搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CdTe量子点的室温激子自旋弛豫动力学

朱孟龙 董玉兰 钟海政 何军

引用本文:
Citation:

CdTe量子点的室温激子自旋弛豫动力学

朱孟龙, 董玉兰, 钟海政, 何军

Exciton spin relaxation dynamics in CdTe quantum dots at room temperature

Zhu Meng-Long, Dong Yu-Lan, Zhong Hai-Zheng, He Jun
PDF
导出引用
  • 利用交叉偏振三阶非线性瞬态光栅技术,研究了室温下CdTe胶体量子点激子自旋弛豫动力学的尺寸效应. 在抽运-探测光子能量与CdTe量子点的最低激子吸收(1Se1Sh)跃迁相共振时,量子点激子自旋弛豫显示了时间常数为0.10.5 ps的单指数衰减行为. CdTe量子点激子自旋的快速弛豫源于亮暗激子精细结构态跃迁,即J=1+2跃迁. 激子自旋弛豫主要由空穴的自旋翻转过程决定. 研究结果表明:CdTe量子点激子自旋弛豫速率与量子点尺寸的4 次方成反比.
    Size-dependent exciton spin relaxation dynamics in CdTe colloidal quantum dots is studied at room temperature with the cross-polarized heterodyne third-order nonlinear transient grating technique The CdTe exciton spin relaxation reveals a mono-exponential decay behavior with a time constant of 0.1-0.5 ps when the pump-probe photon energy is tuned to be in resonance with the lowest exciton absorption transition (1Se-1Sh). The exciton spin relaxation in quantum dot is mainly governed by the hole spin flip process and ascribed to the transitions between bright-dark exciton fine structure states, i.e. J= 1+2. This finding suggests that the exciton spin relaxation rate in CdTe quantum dot is inversely proportional to the fourth power of quantum dot size.
    • 基金项目: 国家自然科学基金(批准号:61222406,11174371)、湖南省自然科学基金(批准号:12JJ1001)、高等学校博士学科点专项科研基金(批准号:20110162120072)、教育部新世纪优秀人才支持计划(批准号:NCET-11-0512)和中央高校基本科研业务费资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61222406, 11174371), the Natural Science Foundation of Hunan Province, China (Grant No. 12JJ1001), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110162120072), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-11-0512), and the Fundamental Research Fund for the Central Universities, China.
    [1]

    Gupta J A, Knobel R, Samarth N, Awschalom D D 2001 Science 292 2458

    [2]

    Ouyang M, Dabid D, Awschalom D D 2003 Science 301 1074

    [3]

    Ramsay A J 2010 Semi. Sci. Technol. 25 103001

    [4]

    Tong H, Wu M W 2011 Phys. Rev. B 83 235323

    [5]

    Ma S S, Dou X M, Chang X Y, Sun B Q, Xiong Y H, Niu Z C, Ni H Q 2009 Chin. Phys. Lett. 26 117201

    [6]

    Gupta J A, Awschalom D D, Peng X, Alivisatos A P 1999 Phys. Rev. B 59 R10421

    [7]

    Tartakovskii A I, Cahill J, Makhonin M N, Whittaker D M, Wells J P R, Fox A M, Mowbray D J, Skolnick M S, Groom K M, Steer M J, Hopkinson M 2004 Phys. Rev. Lett. 93 057401

    [8]

    Nair P S, Fritz K P, Scholes G D 2004 Chem. Comm. 18 2084

    [9]

    Yu W W, Qu L H, Guo W Z, Peng X G 2003 Chem. Mater. 15 2854

    [10]

    Zhong H Z, Nagy M, Jones M, Scholes G D 2009 J. Phys. Chem. C 113 10465

    [11]

    An L M, Yang Y Q, Song W S, Su W H, Zeng Q H, Chao K F, Kong X G 2009 Acta Phys. Sin. 58 7914 (in Chinese) [安利民, 杨延强, 宋维斯, 苏文辉, 曾庆辉, 朝克夫, 孔祥贵 2009 物理学报 58 7914]

    [12]

    Gerardot B D, Brunner D, Dalgarno P A, Ohberg P, Seidl S, Kroner M, Karrai K, Stoltz N G, Petroff P M, Warburton R J 2008 Nature 451 441

    [13]

    Brunner D, Gerardot B D, Dalgarno P A, Wust G, Laraai K, Stoltz N G, Petroff P M, Warburton R J 2009 Science 325 70

    [14]

    Scholes G D, Kim J, Wong C Y 2006 Phys. Rev. B 73 195325

    [15]

    Huxter V M, Kim J, Lo S S, Lee A, Nair P S, Scholes G D 2010 Chem. Phys. Lett. 491 187

    [16]

    Kim J, Wong C Y, Nair P S, Fritz K P, Kumar S, Scholes G D 2006 J. Phys. Chem. B 110 25371

    [17]

    Scholes G D, Kim J, Wong C Y, Huxter V M, Nair P S, Fritz K P, Kumar S 2006 Nano Lett. 6 1765

    [18]

    He J, Zhong H Z, Scholes G D 2010 Phys. Rev. Lett. 105 046601

    [19]

    He J, Lo S S, Kim J, Scholes G D 2008 Nano Lett. 8 4007

    [20]

    Wong C Y, Kim J, Nair P S, Nagy M C, Scholes G D 2009 J. Phys. Chem. C 113 795

    [21]

    Brus L E 1984 J. Chem. Phys. 80 4403

    [22]

    Efros A L, Rosen M, Kuno M, Nirmal M, Norris D J 1996 Phys. Rev. B 54 4843

    [23]

    Nahalkova P, Sprinzl D, Maly P, Nemec P, Gladilin V N, Devreese J T 2007 Phys. Rev. B 75 113306

    [24]

    Pikus G E, Bir G L 1971 Sov. Phys. JEPT 33 108

    [25]

    Vinattieri A, Shah J, Damen T C, Kim D S, Pfeiffer L N, Maialle M Z, Sham L J 1994 Phys. Rev. B 50 10868

    [26]

    Ma H, Jin Z, Zhang Z, Li G, Ma G 2012 J. Phys. Chem. A 116 2018

    [27]

    He J, Ji W, Ma G H, Tang S H, Elim H L, Sun W X, Zhang Z H, Chin W S 2004 J. Appl. Phys. 95 6381

    [28]

    Viswanatha R, Sapra S, Saha-Dasgupta T, Sarma D D 2005 Phys. Rev. B 72 045333

    [29]

    Atature M, Dreiser J, Badolato A, Hogele A, Karrai K, Imamoglu A 2006 Science 312 551

    [30]

    Gupta J A, Awschalom D D, Efros A L, Rodina A V 2002 Phys. Rev. B 66 125307

    [31]

    Gundogdu K, Hall K C, Koerperick E J, Pryor C E, Flatté M E, Boggess T F 2005 Appl. Phys. Lett. 86 113111

    [32]

    Hall K C, Koerperick E J, Boggess T F, Shchekin O B 2007 Appl. Phys. Lett. 90 053109

    [33]

    Fischer J, Loss D 2009 Science 324 1277

    [34]

    Kolodrubetz M H, Petta J R 2009 Science 325 42

  • [1]

    Gupta J A, Knobel R, Samarth N, Awschalom D D 2001 Science 292 2458

    [2]

    Ouyang M, Dabid D, Awschalom D D 2003 Science 301 1074

    [3]

    Ramsay A J 2010 Semi. Sci. Technol. 25 103001

    [4]

    Tong H, Wu M W 2011 Phys. Rev. B 83 235323

    [5]

    Ma S S, Dou X M, Chang X Y, Sun B Q, Xiong Y H, Niu Z C, Ni H Q 2009 Chin. Phys. Lett. 26 117201

    [6]

    Gupta J A, Awschalom D D, Peng X, Alivisatos A P 1999 Phys. Rev. B 59 R10421

    [7]

    Tartakovskii A I, Cahill J, Makhonin M N, Whittaker D M, Wells J P R, Fox A M, Mowbray D J, Skolnick M S, Groom K M, Steer M J, Hopkinson M 2004 Phys. Rev. Lett. 93 057401

    [8]

    Nair P S, Fritz K P, Scholes G D 2004 Chem. Comm. 18 2084

    [9]

    Yu W W, Qu L H, Guo W Z, Peng X G 2003 Chem. Mater. 15 2854

    [10]

    Zhong H Z, Nagy M, Jones M, Scholes G D 2009 J. Phys. Chem. C 113 10465

    [11]

    An L M, Yang Y Q, Song W S, Su W H, Zeng Q H, Chao K F, Kong X G 2009 Acta Phys. Sin. 58 7914 (in Chinese) [安利民, 杨延强, 宋维斯, 苏文辉, 曾庆辉, 朝克夫, 孔祥贵 2009 物理学报 58 7914]

    [12]

    Gerardot B D, Brunner D, Dalgarno P A, Ohberg P, Seidl S, Kroner M, Karrai K, Stoltz N G, Petroff P M, Warburton R J 2008 Nature 451 441

    [13]

    Brunner D, Gerardot B D, Dalgarno P A, Wust G, Laraai K, Stoltz N G, Petroff P M, Warburton R J 2009 Science 325 70

    [14]

    Scholes G D, Kim J, Wong C Y 2006 Phys. Rev. B 73 195325

    [15]

    Huxter V M, Kim J, Lo S S, Lee A, Nair P S, Scholes G D 2010 Chem. Phys. Lett. 491 187

    [16]

    Kim J, Wong C Y, Nair P S, Fritz K P, Kumar S, Scholes G D 2006 J. Phys. Chem. B 110 25371

    [17]

    Scholes G D, Kim J, Wong C Y, Huxter V M, Nair P S, Fritz K P, Kumar S 2006 Nano Lett. 6 1765

    [18]

    He J, Zhong H Z, Scholes G D 2010 Phys. Rev. Lett. 105 046601

    [19]

    He J, Lo S S, Kim J, Scholes G D 2008 Nano Lett. 8 4007

    [20]

    Wong C Y, Kim J, Nair P S, Nagy M C, Scholes G D 2009 J. Phys. Chem. C 113 795

    [21]

    Brus L E 1984 J. Chem. Phys. 80 4403

    [22]

    Efros A L, Rosen M, Kuno M, Nirmal M, Norris D J 1996 Phys. Rev. B 54 4843

    [23]

    Nahalkova P, Sprinzl D, Maly P, Nemec P, Gladilin V N, Devreese J T 2007 Phys. Rev. B 75 113306

    [24]

    Pikus G E, Bir G L 1971 Sov. Phys. JEPT 33 108

    [25]

    Vinattieri A, Shah J, Damen T C, Kim D S, Pfeiffer L N, Maialle M Z, Sham L J 1994 Phys. Rev. B 50 10868

    [26]

    Ma H, Jin Z, Zhang Z, Li G, Ma G 2012 J. Phys. Chem. A 116 2018

    [27]

    He J, Ji W, Ma G H, Tang S H, Elim H L, Sun W X, Zhang Z H, Chin W S 2004 J. Appl. Phys. 95 6381

    [28]

    Viswanatha R, Sapra S, Saha-Dasgupta T, Sarma D D 2005 Phys. Rev. B 72 045333

    [29]

    Atature M, Dreiser J, Badolato A, Hogele A, Karrai K, Imamoglu A 2006 Science 312 551

    [30]

    Gupta J A, Awschalom D D, Efros A L, Rodina A V 2002 Phys. Rev. B 66 125307

    [31]

    Gundogdu K, Hall K C, Koerperick E J, Pryor C E, Flatté M E, Boggess T F 2005 Appl. Phys. Lett. 86 113111

    [32]

    Hall K C, Koerperick E J, Boggess T F, Shchekin O B 2007 Appl. Phys. Lett. 90 053109

    [33]

    Fischer J, Loss D 2009 Science 324 1277

    [34]

    Kolodrubetz M H, Petta J R 2009 Science 325 42

  • [1] 闫婕, 魏苗苗, 邢燕霞. HgTe/CdTe量子阱中自旋拓扑态的退相干效应. 物理学报, 2019, 68(22): 227301. doi: 10.7498/aps.68.20191072
    [2] 梁宇宏, 李红娟, 尹辑文. 晶格弛豫方法研究PbSe量子点的带内弛豫过程. 物理学报, 2019, 68(12): 127301. doi: 10.7498/aps.68.20190187
    [3] 滕利华, 牟丽君. 掺杂对称性对(110)晶向生长GaAs/AlGaAs量子阱中电子自旋弛豫动力学的影响}. 物理学报, 2017, 66(4): 046802. doi: 10.7498/aps.66.046802
    [4] 韩元春, 包特木尔巴根. 水溶性TGA-CdTe量子点的超快弛豫动力学过程探究. 物理学报, 2015, 64(11): 113201. doi: 10.7498/aps.64.113201
    [5] 周小东, 张少锋, 周思华. Au纳米颗粒和CdTe量子点复合体系发光增强和猝灭效应. 物理学报, 2015, 64(16): 167301. doi: 10.7498/aps.64.167301
    [6] 叶盈, 周旺民. 生长方向对量子点应变与应变弛豫的影响. 物理学报, 2013, 62(5): 058105. doi: 10.7498/aps.62.058105
    [7] 王启文, 红兰. 二维量子点中极化子的自旋弛豫. 物理学报, 2012, 61(1): 017107. doi: 10.7498/aps.61.017107
    [8] 蒋洪良, 张荣军, 周宏明, 姚端正, 熊贵光. InAs量子点中自旋-轨道相互作用下电子自旋弛豫的参量特征. 物理学报, 2011, 60(1): 017204. doi: 10.7498/aps.60.017204
    [9] 胡长城, 王刚, 叶慧琪, 刘宝利. 瞬态自旋光栅系统的建设及其在自旋输运研究中的应用. 物理学报, 2010, 59(1): 597-602. doi: 10.7498/aps.59.597
    [10] 王天琪, 俞重远, 刘玉敏, 芦鹏飞. 有限元法分析不同形状量子点的应变能及弛豫度变化. 物理学报, 2009, 58(8): 5618-5623. doi: 10.7498/aps.58.5618
    [11] 安利民, 杨延强, 宋维斯, 苏文辉, 曾庆辉, 朝克夫, 孔祥贵. 低强度飞秒激光激发下CdTe和CdTe/CdS核壳量子点的荧光上转换研究. 物理学报, 2009, 58(11): 7914-7920. doi: 10.7498/aps.58.7914
    [12] 徐天宁, 吴惠桢, 斯剑霄. PbTe/CdTe量子点的光学增益. 物理学报, 2008, 57(4): 2574-2581. doi: 10.7498/aps.57.2574
    [13] 吴文智, 闫玉禧, 郑植仁, 金钦汉, 刘伟龙, 张建平, 杨延强, 苏文辉. 水溶性CdTe量子点的稳态和纳秒时间分辨光致发光光谱. 物理学报, 2007, 56(5): 2926-2930. doi: 10.7498/aps.56.2926
    [14] 苑进社, 陈光德. 蓝宝石邻晶面衬底MBE生长GaN薄膜的瞬态光电导弛豫特性研究. 物理学报, 2007, 56(7): 4218-4223. doi: 10.7498/aps.56.4218
    [15] 刘绍鼎, 程木田, 王 霞, 王取泉. 激子自旋弛豫对简并量子点发射光子对纠缠度的影响. 物理学报, 2007, 56(8): 4924-4929. doi: 10.7498/aps.56.4924
    [16] 吴 羽, 焦中兴, 雷 亮, 文锦辉, 赖天树, 林位株. 半导体量子阱中电子自旋弛豫和动量弛豫. 物理学报, 2006, 55(6): 2961-2965. doi: 10.7498/aps.55.2961
    [17] 孙丰伟, 邓 莉, 寿 倩, 刘鲁宁, 文锦辉, 赖天树, 林位株. 量子阱中电子自旋注入及弛豫的飞秒光谱研究. 物理学报, 2004, 53(9): 3196-3199. doi: 10.7498/aps.53.3196
    [18] 张希清, 王永生, 徐 征, 侯延冰, 王振家, 徐叙瑢, Z.K.TANG, 汪河州, 李伟良, 赵福利, 蔡志刚, 周建英. CdTe/CdZnTe多量子阱激子复合动力学性质的研究. 物理学报, 1999, 48(1): 180-185. doi: 10.7498/aps.48.180
    [19] 贾瑜, 范希庆, 马丙现. CdTe(110)弛豫表面电子态的计算. 物理学报, 1997, 46(10): 1999-2006. doi: 10.7498/aps.46.1999
    [20] 马本堃. 自旋-晶格弛豫. 物理学报, 1965, 21(7): 1419-1436. doi: 10.7498/aps.21.1419
计量
  • 文章访问数:  4436
  • PDF下载量:  658
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-16
  • 修回日期:  2014-04-14
  • 刊出日期:  2014-06-05

CdTe量子点的室温激子自旋弛豫动力学

  • 1. 中南大学物理与电子学院, 先进材料超微结构与超快过程研究所, 超微结构与超快过程湖南省重点实验室, 长沙 410083;
  • 2. 北京理工大学材料学院, 北京 100081
    基金项目: 国家自然科学基金(批准号:61222406,11174371)、湖南省自然科学基金(批准号:12JJ1001)、高等学校博士学科点专项科研基金(批准号:20110162120072)、教育部新世纪优秀人才支持计划(批准号:NCET-11-0512)和中央高校基本科研业务费资助的课题.

摘要: 利用交叉偏振三阶非线性瞬态光栅技术,研究了室温下CdTe胶体量子点激子自旋弛豫动力学的尺寸效应. 在抽运-探测光子能量与CdTe量子点的最低激子吸收(1Se1Sh)跃迁相共振时,量子点激子自旋弛豫显示了时间常数为0.10.5 ps的单指数衰减行为. CdTe量子点激子自旋的快速弛豫源于亮暗激子精细结构态跃迁,即J=1+2跃迁. 激子自旋弛豫主要由空穴的自旋翻转过程决定. 研究结果表明:CdTe量子点激子自旋弛豫速率与量子点尺寸的4 次方成反比.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回