 369 96Google Scholar
[7] Bao J, Bawendi M G 2015 Nature 523 67Google Scholar
[8] Liu L G, Deng L G, Huang S, Zhang P, Linnros J, Zhong H Z, Sychugov I 2019 J. Phys. Chem. Lett. 10 864Google Scholar
[9] Krieg F, Ong Q K, Burian M, Raino G, Naumenko D, Amenitsch H, Suess A, Grotevent M J, Krumeich F, Bodnarchuk M I, Shorubalko I, Stellacci F, Kovalenko M V 2019 J. Am. Chem. Soc. 141 19839Google Scholar
[10] Kaur G, Babu K J, Ghorai N, Goswami T, Maiti S, Ghosh H N 2019 J. Phys. Chem. Lett. 10 5302Google Scholar
[11] Wu R, Luo J, Guo X, Wang X, Ma Z, Li B, Cheng L Y, Miao X 2021 Chem. Phys. Lett. 781 138960Google Scholar
[12] Zhou J, Chizhik A I, Chu S, Jin D 2020 Nature 579 41Google Scholar
[13] Rabouw F T, Donega C D 2016 Top. Curr. Chem. 374 30Google Scholar
[14] Hu F R, Lv B H, Yin C Y, Zhang C F, Wang X Y, Lounis B, Xiao M 2016 Phys. Rev. Lett. 116 106404Google Scholar
[15] Ihara T 2016 Phys. Rev. B 93 235442Google Scholar
[16] Senellart P, Solomon G, White A 2017 Nat. Nanotechnol. 12 1026Google Scholar
[17] Klimov V I 2014 Annu. Rev. Condens. Matter Phys. 5 285Google Scholar
[18] Schimpf C, Reindl M, Huber D, Lehner B, Covre Da Silva S F, Manna S, Vyvlecka M, Walther P, Rastelli A 2021 Sci. Adv. 7 8905Google Scholar
[19] Efros A L, Rosen M 1997 Phys. Rev. Lett. 78 1110Google Scholar
[20] Nirmal M, Dabbousi B O, Bawendi M G, Macklin J J, Trautman J K, Harris T D, Brus L E 1996 Nature 383 802Google Scholar
[21] Brokmann X, Coolen L, Dahan M, Hermier J P 2004 Phys. Rev. Lett. 93 107403Google Scholar
[22] Li B, Zhang G, Zhang Y, Yang C, Guo W, Peng Y, Chen R, Qin C, Gao Y, Hu J, Wu R, Ma J, Zhong H, Zheng Y, Xiao L, Jia S 2020 J. Phys. Chem. Lett. 11 10425Google Scholar
[23] Trinh C T, Minh D N, Ahn K J, Kang Y, Lee K G 2020 Sci. Rep. 10 2172Google Scholar
[24] Meng R Y, Qin H Y, Niu Y, Fang W, Yang S, Lin X, Cao H J, Ma J L, Ling W Z, Tong L M, Peng X G 2016 J. Phys. Chem. Lett. 7 5176Google Scholar
[25] Qin H Y, Meng R Y, Wang N, Peng X G 2017 Adv. Mater. 29 1606923Google Scholar
[26] Frantsuzov P A, Volkan-Kacso S, Janko B 2009 Phys. Rev. Lett. 103 207402Google Scholar
[27] Yuan G, Gómez D E, Kirkwood N, Boldt K, Mulvaney P 2018 ACS Nano 12 3397Google Scholar
[28] Galland C, Ghosh Y, Steinbrück A, Sykora M, Hollingsworth J A, Klimov V I, Htoon H 2011 Nature 479 203Google Scholar
[29] Osad'ko I S 2014 J. Chem. Phys. 141 164312Google Scholar
[30] Yang C, Xiao R, Zhou S, Yang Y, Zhang G, Li B, Guo W, Han X, Wang D, Bai X, Li J, Chen R, Qin C, Hu J, Feng L, Xiao L, Jia S 2021 ACS Photonics 8 2538Google Scholar
[31] Park Y S, Bae W K, Pietryga J M, Klimov V I 2014 ACS Nano 8 7288Google Scholar
[32] Hou X Q, Kang J, Qin H Y, Chen X W, Ma J L, Zhou J H, Chen L P, Wang L J, Wang L W, Peng X G 2019 Nat. Commun. 10 1750Google Scholar
[33] Hou X Q, Qin H Y, Peng X G 2021 Nano Lett. 21 3871Google Scholar
[34] Yin C Y, Chen L Y, Song N, Lv Y, Hu F R, Sun C, Yu W W, Zhang C F, Wang X Y, Zhang Y, Xiao M 2017 Phys. Rev. Lett. 119 026401Google Scholar
[35] Hu F R, Yin C Y, Zhang H C, Sun C, Yu W W, Zhang C F, Wang X Y, Zhang Y, Xiao M 2016 Nano Lett. 16 6425Google Scholar
[36] Ihara T, Kanemitsu Y 2014 Phys. Rev. B 90 195302Google Scholar
[37] Han X, Zhang G, Li B, Yang C, Guo W, Bai X, Huang P, Chen R, Qin C, Hu J, Ma Y, Zhong H, Xiao L, Jia S 2020 Small 16 2005435Google Scholar
[38] Zhang G F, Peng Y, Xie H, Li B, Li Z, Yang C, Guo W, Qin C, Chen R, Gao Y, Zheng Y, Xiao L, Jia S 2019 Front. Phys. 14 23605Google Scholar
[39] Zhang G F, Yang C G, Ge Y, Peng Y G, Chen R Y, Qin C B, Gao Y, Zhang L, Zhong H Z, Zheng Y J, Xiao L T, Jia S T 2019 Front. Phys. 14 63601Google Scholar
[40] Becker M A, Vaxenburg R, Nedelcu G, Sercel P C, Shabaev A, Mehl M J, Michopoulos J G, Lambrakos S G, Bernstein N, Lyons J L, Stoferle T, Mahrt R F, Kovalenko M V, Norris D J, Raino G, Efros A L 2018 Nature 553 189Google Scholar
[41] Yuan G, Ritchie C, Ritter M, Murphy S, Gómez D E, Mulvaney P 2018 J. Phys. Chem. C 122 13407Google Scholar
[42] Li B, Huang H, Zhang G, Yang C, Guo W, Chen R, Qin C, Gao Y, Biju V P, Rogach A L, Xiao L, Jia S 2018 J. Phys. Chem. Lett. 9 6934Google Scholar
[43] 李斌, 苗向阳 2021 物理学报 70 207802Google Scholar
Li B, Miao X Y 2021 Acta Phys. Sin. 70 207802Google Scholar
[44] Morozov S, Pensa E L, Khan A H, Polovitsyn A, Cortés E, Maier S A, Vezzoli S, Moreels I, Sapienza R 2020 Sci. Adv. 6 1821Google Scholar
[45] LeBlanc S J, McClanahan M R, Moyer T, Jones M, Moyer P J 2014 J. Appl. Phys. 115 034306Google Scholar
[46] Guo W, Tang J, Zhang G, Li B, Yang C, Chen R, Qin C, Hu J, Zhong H, Xiao L, Jia S 2021 J. Phys. Chem. Lett. 12 405Google Scholar
[47] Jain A, Voznyy O, Hoogland S, Korkusinski M, Hawrylak P, Sargent E H 2016 Nano Lett. 16 6491Google Scholar
[48] Hou X Q, Li Y, Qin H Y, Peng X G 2019 J. Chem. Phys. 151 234703Google Scholar
[49] Yang C, Zhang G, Feng L, Li B, Li Z, Chen R, Qin C, Gao Y, Xiao L, Jia S 2018 Opt. Express 26 11889Google Scholar
[50] Thomas E M, Ghimire S, Kohara R, Anil A N, Yuyama K-I, Takano Y, Thomas K G, Biju V 2018 ACS Nano 12 9060Google Scholar
[51] Trinh C T, Minh D N, Nguyen V L, Ahn K J, Kang Y, Lee K G 2020 APL Materials 8 031102Google Scholar
[52] Li B, Zhang G, Wang Z, Li Z, Chen R, Qin C, Gao Y, Xiao L, Jia S 2016 Sci. Rep. 6 32662Google Scholar
[53] 王早, 张国峰, 李斌, 陈瑞云, 秦成兵, 肖连团, 贾锁堂 2015 物理学报 64 247803Google Scholar
Wang Z, Zhang G F, Li B, Chen R Y, Qin C B, Xiao L T, Jia S T 2015 Acta Phys. Sin. 64 247803Google Scholar
[54] 吴建芳, 张国峰, 陈瑞云, 秦成兵, 肖连团, 贾锁堂 2014 物理学报 63 167302Google Scholar
Wu J F, Zhang G F, Chen R Y, Qin C B, Xiao L T, Jia S T 2014 Acta Phys. Sin. 63 167302Google Scholar
[55] Hu Z, Liu S J, Qin H Y, Zhou J H, Peng X G 2020 J. Am. Chem. Soc. 142 4254Google Scholar
[56] Ji B, Giovanelli E, Habert B, Spinicelli P, Nasilowski M, Xu X, Lequeux N, Hugonin J P, Marquier F, Greffet J J, Dubertret B 2015 Nat. Nanotechnol. 10 170Google Scholar
[57] Sayevich V, Robinson Z L, Kim Y, Kozlov O V, Jung H, Nakotte T, Park Y S, Klimov V I 2021 Nat. Nanotechnol. 16 673Google Scholar
[58] Krishnamurthy S, Singh A, Hu Z, Blake A V, Kim Y, Singh A, Dolgopolova E A, Williams D J, Piryatinski A, Malko A V, Htoon H, Sykora M, Hollingsworth J A 2021 ACS Nano 15 575Google Scholar
[59] Lin W Z, Niu Y, Meng R Y, Huang L, Cao H J, Zhang Z X, Qin H Y, Peng X G 2016 Nano Res. 9 260Google Scholar
[60] Chen O, Zhao J, Chauhan V P, Cui J, Wong C, Harris D K, Wei H, Han H S, Fukumura D, Jain R K, Bawendi M G 2013 Nat. Mater. 12 445Google Scholar
[61] Chouhan L, Ito S, Thomas E M, Takano Y, Ghimire S, Miyasaka H, Biju V 2021 ACS Nano 15 2831Google Scholar
[62] Nair G, Zhao J, Bawendi M G 2011 Nano Lett. 11 1136Google Scholar
[63] Paulite M, Acharya K P, Nguyen H M, Hollingsworth J A, Htoon H 2015 J. Phys. Chem. Lett. 6 706Google Scholar
[64] Xu W, Hou X, Meng Y, Meng R, Wang Z, Qin H, Peng X, Chen X W 2017 Nano Lett. 17 7487Google Scholar
[65] Li B, Zhang G, Yang C, Li Z, Chen R, Qin C, Gao Y, Huang H, Xiao L, Jia S 2018 Opt. Express 26 4674Google Scholar
[66] 张强强, 胡建勇, 景明勇, 李斌, 秦成兵, 李耀, 肖连团, 贾锁堂 2019 物理学报 68 017803Google Scholar
Zhang Q Q, Hu J Y, Jing MY, Li B, Qin C B, Li Y, Xiao L T, Jia S T 2019 Acta Phys. Sin. 68 017803Google Scholar
[67] Bischof T S, Caram J R, Beyler A P, Bawendi M G 2016 Opt. Lett. 41 4823Google Scholar
[68] Huang X N, Xu Q F, Zhang C F, Wang X Y, Xiao M 2016 Nano Lett. 16 2492Google Scholar
[69] Makarov N S, Guo S J, Isaienko O, Liu W Y, Robel I, Klimov V I 2016 Nano Lett. 16 2349Google Scholar
[70] Castaneda J A, Nagamine G, Yassitepe E, Bonato L G, Voznyy O, Hoogland S, Nogueira A F, Sargent E H, Cruz C H B, Padilha L A 2016 ACS Nano 10 8603Google Scholar
[71] Hiroshige N, Ihara T, Kanemitsu Y 2017 Phys. Rev. B 95 245307Google Scholar
[72] Cihan A F, Martinez P L H, Kelestemur Y, Mutlugun E, Demir H V 2013 ACS Nano 7 4799Google Scholar
[73] Vonk S J W, Heemskerk B A J, Keitel R C, Hinterding S O M, Geuchies J J, Houtepen A J, Rabouw F T 2021 Nano Lett. 21 5760Google Scholar
[74] Shulenberger K E, Bischof T S, Caram J R, Utzat H, Coropceanu I, Nienhaus L, Bawendi M G 2018 Nano Lett. 18 5153Google Scholar
[75] Amgar D, Yang G, Tenne R, Oron D 2019 Nano Lett. 19 8741Google Scholar
[76] Li Z, Zhang G, Li B, Chen R, Qin C, Gao Y, Xiao L, Jia S 2017 Appl. Phys. Lett. 111 153106Google Scholar
[77] Krivenkov V, Goncharov S, Samokhvalov P, Sanchez-Iglesias A, Grzelczak M, Nabiev I, Rakovich Y 2019 J. Phys. Chem. Lett. 10 481Google Scholar
[78] Masuo S, Kanetaka K, Sato R, Teranishi T 2016 ACS Photonics 3 109Google Scholar
[79] Naiki H, Oikawa H, Masuo S 2017 Photochem. Photobiol. Sci. 16 489Google Scholar
[80] Hiroshige N, Ihara T, Saruyama M, Teranishi T, Kanemitsu Y 2017 J. Phys. Chem. Lett. 8 1961Google Scholar
[81] Rabouw F T, Vaxenburg R, Bakulin A A, van Dijk-Moes R J A, Bakker H J, Rodina A, Lifshitz E, Efros A L, Koenderink A F, Vanmaekelbergh D 2015 ACS Nano 9 10366Google Scholar
[82] Ma X D, Diroll B T, Cho W J, Fedin I, Schaller R D, Talapin D V, Gray S K, Wiederrecht G P, Gosztola D J 2017 ACS Nano 11 9119Google Scholar
[83] Mangum B D, Sampat S, Ghosh Y, Hollingsworth J A, Htoon H, Malko A V 2014 Nanoscale 6 3712Google Scholar
[84] Park Y S, Bae W K, Padilha L A, Pietryga J M, Klimov V I 2014 Nano Lett. 14 396Google Scholar
[85] Vaxenburg R, Rodina A, Lifshitz E, Efros A L 2016 Nano Lett. 16 2503Google Scholar
[86] Mangum B D, Ghosh Y, Hollingsworth J A, Htoon H 2013 Opt. Express 21 7419Google Scholar
[87] Mishra N, Orfield N J, Wang F, Hu Z, Krishnamurthy S, Malko A V, Casson J L, Htoon H, Sykora M, Hollingsworth J A 2017 Nat. Commun. 8 15083Google Scholar
[88] Eloi F, Frederich H, Leray A, Buil S, Quelin X, Ji B, Giovanelli E, Lequeux N, Dubertret B, Hermier J P 2015 Opt. Express 23 29921Google Scholar
[89] Ta H, Keller J, Haltmeier M, Saka S K, Schmied J, Opazo F, Tinnefeld P, Munk A, Hell S W 2015 Nat. Commun. 6 7977Google Scholar
[90] Feng S W, Cheng C Y, Wei C Y, Yang J H, Chen Y R, Chuang Y W, Fan Y H, Chuu C S 2017 Phys. Rev. Lett. 119 143601Google Scholar
[91] Abudayyeh H, Lubotzky B, Majumder S, Hollingsworth J A, Rapaport R 2019 ACS Photonics 6 446Google Scholar
[92] 李斌, 张国峰, 景明勇, 陈瑞云, 秦成兵, 高岩, 肖连团, 贾锁堂 2016 物理学报 65 218201Google Scholar
Li B, Zhang G F, Jing M Y, Chen R Y, Qin C B, Gao Y, Xiao L T, Jia S T 2016 Acta Phys. Sin. 65 218201Google Scholar
[93] Houel J, Doan Q T, Cajgfinger T, Ledoux G, Amans D, Aubret A, Dominjon A, Ferriol S, Barbier R, Nasilowski M, Lhuillier E, Dubertret B, Dujardin C, Kulzer F 2015 ACS Nano 9 886Google Scholar
[94] Zhang G, Rocha S, Lu G, Yuan H, Uji-i H, Floudas G A, Müllen K, Xiao L, Hofkens J, Debroye E 2020 ACS Omega 5 23931Google Scholar
[95] 张国峰, 李斌, 陈瑞云, 秦成兵, 高岩, 肖连团, 贾锁堂 2019 物理学报 68 148201Google Scholar
Zhang G F, Li B, Chen R Y, Qin C N, Gao Y, Xiao L T, Jia S T 2019 Acta Phys. Sin. 68 148201Google Scholar
[96] Tachikawa T, Karimata I, Kobori Y 2015 J. Phys. Chem. Lett. 6 3195Google Scholar
[97] Tian W M, Zhao C Y, Leng J, Gui R R, Jin S G 2015 J. Am. Chem. Soc. 137 12458Google Scholar
[98] Hensgens T, Fujita T, Janssen L, Li X, Van Diepen C J, Reichl C, Wegscheider W, Das Sarma S, Vandersypen L M K 2017 Nature 548 70Google Scholar
[99] Tang J S, Zhou Z Q, Wang Y T, Li Y L, Liu X, Hua Y L, Zou Y, Wang S, He D Y, Chen G, Sun Y N, Yu Y, Li M F, Zha G W, Ni H Q, Niu Z C, Li C F, Guo G C 2015 Nat. Commun. 6 8652Google Scholar
[100] Utzat H, Sun W, Kaplan A E K, Krieg F, Ginterseder M, Spokoyny B, Klein N D, Shulenberger K E, Perkinson C F, Kovalenko M V, Bawendi M G 2019 Science 363 1068Google Scholar
-
图 1 3种类型的光致发光闪烁 (a)俄歇型闪烁(Auger-blinking)的光致发光强度轨迹[22]; (b)俄歇型闪烁的光致发光寿命-强度分布图[22]; (c)带边载流子型闪烁(BC-blinking)的光致发光强度轨迹[22]; (d)带边载流子型闪烁的光致发光寿命-强度分布图[22]; (e)热载流子型闪烁(HC-blinking)的光致发光强度轨迹[23]; (f)热载流子型闪烁的光致发光寿命-强度分布图[23]
Fig. 1. Three types of photoluminescence (PL) blinking: (a) PL intensity trace of Auger-blinking[22]; (b) fluorescence lifetime-intensity distribution (FLID) map of Auger-blinking[22]; (c) PL intensity trace of band-edge carrier (BC) blinking[22]; (d) FLID map of BC blinking[22]; (e) PL intensity trace of hot-carrier (HC) blinking[23]; (f) FLID map of HC blinking[23].
图 2 带正电激子态与带负电激子态 (a)典型的单量子点的光致发光强度轨迹, 其中亮态(Bright state)、灰态(Gray state)和暗态(Dark state)分别为中性激子态、带负电激子态和带正电激子态; (b)相应的亮态、灰态和暗态的光致发光强度衰减曲线; (c)相应的二阶关联函数曲线; (d)带正电激子态与带负电激子态的形成示意图[30]
Fig. 2. Positive trion state and negative trion state: (a) PL intensity trace of a typical single quantum dot (QD). Bright state, gray state, and dark state represent the neutral exciton state, negative trion state, and positive trion state, respectively. (b) PL decay curves of bright state, gray state, and dark state. (c) Corresponding second-order correlation function (g(2)) curve. (d) Schematic diagram of the formation of positive and negative trion states[30].
图 3 量子点壳层结构对带正电激子态与带负电激子态的影响 (a), (d) CdSe630/8CdS单量子点和CdSe630/4CdS单量子点的光致发光强度轨迹和相应的强度分布图, 蓝色和红色阴影区域分别对应于带正电激子态和带负电激子态; (b), (e)两类单量子点带正电激子态和带负电激子态的光致发光衰减曲线图; (c), (f)两类单量子点的带正电激子态和带负电激子态的量子产率和俄歇速率的对应关系[32]
Fig. 3. Effect of the shell structure of QDs on positive and negative trion states: (a), (d) PL intensity traces and corresponding histograms of CdSe630/8CdS and CdSe630/4CdS single QDs. The blue and red shaded regions correspond to positive and negative trion states, respectively. (b), (e) PL decay curves of positive and negative trion states of two kinds of single QDs. (c), (f) Quantum yield and Auger rate of the positive trions versus those of negative trions of two kinds of single QDs[32].
图 4 (a) CsPbI3钙钛矿单量子点的时间依赖的光致发光光谱成像, XX–, XX, X2–, X–和X分别表示带电双激子态、双激子态、高阶带电激子态、带电激子态和单激子态; (b)—(f)相应的X, XX, X–, XX–和X2–的光致发光光谱[34]
Fig. 4. (a) Time-dependent PL spectral image of a single CsPbI3 perovskite QD. XX–, XX, X2–, X–, and X represent charged biexciton state, biexciton state, higher-order charged exciton state, trion state, and single exciton state, respectively. The PL spectra of X, XX, X–, XX–, and X2– are plotted in (b)–(f), respectively [34].
图 5 CH3NH3PbBr3钙钛矿单量子点的量子限域Stark效应 (a)典型的单量子点的光致发光强度轨迹, 红色和绿色直线区域表示强度不同的中性激子态的光致发光强度; (b)图(a)中红色和绿色直线区域的光致发光强度衰减曲线, 表明较低的光致发光强度对应较大的寿命; (c)相应的二阶关联函数曲线; (d)相应的光致发光寿命-强度分布图; (e)相应的光致发光量子产率与总的复合速率(辐射与非辐射复合速率之和)的分布图[37]
Fig. 5. Intrinsic quantum-confined Stark effect of single CH3NH3PbBr3 perovskite QDs: (a) PL intensity trace of a typical single QD. Red and green lines represent PL intensities of neutral and surface-charged states, respectively. (b) PL decay curves of the PL areas marked by red and green lines. (c) Corresponding g(2) curve. (d) Corresponding FLID map. (e) Corresponding distribution of PL quantum yield versus total recombination rate [37].
图 6 (a)不同激发功率下CdSe/CdS单量子点的光致发光强度轨迹和相应的强度分布图; (b)相应的光致发光寿命-强度分布图, “B”和“D”分别代表亮态和灰态; (c)充电速率r(B→D)和放电速率r(D→B)随激发条件
$ \langle N \rangle$ 的变化, 其中$\langle N \rangle $ 表示单个量子点吸收每个激光脉冲中的平均光子数; (d)充电速率r(B→D)和放电速率r(D→B)随脉冲光重复频率f的变化[24]Fig. 6. (a) PL intensity traces and corresponding histograms of a single CdSe/CdS QD under various excitation conditions. (b) Corresponding FLID in color scale. “B” and “D” represent bright states and dim states, respectively. (c) Charging and discharging rates versus
$\langle N \rangle $ with a fixed laser repetition frequency ($ f $ ), where$\langle N \rangle $ is the average number of photons absorbed per QD per pulse. (d) Charging and discharging rates versus f at a given$\langle N \rangle $ [24].图 7 (a), (b)核壳界面势陡峭的单量子点(QD1)和核壳界面势平滑的单量子点(QD2)的光致发光强度轨迹和强度分布图, QD2的光致发光闪烁比QD1更剧烈; (c), (d)强度轨迹中的两个高亮区域的光致发光衰减曲线及单指数拟合, 其中灰色曲线为仪器响应函数; (e), (f) QD1和QD2的光致发光闪烁率统计图, QD2的光致发光闪烁率比QD1更高; (g), (h)相应的亮、暗态的概率密度分布图[46]
Fig. 7. (a), (b) Typical PL trajectories for single QDs with sharp interface potential (QD1) and a single QD with smooth interface potential (QD2). The right panels show the corresponding PL intensity histograms. The PL blinking of QD2 is more frequent than that of QD1. (c), (d) Corresponding PL decay curves obtained from the PL regions marked in respective colors on PL intensity trajectories of panel (a) and panel (b), respectively. The solid gray lines are the instrument response function of the system. (e), (f) Histograms of PL blinking rates for the single QD1 and single QD2 obtained under the same excitation. The PL blinking rate of QD2 is higher than that of QD1. (g), (h) Normalized on-state probability densities for the single QD1 and single QD2[46].
图 8 利用对苯二胺(PPD)和二甲基苯胺(DMA)抑制单个CdSe类量子点的光致发光闪烁 (a), (b)发射波长为525和622 nm的CdSe/ZnS单量子点、发射波长为800 nm的CdSeTe/ZnS单量子点的典型光致发光强度轨迹; (c), (d)相应的在PPD或DMA作用下的单量子点的光致发光强度轨迹[30]
Fig. 8. Suppression of the PL blinking of single CdSe-based QDs with p-phenylenediamine (PPD) and N, N-dimethylaniline (DMA): (a), (b) Typical PL intensity trajectories of the single CdSe-based QDs with emission wavelengths of 525, 622, and 800 nm in glycerol (cetene), respectively; (c), (d) typical PL intensity trajectories of the single QDs in glycerol with PPD (in cetene with DMA), respectively[30].
图 9 (a) CdSeTe/ZnS单量子点在玻片表面和ITO中的光致发光强度轨迹和相应的强度分布图; (b), (c) CdSeTe/ZnS单量子点在玻片表面和ITO中的光致发光闪烁率和亮态比例的统计分布图[52]
Fig. 9. (a) Typical PL intensity trajectories and intensity histograms for the single CdSeTe/ZnS QDs on glass coverslips and encased in ITO, respectively; (b), (c) histograms of blinking rates and proportion of on-state for single QDs on glass coverslips and encased in ITO, respectively[52].
图 10 (a)左: Hanbury-Brown-Twiss (HBT)实验装置示意图. 右: 弱光激发条件下双激子和单激子的量子产率之比约等于二阶关联函数零延时处的中心峰面积与边峰面积之比(
$ g^{(2)}_0 $ )[62]. (b)不同的光致发光强度区域对应的二阶关联函数(g(2))[63]. (c)单光子探测事件与双光子探测事件的示意图[65]. (d)溶液环境下用于单量子点测量的HBT实验装置示意图[67]Fig. 10. (a) Left panel: Schematic diagram of Hanbury-Brown-Twiss (HBT) experimental scheme. Right panel: The ratio of quantum yields between biexciton and single exciton excited under weak excitation conditions is approximately equal to the ratio between central peak area and side peak area of g(2) function[62]. (b) g(2) functions for different PL intensity regions[63]. (c) Schematic diagram of single-photon events and two-photon events[65]. (d) Schematic diagram of HBT experimental scheme for single QDs in solution environment[67].
图 11 (a)不同激发条件下的单量子点的光致发光强度轨迹, 红色虚线以上部分定义为光致发光强度轨迹的亮态; (b)相应的强度轨迹的亮态的光致发光衰减曲线, 通过双指数拟合获得双激子寿命[14]
Fig. 11. (a) PL intensity traces of a single QD under different excitation conditions. Bright and dim states are separated by red dashed lines. (b) Corresponding PL decay curves of bright states, and the biexciton lifetime is obtained by biexponential fitting [14].
图 12 (a)带电双激子态和中性双激子态的辐射速率之比、俄歇非辐射速率之比的统计分布图; (b) CdSe/ZnS量子点带电双激子态的辐射复合(红色箭头)和俄歇非辐射复合(黑色箭头)示意图; (c)双激子态和单激子态的辐射速率之比α、通过表面俘获的非辐射复合速率之比β的统计分布图; (d)双激子态的辐射复合(红色箭头)、俄歇非辐射复合(黑色箭头)和表面非辐射复合(灰色箭头)示意图[22]
Fig. 12. (a) Statistical distribution of the ratio of radiative rates and of Auger rates between charged and neutral biexciton states; (b) schematic of radiative recombination pathways (red arrows) and nonradiative Auger recombination (black arrows) of the charged biexciton state for a CdSe-based QD; (c) statistical distributions of the radiative rate ratio (α) and of the surface nonradiative rate ratio (β) between biexciton and single exciton; (d) schematic of radiative recombination pathways (red arrows), Auger recombination pathway (black arrows), and surface nonradiative recombination processes (gray arrows) for the biexciton state[22]
图 13 (a)利用4个单光子探测器同时进行HBT探测的共聚焦实验装置; (b)单光子与双光子事件示意图; (c)双激子衰减曲线(绿色)及单指数拟合, 插入图为脉冲光激发下的g(2)函数; (d)脉冲光激发下的g(3)函数; (e)三激子衰减曲线(绿色)及单指数拟合; (f) CdSe类量子点三激子复合示意图[74]
Fig. 13. (a) Confocal scanning microscopy equipped with four single-photon detectors for HBT detection. (b) Schematic diagram of single-photon events and two-photon events. (c) PL decay curve of biexciton (green) and corresponding fitted curve. The inset is pulse resolved g(2) function. (d) Pulse resolved g(3) function. (e) PL decay curve of triexciton (green) and corresponding fitted curve. (f) Model of triexciton recombination of CdSe QD[74].
图 14 (a)通过调整PMMA薄膜厚度改变单量子点与金纳米棒之间的距离并测量了
$ g^{(2)}_0 $ 值随距离的变化[77]; (b)通过原子力显微镜针尖控制金纳米块和单量子点的距离并测量了$ g^{(2)}_0 $ 值随距离的变化[78]; (c)核壳界面势调控单量子点双激子俄歇复合速率[46]Fig. 14. (a) Distance between single QDs and gold nanorods was modulated by PMMA film thickness, and the
$ g^{(2)}_0 $ values are measured[77]; (b) distance between gold nanoparticles and single QD was controlled by AFM tip, and the$ g^{(2)}_0 $ values are measured[78]; (c) effect of core-shell interface potentials on biexciton Auger rates of single QDs[46].图 15 共聚焦扫描成像过程中单量子点的快速识别 (a), (b)单量子点的单光子和双光子事件成像; (c)相应的时间门控作用后的双光子事件成像; (d)成像图中圆圈C区域中各像素对应的光致发光强度轨迹; (e)每个激发脉冲下单光子事件的探测概率f1和双光子事件的探测概率f2以及量子点个数n值的实验与理论关系曲线; (f)共聚焦成像中的量子点个数n值分布图, 其中数字1和2分别表示单量子点和量子点团簇. 图中各标尺长度为3 μm[65]
Fig. 15. Fast recognition of single QDs during confocal scanning imaging: (a), (b) A typical example of images of single-photon and two-photon events of QDs on a glass coverslip; (c) corresponding time-gated two-photon events imaging; (d) PL intensity trace corresponding to each pixel in the circle C region in the image; (e) corresponding experimental and theoretical relationship of the detection probability f1 of single-photon event, the detection probability f2 of two-photon event, and the number n of QDs for each excitation pulse; (f) distribution of the number n of QDs in the confocal image. The 1 and 2 represent for single QD and QD clusters, respectively. The scale bars are 3 μm[65].
-
[1] Pietryga J M, Park Y S, Lim J H, Fidler A F, Bae W K, Brovelli S, Klimov V I 2016 Chem. Rev. 116 10513Google Scholar
[2] Efros A L, Nesbitt D J 2016 Nat. Nanotechnol. 11 661Google Scholar
[3] García de Arquer F P, Talapin D V, Klimov V I, Arakawa Y, Bayer M, Sargent E H 2021 Science 373 640Google Scholar
[4] Kagan C R, Lifshitz E, Sargent E H, Talapin D V 2016 Science 353 6302Google Scholar
[5] Carey G H, Abdelhady A L, Ning Z, Thon S M, Bakr O M, Sargent E H 2015 Chem. Rev. 115 12732Google Scholar
[6] Lin Y H, Sakai N, Da P, Wu J, Sansom H C, Ramadan A J, Mahesh S, Liu J, Oliver R D J, Lim J, Aspitarte L, Sharma K, Madhu P K, Morales-Vilches A B, Nayak P K, Bai S, Gao F, Grovenor C R M, Johnston M B, Labram J G, Durrant J R, Ball J M, Wenger B, Stannowski B, Snaith H J 2020 Science 369 96Google Scholar
[7] Bao J, Bawendi M G 2015 Nature 523 67Google Scholar
[8] Liu L G, Deng L G, Huang S, Zhang P, Linnros J, Zhong H Z, Sychugov I 2019 J. Phys. Chem. Lett. 10 864Google Scholar
[9] Krieg F, Ong Q K, Burian M, Raino G, Naumenko D, Amenitsch H, Suess A, Grotevent M J, Krumeich F, Bodnarchuk M I, Shorubalko I, Stellacci F, Kovalenko M V 2019 J. Am. Chem. Soc. 141 19839Google Scholar
[10] Kaur G, Babu K J, Ghorai N, Goswami T, Maiti S, Ghosh H N 2019 J. Phys. Chem. Lett. 10 5302Google Scholar
[11] Wu R, Luo J, Guo X, Wang X, Ma Z, Li B, Cheng L Y, Miao X 2021 Chem. Phys. Lett. 781 138960Google Scholar
[12] Zhou J, Chizhik A I, Chu S, Jin D 2020 Nature 579 41Google Scholar
[13] Rabouw F T, Donega C D 2016 Top. Curr. Chem. 374 30Google Scholar
[14] Hu F R, Lv B H, Yin C Y, Zhang C F, Wang X Y, Lounis B, Xiao M 2016 Phys. Rev. Lett. 116 106404Google Scholar
[15] Ihara T 2016 Phys. Rev. B 93 235442Google Scholar
[16] Senellart P, Solomon G, White A 2017 Nat. Nanotechnol. 12 1026Google Scholar
[17] Klimov V I 2014 Annu. Rev. Condens. Matter Phys. 5 285Google Scholar
[18] Schimpf C, Reindl M, Huber D, Lehner B, Covre Da Silva S F, Manna S, Vyvlecka M, Walther P, Rastelli A 2021 Sci. Adv. 7 8905Google Scholar
[19] Efros A L, Rosen M 1997 Phys. Rev. Lett. 78 1110Google Scholar
[20] Nirmal M, Dabbousi B O, Bawendi M G, Macklin J J, Trautman J K, Harris T D, Brus L E 1996 Nature 383 802Google Scholar
[21] Brokmann X, Coolen L, Dahan M, Hermier J P 2004 Phys. Rev. Lett. 93 107403Google Scholar
[22] Li B, Zhang G, Zhang Y, Yang C, Guo W, Peng Y, Chen R, Qin C, Gao Y, Hu J, Wu R, Ma J, Zhong H, Zheng Y, Xiao L, Jia S 2020 J. Phys. Chem. Lett. 11 10425Google Scholar
[23] Trinh C T, Minh D N, Ahn K J, Kang Y, Lee K G 2020 Sci. Rep. 10 2172Google Scholar
[24] Meng R Y, Qin H Y, Niu Y, Fang W, Yang S, Lin X, Cao H J, Ma J L, Ling W Z, Tong L M, Peng X G 2016 J. Phys. Chem. Lett. 7 5176Google Scholar
[25] Qin H Y, Meng R Y, Wang N, Peng X G 2017 Adv. Mater. 29 1606923Google Scholar
[26] Frantsuzov P A, Volkan-Kacso S, Janko B 2009 Phys. Rev. Lett. 103 207402Google Scholar
[27] Yuan G, Gómez D E, Kirkwood N, Boldt K, Mulvaney P 2018 ACS Nano 12 3397Google Scholar
[28] Galland C, Ghosh Y, Steinbrück A, Sykora M, Hollingsworth J A, Klimov V I, Htoon H 2011 Nature 479 203Google Scholar
[29] Osad'ko I S 2014 J. Chem. Phys. 141 164312Google Scholar
[30] Yang C, Xiao R, Zhou S, Yang Y, Zhang G, Li B, Guo W, Han X, Wang D, Bai X, Li J, Chen R, Qin C, Hu J, Feng L, Xiao L, Jia S 2021 ACS Photonics 8 2538Google Scholar
[31] Park Y S, Bae W K, Pietryga J M, Klimov V I 2014 ACS Nano 8 7288Google Scholar
[32] Hou X Q, Kang J, Qin H Y, Chen X W, Ma J L, Zhou J H, Chen L P, Wang L J, Wang L W, Peng X G 2019 Nat. Commun. 10 1750Google Scholar
[33] Hou X Q, Qin H Y, Peng X G 2021 Nano Lett. 21 3871Google Scholar
[34] Yin C Y, Chen L Y, Song N, Lv Y, Hu F R, Sun C, Yu W W, Zhang C F, Wang X Y, Zhang Y, Xiao M 2017 Phys. Rev. Lett. 119 026401Google Scholar
[35] Hu F R, Yin C Y, Zhang H C, Sun C, Yu W W, Zhang C F, Wang X Y, Zhang Y, Xiao M 2016 Nano Lett. 16 6425Google Scholar
[36] Ihara T, Kanemitsu Y 2014 Phys. Rev. B 90 195302Google Scholar
[37] Han X, Zhang G, Li B, Yang C, Guo W, Bai X, Huang P, Chen R, Qin C, Hu J, Ma Y, Zhong H, Xiao L, Jia S 2020 Small 16 2005435Google Scholar
[38] Zhang G F, Peng Y, Xie H, Li B, Li Z, Yang C, Guo W, Qin C, Chen R, Gao Y, Zheng Y, Xiao L, Jia S 2019 Front. Phys. 14 23605Google Scholar
[39] Zhang G F, Yang C G, Ge Y, Peng Y G, Chen R Y, Qin C B, Gao Y, Zhang L, Zhong H Z, Zheng Y J, Xiao L T, Jia S T 2019 Front. Phys. 14 63601Google Scholar
[40] Becker M A, Vaxenburg R, Nedelcu G, Sercel P C, Shabaev A, Mehl M J, Michopoulos J G, Lambrakos S G, Bernstein N, Lyons J L, Stoferle T, Mahrt R F, Kovalenko M V, Norris D J, Raino G, Efros A L 2018 Nature 553 189Google Scholar
[41] Yuan G, Ritchie C, Ritter M, Murphy S, Gómez D E, Mulvaney P 2018 J. Phys. Chem. C 122 13407Google Scholar
[42] Li B, Huang H, Zhang G, Yang C, Guo W, Chen R, Qin C, Gao Y, Biju V P, Rogach A L, Xiao L, Jia S 2018 J. Phys. Chem. Lett. 9 6934Google Scholar
[43] 李斌, 苗向阳 2021 物理学报 70 207802Google Scholar
Li B, Miao X Y 2021 Acta Phys. Sin. 70 207802Google Scholar
[44] Morozov S, Pensa E L, Khan A H, Polovitsyn A, Cortés E, Maier S A, Vezzoli S, Moreels I, Sapienza R 2020 Sci. Adv. 6 1821Google Scholar
[45] LeBlanc S J, McClanahan M R, Moyer T, Jones M, Moyer P J 2014 J. Appl. Phys. 115 034306Google Scholar
[46] Guo W, Tang J, Zhang G, Li B, Yang C, Chen R, Qin C, Hu J, Zhong H, Xiao L, Jia S 2021 J. Phys. Chem. Lett. 12 405Google Scholar
[47] Jain A, Voznyy O, Hoogland S, Korkusinski M, Hawrylak P, Sargent E H 2016 Nano Lett. 16 6491Google Scholar
[48] Hou X Q, Li Y, Qin H Y, Peng X G 2019 J. Chem. Phys. 151 234703Google Scholar
[49] Yang C, Zhang G, Feng L, Li B, Li Z, Chen R, Qin C, Gao Y, Xiao L, Jia S 2018 Opt. Express 26 11889Google Scholar
[50] Thomas E M, Ghimire S, Kohara R, Anil A N, Yuyama K-I, Takano Y, Thomas K G, Biju V 2018 ACS Nano 12 9060Google Scholar
[51] Trinh C T, Minh D N, Nguyen V L, Ahn K J, Kang Y, Lee K G 2020 APL Materials 8 031102Google Scholar
[52] Li B, Zhang G, Wang Z, Li Z, Chen R, Qin C, Gao Y, Xiao L, Jia S 2016 Sci. Rep. 6 32662Google Scholar
[53] 王早, 张国峰, 李斌, 陈瑞云, 秦成兵, 肖连团, 贾锁堂 2015 物理学报 64 247803Google Scholar
Wang Z, Zhang G F, Li B, Chen R Y, Qin C B, Xiao L T, Jia S T 2015 Acta Phys. Sin. 64 247803Google Scholar
[54] 吴建芳, 张国峰, 陈瑞云, 秦成兵, 肖连团, 贾锁堂 2014 物理学报 63 167302Google Scholar
Wu J F, Zhang G F, Chen R Y, Qin C B, Xiao L T, Jia S T 2014 Acta Phys. Sin. 63 167302Google Scholar
[55] Hu Z, Liu S J, Qin H Y, Zhou J H, Peng X G 2020 J. Am. Chem. Soc. 142 4254Google Scholar
[56] Ji B, Giovanelli E, Habert B, Spinicelli P, Nasilowski M, Xu X, Lequeux N, Hugonin J P, Marquier F, Greffet J J, Dubertret B 2015 Nat. Nanotechnol. 10 170Google Scholar
[57] Sayevich V, Robinson Z L, Kim Y, Kozlov O V, Jung H, Nakotte T, Park Y S, Klimov V I 2021 Nat. Nanotechnol. 16 673Google Scholar
[58] Krishnamurthy S, Singh A, Hu Z, Blake A V, Kim Y, Singh A, Dolgopolova E A, Williams D J, Piryatinski A, Malko A V, Htoon H, Sykora M, Hollingsworth J A 2021 ACS Nano 15 575Google Scholar
[59] Lin W Z, Niu Y, Meng R Y, Huang L, Cao H J, Zhang Z X, Qin H Y, Peng X G 2016 Nano Res. 9 260Google Scholar
[60] Chen O, Zhao J, Chauhan V P, Cui J, Wong C, Harris D K, Wei H, Han H S, Fukumura D, Jain R K, Bawendi M G 2013 Nat. Mater. 12 445Google Scholar
[61] Chouhan L, Ito S, Thomas E M, Takano Y, Ghimire S, Miyasaka H, Biju V 2021 ACS Nano 15 2831Google Scholar
[62] Nair G, Zhao J, Bawendi M G 2011 Nano Lett. 11 1136Google Scholar
[63] Paulite M, Acharya K P, Nguyen H M, Hollingsworth J A, Htoon H 2015 J. Phys. Chem. Lett. 6 706Google Scholar
[64] Xu W, Hou X, Meng Y, Meng R, Wang Z, Qin H, Peng X, Chen X W 2017 Nano Lett. 17 7487Google Scholar
[65] Li B, Zhang G, Yang C, Li Z, Chen R, Qin C, Gao Y, Huang H, Xiao L, Jia S 2018 Opt. Express 26 4674Google Scholar
[66] 张强强, 胡建勇, 景明勇, 李斌, 秦成兵, 李耀, 肖连团, 贾锁堂 2019 物理学报 68 017803Google Scholar
Zhang Q Q, Hu J Y, Jing MY, Li B, Qin C B, Li Y, Xiao L T, Jia S T 2019 Acta Phys. Sin. 68 017803Google Scholar
[67] Bischof T S, Caram J R, Beyler A P, Bawendi M G 2016 Opt. Lett. 41 4823Google Scholar
[68] Huang X N, Xu Q F, Zhang C F, Wang X Y, Xiao M 2016 Nano Lett. 16 2492Google Scholar
[69] Makarov N S, Guo S J, Isaienko O, Liu W Y, Robel I, Klimov V I 2016 Nano Lett. 16 2349Google Scholar
[70] Castaneda J A, Nagamine G, Yassitepe E, Bonato L G, Voznyy O, Hoogland S, Nogueira A F, Sargent E H, Cruz C H B, Padilha L A 2016 ACS Nano 10 8603Google Scholar
[71] Hiroshige N, Ihara T, Kanemitsu Y 2017 Phys. Rev. B 95 245307Google Scholar
[72] Cihan A F, Martinez P L H, Kelestemur Y, Mutlugun E, Demir H V 2013 ACS Nano 7 4799Google Scholar
[73] Vonk S J W, Heemskerk B A J, Keitel R C, Hinterding S O M, Geuchies J J, Houtepen A J, Rabouw F T 2021 Nano Lett. 21 5760Google Scholar
[74] Shulenberger K E, Bischof T S, Caram J R, Utzat H, Coropceanu I, Nienhaus L, Bawendi M G 2018 Nano Lett. 18 5153Google Scholar
[75] Amgar D, Yang G, Tenne R, Oron D 2019 Nano Lett. 19 8741Google Scholar
[76] Li Z, Zhang G, Li B, Chen R, Qin C, Gao Y, Xiao L, Jia S 2017 Appl. Phys. Lett. 111 153106Google Scholar
[77] Krivenkov V, Goncharov S, Samokhvalov P, Sanchez-Iglesias A, Grzelczak M, Nabiev I, Rakovich Y 2019 J. Phys. Chem. Lett. 10 481Google Scholar
[78] Masuo S, Kanetaka K, Sato R, Teranishi T 2016 ACS Photonics 3 109Google Scholar
[79] Naiki H, Oikawa H, Masuo S 2017 Photochem. Photobiol. Sci. 16 489Google Scholar
[80] Hiroshige N, Ihara T, Saruyama M, Teranishi T, Kanemitsu Y 2017 J. Phys. Chem. Lett. 8 1961Google Scholar
[81] Rabouw F T, Vaxenburg R, Bakulin A A, van Dijk-Moes R J A, Bakker H J, Rodina A, Lifshitz E, Efros A L, Koenderink A F, Vanmaekelbergh D 2015 ACS Nano 9 10366Google Scholar
[82] Ma X D, Diroll B T, Cho W J, Fedin I, Schaller R D, Talapin D V, Gray S K, Wiederrecht G P, Gosztola D J 2017 ACS Nano 11 9119Google Scholar
[83] Mangum B D, Sampat S, Ghosh Y, Hollingsworth J A, Htoon H, Malko A V 2014 Nanoscale 6 3712Google Scholar
[84] Park Y S, Bae W K, Padilha L A, Pietryga J M, Klimov V I 2014 Nano Lett. 14 396Google Scholar
[85] Vaxenburg R, Rodina A, Lifshitz E, Efros A L 2016 Nano Lett. 16 2503Google Scholar
[86] Mangum B D, Ghosh Y, Hollingsworth J A, Htoon H 2013 Opt. Express 21 7419Google Scholar
[87] Mishra N, Orfield N J, Wang F, Hu Z, Krishnamurthy S, Malko A V, Casson J L, Htoon H, Sykora M, Hollingsworth J A 2017 Nat. Commun. 8 15083Google Scholar
[88] Eloi F, Frederich H, Leray A, Buil S, Quelin X, Ji B, Giovanelli E, Lequeux N, Dubertret B, Hermier J P 2015 Opt. Express 23 29921Google Scholar
[89] Ta H, Keller J, Haltmeier M, Saka S K, Schmied J, Opazo F, Tinnefeld P, Munk A, Hell S W 2015 Nat. Commun. 6 7977Google Scholar
[90] Feng S W, Cheng C Y, Wei C Y, Yang J H, Chen Y R, Chuang Y W, Fan Y H, Chuu C S 2017 Phys. Rev. Lett. 119 143601Google Scholar
[91] Abudayyeh H, Lubotzky B, Majumder S, Hollingsworth J A, Rapaport R 2019 ACS Photonics 6 446Google Scholar
[92] 李斌, 张国峰, 景明勇, 陈瑞云, 秦成兵, 高岩, 肖连团, 贾锁堂 2016 物理学报 65 218201Google Scholar
Li B, Zhang G F, Jing M Y, Chen R Y, Qin C B, Gao Y, Xiao L T, Jia S T 2016 Acta Phys. Sin. 65 218201Google Scholar
[93] Houel J, Doan Q T, Cajgfinger T, Ledoux G, Amans D, Aubret A, Dominjon A, Ferriol S, Barbier R, Nasilowski M, Lhuillier E, Dubertret B, Dujardin C, Kulzer F 2015 ACS Nano 9 886Google Scholar
[94] Zhang G, Rocha S, Lu G, Yuan H, Uji-i H, Floudas G A, Müllen K, Xiao L, Hofkens J, Debroye E 2020 ACS Omega 5 23931Google Scholar
[95] 张国峰, 李斌, 陈瑞云, 秦成兵, 高岩, 肖连团, 贾锁堂 2019 物理学报 68 148201Google Scholar
Zhang G F, Li B, Chen R Y, Qin C N, Gao Y, Xiao L T, Jia S T 2019 Acta Phys. Sin. 68 148201Google Scholar
[96] Tachikawa T, Karimata I, Kobori Y 2015 J. Phys. Chem. Lett. 6 3195Google Scholar
[97] Tian W M, Zhao C Y, Leng J, Gui R R, Jin S G 2015 J. Am. Chem. Soc. 137 12458Google Scholar
[98] Hensgens T, Fujita T, Janssen L, Li X, Van Diepen C J, Reichl C, Wegscheider W, Das Sarma S, Vandersypen L M K 2017 Nature 548 70Google Scholar
[99] Tang J S, Zhou Z Q, Wang Y T, Li Y L, Liu X, Hua Y L, Zou Y, Wang S, He D Y, Chen G, Sun Y N, Yu Y, Li M F, Zha G W, Ni H Q, Niu Z C, Li C F, Guo G C 2015 Nat. Commun. 6 8652Google Scholar
[100] Utzat H, Sun W, Kaplan A E K, Krieg F, Ginterseder M, Spokoyny B, Klein N D, Shulenberger K E, Perkinson C F, Kovalenko M V, Bawendi M G 2019 Science 363 1068Google Scholar
计量
- 文章访问数: 10996
- PDF下载量: 409
- 被引次数: 0