搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非磁性发光材料的磁场效应: 从有机半导体到卤化物钙钛矿

陶聪 王敬民 牛美玲 朱琳 彭其明 王建浦

引用本文:
Citation:

非磁性发光材料的磁场效应: 从有机半导体到卤化物钙钛矿

陶聪, 王敬民, 牛美玲, 朱琳, 彭其明, 王建浦

Magnetic field effects in non-magnetic luminescent materials: from organic semiconductors to halide perovskites

Tao Cong, Wang Jing-Min, Niu Mei-Ling, Zhu Lin, Peng Qi-Ming, Wang Jian-Pu
PDF
HTML
导出引用
  • 磁场效应(magnetic field effects, MFEs)指的是材料或器件的光电物理特性(包括光致发光、电致发光、注入电流、光电流等)在外加磁场下发生的变化. 本文所述的是非磁性发光材料的MFEs, 其首先在有机半导体光电器件中被发现. 近十几年来, MFEs作为一种新兴的物理现象引起了广泛的研究; 同时它也成为一种独特的实验手段, 用以探讨有机半导体中电荷的输运、复合以及自旋极化等过程. 近期的研究发现, MFEs不仅存在于有机半导体中, 而且在拥有强自旋-轨道耦合作用的金属卤化物钙钛矿材料中被观测到, 这既拓展了MFEs的研究方向, 也为通过研究MFEs来探索金属卤化物钙钛矿器件的物理机制, 进而为提升其器件性能提供了契机. 本文重点关注有机半导体和卤化物钙钛矿在磁场下的电致发光和光致发光变化, 即发光的磁场效应. 回顾了到目前为止主流的理论模型和代表性实验现象, 对比分析了磁场下有机半导体和卤化物钙钛矿的发光物理行为. 以期为有机及钙钛矿磁场效应领域的研究提供一些思路, 同时为有机及钙钛矿发光领域的发展贡献些许想法.
    Magnetic field effects (MFEs) are used to describe the changes of the photophysical properties (including photoluminescence, electroluminescence, injectedcurrent, photocurrent, etc.) when materials and devices are subjected to the external magnetic field. The MFEs in non-magnetic luminescent materials and devices were first observed in organic semiconductor. In the past two decades, the effects have been studied extensively as an emerging physical phenomenon, and also used as a unique experimental method to explore the processes such as charge transport, carrier recombination, and spin polarization in organic semiconductors. Recent studies have found that the MFEs can also be observed in metal halide perovskites with strong spin-orbital coupling. Besides, for expanding the research domain of MFEs, these findings can also be utilized to study the physical mechanism in metal halide perovskites, and then provide an insight into the improving of the performance of perovskite devices. In this review, we focus on the magnetic field effects on the electroluminescence and photoluminescence changes of organic semiconductors and halide perovskites. We review the mainstream of theoretical models and representative experimental phenomena which have been found to date, and comparatively analyze the luminescence behaviors of organic semiconductors and halide perovskites under magnetic fields. It is expected that this review can provide some ideas for the research on the MFEs of organic semiconductors and halideperovskites, and contribute to the research of luminescence in organic materials and halideperovskites.
      通信作者: 彭其明, iamqmpeng@njtech.edu.cn ; 王建浦, iamjpwang@njtech.edu.cn
    • 基金项目: 国家自然科学基金优秀青年科学基金(批准号: 62022040)、国家自然科学基金青年科学基金(批准号: 11804156)、国家自然科学基金(批准号: 51972171)和江苏省研究生科研与实践创新计划(批准号: KYCX21_1102, KYCX21_1089)资助的课题.
      Corresponding author: Peng Qi-Ming, iamqmpeng@njtech.edu.cn ; Wang Jian-Pu, iamjpwang@njtech.edu.cn
    • Funds: Projected supported by the National Natural Science Foundation-Outstanding Youth Foundation of China (Grant No. 62022040), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11804156), the National Natural Science Foundation of China (Grant No. 51972171), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant Nos. KYCX21_1102, KYCX21_1089).
    [1]

    Sun D, Ehrenfreund E, Vardeny Z V 2014 Chem. Commun. 50 1781Google Scholar

    [2]

    Sagar R U R, Zhang X, Wang J, Xiong C 2014 J. Appl. Phys. 115 123708Google Scholar

    [3]

    Wang J, Chepelianskii A, Gao F, Greenham N C 2012 Nat. Commun. 3 1191Google Scholar

    [4]

    Gautam B R, Nguyen T D, Ehrenfreund E, Vardeny Z V 2012 Phys. Rev. B 85 205207Google Scholar

    [5]

    Hu B, Yan L, Shao M 2009 Adv. Mater. 21 1500Google Scholar

    [6]

    Devir-Wolfman A H, Khachatryan B, Gautam B R, Tzabary L, Keren A, Tessler N, Vardeny Z V, Ehrenfreund E 2014 Nat. Commun. 5 4529Google Scholar

    [7]

    Fert A 2008 Rev. Mod. Phys. 80 1517Google Scholar

    [8]

    Gruenberg P A 2008 R. Mod. Phys. 80 1531Google Scholar

    [9]

    Sternlicht H, Nieman G C, Robinson G W 1963 J. Chem. Phys. 38 1326Google Scholar

    [10]

    Michel-Beyerle M E, Haberkorn R, Bube W, Steffens E, Schröder H, Neusser H J, Schlag E W, Seidlitz H 1976 Chem. Phys. 17 139Google Scholar

    [11]

    Kalinowski J, Cocchi M, Virgili D, Di Marco P, Fattori V 2003 Chem. Phys. Lett. 380 710Google Scholar

    [12]

    Shao M, Yan L, Pan H, Ivanov I, Hu B 2011 Adv. Mater. 23 2216Google Scholar

    [13]

    Nguyen T D, Sheng Y, Rybicki J E, Wohlgenannt M 2008 Sci. Technol. Adv. Mater. 9 024206Google Scholar

    [14]

    Mermer Ö, Veeraraghavan G, Francis T L, Sheng Y, Nguyen D T, Wohlgenannt M, Köhler A, Al-Suti M K, Khan M S 2005 Phys. Rev. B 72 205202Google Scholar

    [15]

    Bloom F L, Wagemans W, Koopmans B 2008 J. Appl. Phys. 103 07F320Google Scholar

    [16]

    Bloom F L, Wagemans W, Kemerink M, Koopmans B 2007 Phys. Rev. Lett. 99 257201Google Scholar

    [17]

    Zhang Y, Liu R, Lei Y L, Xiong Z H 2009 Appl. Phys. Lett. 94 083307Google Scholar

    [18]

    Yan L, Shao M, Graeff C F O, Hummelgen I, Ma D, Hu B 2012 Appl. Phys. Lett. 100 013301Google Scholar

    [19]

    Nguyen T D, Sheng Y, Rybicki J, Veeraraghavan G, Wohlgenannt M 2007 J. Mater. Chem. 17 1995Google Scholar

    [20]

    Mahato R N, Luelf H, Siekman M H, Kersten S P, Bobbert P A, de Jong M P, De Cola L, van der Wiel W G 2013 Science 341 257Google Scholar

    [21]

    Wang Y, Sahin-Tiras K, Harmon N J, Wohlgenannt M, Flatte M E 2016 Phys. Rev. X 6 011011

    [22]

    Manser J S, Christians J A, Kamat P V 2016 Chem. Rev. 116 12956Google Scholar

    [23]

    Li J, Xu L, Wang T, Song J, Chen J, Xue J, Dong Y, Cai B, Shan Q, Han B, Zeng H 2017 Adv. Mater. 29 1603885Google Scholar

    [24]

    Xiao Z, Kerner R A, Zhao L, Tran N L, Lee K M, Koh T W, Scholes G D, Rand B P 2017 Nat. Photonics 11 108Google Scholar

    [25]

    Yuan M, Li Na Q, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y, Beauregard E M, Kanjanaboos P, Lu Z, Kim D H, Sargent E H 2016 Nat. Nanotechnol. 11 872Google Scholar

    [26]

    Wang J, Wang N, Jin Y, Si J, Tan Z K, Du H, Cheng L, Dai X, Bai S, He H, Ye Z, Lai M L, Friend R H, Huang W 2015 Adv. Mater. 27 2311Google Scholar

    [27]

    Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H, Lee T W 2015 Science 350 1222Google Scholar

    [28]

    Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y, Guo Q, Ke Y, Yu M, Jin Y, Liu Y, Ding Q, Di D, Yang L, Xing G, Tian H, Jin C, Gao F, Friend R H, Wang J, Huang W 2016 Nat. Photonics 10 699Google Scholar

    [29]

    Yang X, Zhang X, Deng J, Chu Z, Jiang Q, Meng J, Wang P, Zhang L, Yin Z, You J 2018 Nat. Commun. 9 570Google Scholar

    [30]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [31]

    Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W 2018 Nature 562 249Google Scholar

    [32]

    Ema K, Umeda K, Toda M, Yajima C, Arai Y, Kunugita H, Wolverson D, Davies J J 2006 Phys. Rev. B 73 241310Google Scholar

    [33]

    Hsiao Y C, Wu T, Li M, Hu B 2015 Adv. Mater. 27 2899Google Scholar

    [34]

    Pavliuk M V, Fernandes D L A, El-Zohry A M, Abdellah M, Nedelcu G, Kovalenko M V, Sa J 2016 Adv. Opt. Mater. 4 2004Google Scholar

    [35]

    Zhang C, Sun D, Sheng C X, Zhai Y X, Mielczarek K, Zakhidov A, Vardeny Z V 2015 Nat. Phys. 11 428Google Scholar

    [36]

    Even J, Pedesseau L, Jancu J M, Katan C 2013 Phys. Status Solidi-Rapid Res. Lett. 8 31Google Scholar

    [37]

    Pan R, Wang K, Li Y, Yu H, Li J, Xu L 2021 Adv. Electron. Mater. 7 2100026Google Scholar

    [38]

    Niedermeier U 2010 Ph. D. Dissertation (Darmstadt: Technische Universität)

    [39]

    Frankevich E L, Lymarev A A, Sokolik I, Karasz F E, Blumstengel S, Baughman R H, Horhold H H 1992 Phys. Rev. B 46 9320Google Scholar

    [40]

    Kepler R G, Caris J C, Avakian P, Abramson E 1963 Phys. Rev. Lett. 10 400Google Scholar

    [41]

    Johnson R C, Merrifield R E, Avakian P, Flippen R B 1967 Phys. Rev. Lett. 19 285Google Scholar

    [42]

    Merrifield R E 1971 Magnetic Effects on Triplet Exciton Interactions (Germany: Walter de Gruyter GmbH) pp481–498

    [43]

    Scharff T, Ratzke W, Zipfel J, Klemm P, Bange S, Lupton J M 2021 Nat. Commun. 12 2071Google Scholar

    [44]

    Bobbert P A, Nguyen T D, van Oost F W A, Koopmans B, Wohlgenannt M 2007 Phys. Rev. Lett. 99 216801Google Scholar

    [45]

    Desai P, Shakya P, Kreouzis T, Gillin W P, Morley N A, Gibbs M R J 2007 Phys. Rev. B 75 094423Google Scholar

    [46]

    Desai P, Shakya P, Kreouzis T, Gillin W P 2007 J. Appl. Phys. 102 073710Google Scholar

    [47]

    Hu B, Wu Y 2007 Nat. Mater. 6 985Google Scholar

    [48]

    Pope M, Swenberg C 1999 Electronic Processes in Organic Crystals and Polymers (2nd Ed) (Oxford: Oxford University Press) pp1–191

    [49]

    Ohta N 1996 J. Phys. Chem. 100 7298Google Scholar

    [50]

    Peng Q, Li W, Zhang S, Chen P, Li F, Ma Y 2013 Adv. Opt. Mater. 1 362Google Scholar

    [51]

    Turro N J 1991 Modern Molecular Photochemistry (Sausalito: University Science Books) pp28–32

    [52]

    Bagnich S A, Niedermeier U, Melzer C, Sarfert W, von Seggern H 2009 J. Appl. Phys. 106 113702Google Scholar

    [53]

    Prigodin V N, Bergeson J D, Lincoln D M, Epstein A J 2006 Synth. Met. 156 757Google Scholar

    [54]

    Yoshida Y, Fujii A, Ozaki M, Yoshino K, Frankevich E 2005 Mol. Cryst. Liq. Cryst. 426 19Google Scholar

    [55]

    Bergeson J D, Prigodin V N, Lincoln D M, Epstein A J 2008 Phys. Rev. Lett. 100 067201Google Scholar

    [56]

    Prigodin V N, Epstein A J 2010 Synth. Met. 160 244Google Scholar

    [57]

    Wu Y, Xu Z, Hu B, Howe J 2007 Phys. Rev. B 75 035214Google Scholar

    [58]

    Martin J L, Bergeson J D, Prigodin V N, Epstein A J 2010 Synth. Met. 160 291Google Scholar

    [59]

    Hayashi H 2004 Introduction to Dynamic Spin Chemistry-Magnetic Field Effects on Chemical and Biochemical Reactions (Singapore: World Scientific Printers (S) Pte Ltd) pp1–268

    [60]

    Ganzorig C, Fujihira M 2002 Appl. Phys. Lett. 81 3137Google Scholar

    [61]

    Sinha S, Monkman A P 2003 Appl. Phys. Lett. 82 4651Google Scholar

    [62]

    Davis A H, Bussmann K 2004 J. Vac. Sci. Technol. A 22 1885Google Scholar

    [63]

    Wilkinson J, Davis A H, Bussmann K, Long J P 2005 Appl. Phys. Lett. 86 111109Google Scholar

    [64]

    Popovic Z D, Aziz H 2005 J. Appl. Phys. 98 013510Google Scholar

    [65]

    Merrifield R E 1968 J. Chem. Phys. 48 4318Google Scholar

    [66]

    彭其明 2015 博士学位论文 (吉林: 吉林大学)

    Peng Q M 2015 Ph. D. Dissertation (Jilin: Jilin University) (in Chinese)

    [67]

    Liu R, Zhang Y, Lei Y L, Chen P, Xiong Z H 2009 J. Appl. Phys. 105 093719Google Scholar

    [68]

    Wagemans W, Bloom F L, Bobbert P A, Wohlgenannt M, Koopmans B 2008 J. Appl. Phys. 103 07f303Google Scholar

    [69]

    Wagemans W, Koopmans B 2011 Phys. Status Solidi B 248 1029Google Scholar

    [70]

    Ern V, Merrifield R E 1968 Phys. Rev. Lett. 21 609Google Scholar

    [71]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [72]

    Žutić I, Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323Google Scholar

    [73]

    Rocha A R, Garcia-Suarez V M, Bailey S W, Lambert C J, Ferrer J, Sanvito S 2005 Nat. Mater. 4 335Google Scholar

    [74]

    Brocklehurst B 1969 Nature 221 921Google Scholar

    [75]

    Wohlgenannt M, Jiang X M, Vardeny Z V 2003 Synth. Met. 137 1069Google Scholar

    [76]

    Karabunarliev S, Bittner E R 2003 Phys. Rev. Lett. 90 057402Google Scholar

    [77]

    Cinchetti M, Heimer K, Wuestenberg J P, Andreyev O, Bauer M, Lach S, Ziegler C, Gao Y, Aeschlimann M 2009 Nat. Mater. 8 115Google Scholar

    [78]

    Dediu V, Murgia M, Matacotta F C, Taliani C, Barbanera S 2002 Solid State Commun. 122 181Google Scholar

    [79]

    Xiong Z H, Wu D, Vardeny Z V, Shi J 2004 Nature 427 821Google Scholar

    [80]

    Zhang S, Rolfe N J, Desai P, Shakya P, Drew A J, Kreouzis T, Gillin W P 2012 Phys. Rev. B 86 075206Google Scholar

    [81]

    Tang X, Hu Y, Jia W, Pan R, Deng J, Deng J, He Z, Xiong Z 2018 ACS Appl. Mater. Interfaces 10 1948Google Scholar

    [82]

    Tang X T, Pan R H, Zhao X, Zhu H Q, Xiong Z H 2020 J. Phys. Chem. Lett. 11 2804Google Scholar

    [83]

    Peng Q, Gao N, Li W, Chen P, Li F, Ma Y 2013 Appl. Phys. Lett. 102 193304Google Scholar

    [84]

    Chen P, Xiong Z, Peng Q, Bai J, Zhang S, Li F 2014 Adv. Opt. Mater. 2 142Google Scholar

    [85]

    Congreve D N, Lee J, Thompson N J, Hontz E, Yost S R, Reusswig P D, Bahlke M E, Reineke S, Van Voorhis T, Baldo M A 2013 Science 340 334Google Scholar

    [86]

    Sun D L, Basel T P, Gautam B R, Han W, Jiang X, Parkin S S P, Vardeny Z V 2013 Appl. Phys. Lett. 103 042411Google Scholar

    [87]

    Sutherland B R, Sargent E H 2016 Nat. Photonics 10 295Google Scholar

    [88]

    Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben P A, Mohammed O F, Sargent E H, Bakr O M 2015 Science 347 519Google Scholar

    [89]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [90]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [91]

    Jeong J, Kim M, Seo J, Lu H, Ahlawat P, Mishra A, Yang Y, Hope M A, Eickemeyer F T, Kim M, Yoon Y J, Choi I W, Darwich B P, Choi S J, Jo Y, Lee J H, Walker B, Zakeeruddin S M, Emsley L, Rothlisberger U, Hagfeldt A, Kim D S, Grätzel M, Kim J Y 2021 Nature 592 381Google Scholar

    [92]

    Umari P, Mosconi E, De Angelis F 2014 Sci. Rep. 4 4467

    [93]

    Papavassiliou G C, Koutselas I B, Lagouvardos D J, Kapoutsis J, Terzis A, Papaioannou G J 1994 Mol. Cryst. Liq. Cryst. 253 103Google Scholar

    [94]

    Kim M, Im J, Freeman A J, Ihm J, Jin H 2014 Proc. Nat. l Acad. Sci. USA 111 6900Google Scholar

    [95]

    Rossi D, Liu X, Lee Y, Khurana M, Puthenpurayil J, Kim K, Akimov A V, Cheon J, Son D H 2020 Nano Lett. 20 7321Google Scholar

    [96]

    Ehrenfreund E, Vardeny V 2019 Magnetic Field Effects in Organic Semiconductors; Low and High Fields, Steady State and Time Resolved (Abingdon: CRC Press/Taylor & Francis) pp277–298

    [97]

    Vardeny Z V, Wohlgenannt M 2017 World Scientific Reference on Spin in Organics (Singapore: World Scientific) pp345–353

    [98]

    帅志刚 2020 有机光电材料理论与计算 (北京: 科学出版社) 第268—314页

    Shuai Z G 2020 Theory and Calculation of Organic Optoelectronic Materials (Beijing: Science Press) pp268–314 (in Chinese)

  • 图 1  基于Alq3的OLED (a)电致发光和(b)电流的磁场效应[11]

    Fig. 1.  Magnetic field effects on (a) electroluminescence and (b) current of Alq3-based OLED[11].

    图 2  Alq3器件在不同电压下的(a) MC和(b) MEL[13]; (c) Ru(bpy)3器件在不同电压下的MEL[12]; (d)不同长度一维结构器件的MR[20]; 延迟荧光器件在不同温度下的(e) MC和(f) MEL[21]

    Fig. 2.  The (a) MC and (b) MEL of Alq3-based OLED at different voltages[13]; (c) the MEL of Ru(bpy)3-based OLED at different voltages[12]; (d) the MR in the device with one-dimensional structure[20]; the (e) MC and (f) MEL of delayed fluorescence OLED at different temperatures [21] .

    图 3  OLED中载流子相互作用决定的激发态类型[38]

    Fig. 3.  Excited states in OLED determined by the interactions between carriers [38] .

    图 4  (a)自由载流子、电子-空穴对和激子的跃迁能级示意图及相关速率常数, 其中S和T分别表示单线态和三线态, G表示EHP的形成率, $ {k}_{\mathrm{d}}^{\mathrm{S}} $$ {k}_{\mathrm{d}}^{\mathrm{T}} $分别代表单线态和三线态EHP的离解速率常数, $ {k}_{\mathrm{r}}^{\mathrm{S}} $$ {k}_{\mathrm{r}}^{\mathrm{T}} $为单线态和三线态EHP的复合速率常数; (b)电子、空穴在磁场下以不同频率$ \omega $进动示意图

    Fig. 4.  (a) Transition rate constants of free carriers, electron-hole pairs and excitons. S and T represent singlet and triplet states, respectively. G represents the formation rate of EHP. $ {k}_{\mathrm{d}}^{\mathrm{S}} $ and $ {k}_{\mathrm{d}}^{\mathrm{T}} $ represent the dissociation rate constants of singlet and triplet EHPs, respectively, $ {k}_{\mathrm{r}}^{\mathrm{S}} $ and $ {k}_{\mathrm{r}}^{\mathrm{T}} $ are the recombination rate constants of singlet and triplet EHPs. (b) The Larmor precession of electrons and holes with different frequency ω under a magnetic field.

    图 5  三线态-三线态淬灭(TTA)模型示意图[66]

    Fig. 5.  Schematic diagram of the triplet-triplet annihilation (TTA) model [66] .

    图 6  (a)双极化子的形成过程; (b)外磁场下双极化子形成概率减小; (c)利用双极化子模型拟合磁场效应[44]

    Fig. 6.  (a) Formation process of the bipolaron; (b) the probability of the bipolaron formation decreases under the external magnetic field; (c) fitting the magnetic field effect with the bipolaron model [44].

    图 7  (a)无外加磁场和(b)有外加磁场下三线态激子对自由载流子的散射作用[38]

    Fig. 7.  Scattering effects of triplet excitons on free carriers (a) without and (b) with an external magnetic field [38].

    图 8  (a)有机光电器件中的自旋极化效应, 其中绿线为外磁场方向[3]; (b)自旋极化下荧光发射被强烈抑制而磷光发射增强[43]

    Fig. 8.  (a) Spin polarization in OLED, where the green line is the direction of the external magnetic field[3] ; (b) the fluorescence is strongly suppressed while the phosphorescence is enhanced by TSP[43] .

    图 9  金属卤化物钙钛矿的晶胞结构[87]

    Fig. 9.  Crystal structure of the metal halide perovskites[87].

    图 10  (a)钙钛矿中不同自旋态的子能带偏离k空间的Γ[36]; (b)导带与价带表现出自旋极化方向相反的分裂[94]

    Fig. 10.  (a) Sub-bands with different spins states deviate from the Γ point in the k space of perovskites[36]; (b) the conduction band and valence band show opposite spin splitting depending on the spin polarization direction[94] .

    图 11  (a)电子-空穴对中Δg机制示意图; (b) 5 mA恒定电流下的MEL; (c)钙钛矿薄膜的MPL; (d) 0和5 T磁场下左右圆偏振旋光光谱; (e) 18 K温度下薄膜的圆偏振度与磁场的关系[35]

    Fig. 11.  (a) Schematic diagram of the Δg mechanism of electron-hole pairs; (b) the MEL at a constant current of 5 mA; (c) the MPL of the perovskite film; (d) the left and right circularly polarized optical rotation spectra at 0 and 5 T; (e) the relationship between the degree of circularly polarization and the magnetic field at 18 K [35] .

    图 12  (a)钙钛矿薄膜在不同激发光强下的MPL; (b)钙钛矿光伏器件在不同激发光强下的MC; (c)正MC和负MPL的线形特征; (d)钙钛矿中的电子-空穴对模型示意图[33]

    Fig. 12.  (a) MPL of the perovskite film with different excitation intensities at room temperature; (b) MC of the perovskite solar cell with different excitation intensities; (c) linear characteristics of positive MC and negative MPL; (d) schematic diagram of the electron-hole pair model in perovskites [33] .

    图 13  (a) (C4H9NH3)2PbBr4的PL谱, 其中Γ1Γ2为暗态, Γ5为亮态; (b)自旋驰豫(左图)和自旋翻转(右图)示意图; (c) PL随磁场的变化[32]

    Fig. 13.  (a) PL spectra of (C4H9NH3)2PbBr4, where Γ1 and Γ2 are dark states, and Γ5 is bright state; (b) schematic diagram of the spin relaxation (left) and spin flip (right); (c) the PL changes under the magnetic fields[32] .

    图 14  (a) 0 ℃下, CsPbBr3薄膜有/无500 mT的PL光谱; (b)无磁场和(c)有磁场的瞬态PL光谱; (d)无磁场和(e)有磁场下515 nm处复合动力学轨迹[34]

    Fig. 14.  (a) The PL spectra of CsPbBr3 film with/without a magnetic field of 500 mT at 0 ℃; the time resolved PL spectra in the obsence (b) and presence (c) of a magnetic field; the recombination kinetics extracted from the time resolved PLs in the obsence (d) and presence (e) of a magnetic field [34].

    表 1  光生载流子复合动力学常数[34]

    Table 1.  Recombination kinetic constants of photogenerated carrier [34] .

    Power/(mW· cm–2)Magnet OFF Magnet ON
    Fast decay/psSlow decay/psFast decay/psSlow decay/ps
    198138$ \pm $9 (55%)1038$ \pm $65 (45%) 104$ \pm $6 (63%)959$ \pm $55 (37%)
    305138$ \pm $8 (55%)1031$ \pm $31 (45%)100$ \pm $4 (64%)886$ \pm $25 (36%)
    450131$ \pm $5 (57%)1000$ \pm $34 (43%)101$ \pm $5 (65%)892$ \pm $23 (35%)
    下载: 导出CSV
  • [1]

    Sun D, Ehrenfreund E, Vardeny Z V 2014 Chem. Commun. 50 1781Google Scholar

    [2]

    Sagar R U R, Zhang X, Wang J, Xiong C 2014 J. Appl. Phys. 115 123708Google Scholar

    [3]

    Wang J, Chepelianskii A, Gao F, Greenham N C 2012 Nat. Commun. 3 1191Google Scholar

    [4]

    Gautam B R, Nguyen T D, Ehrenfreund E, Vardeny Z V 2012 Phys. Rev. B 85 205207Google Scholar

    [5]

    Hu B, Yan L, Shao M 2009 Adv. Mater. 21 1500Google Scholar

    [6]

    Devir-Wolfman A H, Khachatryan B, Gautam B R, Tzabary L, Keren A, Tessler N, Vardeny Z V, Ehrenfreund E 2014 Nat. Commun. 5 4529Google Scholar

    [7]

    Fert A 2008 Rev. Mod. Phys. 80 1517Google Scholar

    [8]

    Gruenberg P A 2008 R. Mod. Phys. 80 1531Google Scholar

    [9]

    Sternlicht H, Nieman G C, Robinson G W 1963 J. Chem. Phys. 38 1326Google Scholar

    [10]

    Michel-Beyerle M E, Haberkorn R, Bube W, Steffens E, Schröder H, Neusser H J, Schlag E W, Seidlitz H 1976 Chem. Phys. 17 139Google Scholar

    [11]

    Kalinowski J, Cocchi M, Virgili D, Di Marco P, Fattori V 2003 Chem. Phys. Lett. 380 710Google Scholar

    [12]

    Shao M, Yan L, Pan H, Ivanov I, Hu B 2011 Adv. Mater. 23 2216Google Scholar

    [13]

    Nguyen T D, Sheng Y, Rybicki J E, Wohlgenannt M 2008 Sci. Technol. Adv. Mater. 9 024206Google Scholar

    [14]

    Mermer Ö, Veeraraghavan G, Francis T L, Sheng Y, Nguyen D T, Wohlgenannt M, Köhler A, Al-Suti M K, Khan M S 2005 Phys. Rev. B 72 205202Google Scholar

    [15]

    Bloom F L, Wagemans W, Koopmans B 2008 J. Appl. Phys. 103 07F320Google Scholar

    [16]

    Bloom F L, Wagemans W, Kemerink M, Koopmans B 2007 Phys. Rev. Lett. 99 257201Google Scholar

    [17]

    Zhang Y, Liu R, Lei Y L, Xiong Z H 2009 Appl. Phys. Lett. 94 083307Google Scholar

    [18]

    Yan L, Shao M, Graeff C F O, Hummelgen I, Ma D, Hu B 2012 Appl. Phys. Lett. 100 013301Google Scholar

    [19]

    Nguyen T D, Sheng Y, Rybicki J, Veeraraghavan G, Wohlgenannt M 2007 J. Mater. Chem. 17 1995Google Scholar

    [20]

    Mahato R N, Luelf H, Siekman M H, Kersten S P, Bobbert P A, de Jong M P, De Cola L, van der Wiel W G 2013 Science 341 257Google Scholar

    [21]

    Wang Y, Sahin-Tiras K, Harmon N J, Wohlgenannt M, Flatte M E 2016 Phys. Rev. X 6 011011

    [22]

    Manser J S, Christians J A, Kamat P V 2016 Chem. Rev. 116 12956Google Scholar

    [23]

    Li J, Xu L, Wang T, Song J, Chen J, Xue J, Dong Y, Cai B, Shan Q, Han B, Zeng H 2017 Adv. Mater. 29 1603885Google Scholar

    [24]

    Xiao Z, Kerner R A, Zhao L, Tran N L, Lee K M, Koh T W, Scholes G D, Rand B P 2017 Nat. Photonics 11 108Google Scholar

    [25]

    Yuan M, Li Na Q, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y, Beauregard E M, Kanjanaboos P, Lu Z, Kim D H, Sargent E H 2016 Nat. Nanotechnol. 11 872Google Scholar

    [26]

    Wang J, Wang N, Jin Y, Si J, Tan Z K, Du H, Cheng L, Dai X, Bai S, He H, Ye Z, Lai M L, Friend R H, Huang W 2015 Adv. Mater. 27 2311Google Scholar

    [27]

    Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H, Lee T W 2015 Science 350 1222Google Scholar

    [28]

    Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y, Guo Q, Ke Y, Yu M, Jin Y, Liu Y, Ding Q, Di D, Yang L, Xing G, Tian H, Jin C, Gao F, Friend R H, Wang J, Huang W 2016 Nat. Photonics 10 699Google Scholar

    [29]

    Yang X, Zhang X, Deng J, Chu Z, Jiang Q, Meng J, Wang P, Zhang L, Yin Z, You J 2018 Nat. Commun. 9 570Google Scholar

    [30]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [31]

    Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W 2018 Nature 562 249Google Scholar

    [32]

    Ema K, Umeda K, Toda M, Yajima C, Arai Y, Kunugita H, Wolverson D, Davies J J 2006 Phys. Rev. B 73 241310Google Scholar

    [33]

    Hsiao Y C, Wu T, Li M, Hu B 2015 Adv. Mater. 27 2899Google Scholar

    [34]

    Pavliuk M V, Fernandes D L A, El-Zohry A M, Abdellah M, Nedelcu G, Kovalenko M V, Sa J 2016 Adv. Opt. Mater. 4 2004Google Scholar

    [35]

    Zhang C, Sun D, Sheng C X, Zhai Y X, Mielczarek K, Zakhidov A, Vardeny Z V 2015 Nat. Phys. 11 428Google Scholar

    [36]

    Even J, Pedesseau L, Jancu J M, Katan C 2013 Phys. Status Solidi-Rapid Res. Lett. 8 31Google Scholar

    [37]

    Pan R, Wang K, Li Y, Yu H, Li J, Xu L 2021 Adv. Electron. Mater. 7 2100026Google Scholar

    [38]

    Niedermeier U 2010 Ph. D. Dissertation (Darmstadt: Technische Universität)

    [39]

    Frankevich E L, Lymarev A A, Sokolik I, Karasz F E, Blumstengel S, Baughman R H, Horhold H H 1992 Phys. Rev. B 46 9320Google Scholar

    [40]

    Kepler R G, Caris J C, Avakian P, Abramson E 1963 Phys. Rev. Lett. 10 400Google Scholar

    [41]

    Johnson R C, Merrifield R E, Avakian P, Flippen R B 1967 Phys. Rev. Lett. 19 285Google Scholar

    [42]

    Merrifield R E 1971 Magnetic Effects on Triplet Exciton Interactions (Germany: Walter de Gruyter GmbH) pp481–498

    [43]

    Scharff T, Ratzke W, Zipfel J, Klemm P, Bange S, Lupton J M 2021 Nat. Commun. 12 2071Google Scholar

    [44]

    Bobbert P A, Nguyen T D, van Oost F W A, Koopmans B, Wohlgenannt M 2007 Phys. Rev. Lett. 99 216801Google Scholar

    [45]

    Desai P, Shakya P, Kreouzis T, Gillin W P, Morley N A, Gibbs M R J 2007 Phys. Rev. B 75 094423Google Scholar

    [46]

    Desai P, Shakya P, Kreouzis T, Gillin W P 2007 J. Appl. Phys. 102 073710Google Scholar

    [47]

    Hu B, Wu Y 2007 Nat. Mater. 6 985Google Scholar

    [48]

    Pope M, Swenberg C 1999 Electronic Processes in Organic Crystals and Polymers (2nd Ed) (Oxford: Oxford University Press) pp1–191

    [49]

    Ohta N 1996 J. Phys. Chem. 100 7298Google Scholar

    [50]

    Peng Q, Li W, Zhang S, Chen P, Li F, Ma Y 2013 Adv. Opt. Mater. 1 362Google Scholar

    [51]

    Turro N J 1991 Modern Molecular Photochemistry (Sausalito: University Science Books) pp28–32

    [52]

    Bagnich S A, Niedermeier U, Melzer C, Sarfert W, von Seggern H 2009 J. Appl. Phys. 106 113702Google Scholar

    [53]

    Prigodin V N, Bergeson J D, Lincoln D M, Epstein A J 2006 Synth. Met. 156 757Google Scholar

    [54]

    Yoshida Y, Fujii A, Ozaki M, Yoshino K, Frankevich E 2005 Mol. Cryst. Liq. Cryst. 426 19Google Scholar

    [55]

    Bergeson J D, Prigodin V N, Lincoln D M, Epstein A J 2008 Phys. Rev. Lett. 100 067201Google Scholar

    [56]

    Prigodin V N, Epstein A J 2010 Synth. Met. 160 244Google Scholar

    [57]

    Wu Y, Xu Z, Hu B, Howe J 2007 Phys. Rev. B 75 035214Google Scholar

    [58]

    Martin J L, Bergeson J D, Prigodin V N, Epstein A J 2010 Synth. Met. 160 291Google Scholar

    [59]

    Hayashi H 2004 Introduction to Dynamic Spin Chemistry-Magnetic Field Effects on Chemical and Biochemical Reactions (Singapore: World Scientific Printers (S) Pte Ltd) pp1–268

    [60]

    Ganzorig C, Fujihira M 2002 Appl. Phys. Lett. 81 3137Google Scholar

    [61]

    Sinha S, Monkman A P 2003 Appl. Phys. Lett. 82 4651Google Scholar

    [62]

    Davis A H, Bussmann K 2004 J. Vac. Sci. Technol. A 22 1885Google Scholar

    [63]

    Wilkinson J, Davis A H, Bussmann K, Long J P 2005 Appl. Phys. Lett. 86 111109Google Scholar

    [64]

    Popovic Z D, Aziz H 2005 J. Appl. Phys. 98 013510Google Scholar

    [65]

    Merrifield R E 1968 J. Chem. Phys. 48 4318Google Scholar

    [66]

    彭其明 2015 博士学位论文 (吉林: 吉林大学)

    Peng Q M 2015 Ph. D. Dissertation (Jilin: Jilin University) (in Chinese)

    [67]

    Liu R, Zhang Y, Lei Y L, Chen P, Xiong Z H 2009 J. Appl. Phys. 105 093719Google Scholar

    [68]

    Wagemans W, Bloom F L, Bobbert P A, Wohlgenannt M, Koopmans B 2008 J. Appl. Phys. 103 07f303Google Scholar

    [69]

    Wagemans W, Koopmans B 2011 Phys. Status Solidi B 248 1029Google Scholar

    [70]

    Ern V, Merrifield R E 1968 Phys. Rev. Lett. 21 609Google Scholar

    [71]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [72]

    Žutić I, Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323Google Scholar

    [73]

    Rocha A R, Garcia-Suarez V M, Bailey S W, Lambert C J, Ferrer J, Sanvito S 2005 Nat. Mater. 4 335Google Scholar

    [74]

    Brocklehurst B 1969 Nature 221 921Google Scholar

    [75]

    Wohlgenannt M, Jiang X M, Vardeny Z V 2003 Synth. Met. 137 1069Google Scholar

    [76]

    Karabunarliev S, Bittner E R 2003 Phys. Rev. Lett. 90 057402Google Scholar

    [77]

    Cinchetti M, Heimer K, Wuestenberg J P, Andreyev O, Bauer M, Lach S, Ziegler C, Gao Y, Aeschlimann M 2009 Nat. Mater. 8 115Google Scholar

    [78]

    Dediu V, Murgia M, Matacotta F C, Taliani C, Barbanera S 2002 Solid State Commun. 122 181Google Scholar

    [79]

    Xiong Z H, Wu D, Vardeny Z V, Shi J 2004 Nature 427 821Google Scholar

    [80]

    Zhang S, Rolfe N J, Desai P, Shakya P, Drew A J, Kreouzis T, Gillin W P 2012 Phys. Rev. B 86 075206Google Scholar

    [81]

    Tang X, Hu Y, Jia W, Pan R, Deng J, Deng J, He Z, Xiong Z 2018 ACS Appl. Mater. Interfaces 10 1948Google Scholar

    [82]

    Tang X T, Pan R H, Zhao X, Zhu H Q, Xiong Z H 2020 J. Phys. Chem. Lett. 11 2804Google Scholar

    [83]

    Peng Q, Gao N, Li W, Chen P, Li F, Ma Y 2013 Appl. Phys. Lett. 102 193304Google Scholar

    [84]

    Chen P, Xiong Z, Peng Q, Bai J, Zhang S, Li F 2014 Adv. Opt. Mater. 2 142Google Scholar

    [85]

    Congreve D N, Lee J, Thompson N J, Hontz E, Yost S R, Reusswig P D, Bahlke M E, Reineke S, Van Voorhis T, Baldo M A 2013 Science 340 334Google Scholar

    [86]

    Sun D L, Basel T P, Gautam B R, Han W, Jiang X, Parkin S S P, Vardeny Z V 2013 Appl. Phys. Lett. 103 042411Google Scholar

    [87]

    Sutherland B R, Sargent E H 2016 Nat. Photonics 10 295Google Scholar

    [88]

    Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben P A, Mohammed O F, Sargent E H, Bakr O M 2015 Science 347 519Google Scholar

    [89]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [90]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [91]

    Jeong J, Kim M, Seo J, Lu H, Ahlawat P, Mishra A, Yang Y, Hope M A, Eickemeyer F T, Kim M, Yoon Y J, Choi I W, Darwich B P, Choi S J, Jo Y, Lee J H, Walker B, Zakeeruddin S M, Emsley L, Rothlisberger U, Hagfeldt A, Kim D S, Grätzel M, Kim J Y 2021 Nature 592 381Google Scholar

    [92]

    Umari P, Mosconi E, De Angelis F 2014 Sci. Rep. 4 4467

    [93]

    Papavassiliou G C, Koutselas I B, Lagouvardos D J, Kapoutsis J, Terzis A, Papaioannou G J 1994 Mol. Cryst. Liq. Cryst. 253 103Google Scholar

    [94]

    Kim M, Im J, Freeman A J, Ihm J, Jin H 2014 Proc. Nat. l Acad. Sci. USA 111 6900Google Scholar

    [95]

    Rossi D, Liu X, Lee Y, Khurana M, Puthenpurayil J, Kim K, Akimov A V, Cheon J, Son D H 2020 Nano Lett. 20 7321Google Scholar

    [96]

    Ehrenfreund E, Vardeny V 2019 Magnetic Field Effects in Organic Semiconductors; Low and High Fields, Steady State and Time Resolved (Abingdon: CRC Press/Taylor & Francis) pp277–298

    [97]

    Vardeny Z V, Wohlgenannt M 2017 World Scientific Reference on Spin in Organics (Singapore: World Scientific) pp345–353

    [98]

    帅志刚 2020 有机光电材料理论与计算 (北京: 科学出版社) 第268—314页

    Shuai Z G 2020 Theory and Calculation of Organic Optoelectronic Materials (Beijing: Science Press) pp268–314 (in Chinese)

  • [1] 纪然, 蒋书明, 夏程涛, 杨德仁, 马向阳. ZnO薄膜发光器件的电抽运随机激射:随机性的抑制. 物理学报, 2025, 74(5): . doi: 10.7498/aps.74.20241440
    [2] 郤育莺, 韩悦, 李国辉, 翟爱平, 冀婷, 郝玉英, 崔艳霞. 异质结构在光伏型卤化物钙钛矿光电转换器件中的应用. 物理学报, 2020, 69(16): 167804. doi: 10.7498/aps.69.20200591
    [3] 王继飞, 林东旭, 袁永波. 有机金属卤化物钙钛矿中的离子迁移现象及其研究进展. 物理学报, 2019, 68(15): 158801. doi: 10.7498/aps.68.20190853
    [4] 赵婉莹, 库治良, 金钻明, 刘伟民, 林贤, 戴晔, 阎晓娜, 马国宏, 姚建铨. 有机金属卤化物钙钛矿薄膜中的光诱导载流子动力学和动态带重整效应. 物理学报, 2019, 68(1): 018401. doi: 10.7498/aps.68.20181854
    [5] 李智浩, 曹亮, 郭玉献. 苝四甲酸二酐薄膜电子结构的同步辐射共振光电子能谱研究. 物理学报, 2017, 66(22): 224101. doi: 10.7498/aps.66.224101
    [6] 黄超, 刘凌云, 方军, 张文华, 王凯, 高品, 徐法强. 强磁场对酞菁铁薄膜分子取向及形貌的影响. 物理学报, 2016, 65(15): 156101. doi: 10.7498/aps.65.156101
    [7] 何超, 张旭, 刘智, 成步文. Si基IV族异质结构发光器件的研究进展. 物理学报, 2015, 64(20): 206102. doi: 10.7498/aps.64.206102
    [8] 曹宁通, 张雷, 吕路, 谢海鹏, 黄寒, 牛冬梅, 高永立. 酞菁铜与MoS2(0001)范德瓦耳斯异质结研究. 物理学报, 2014, 63(16): 167903. doi: 10.7498/aps.63.167903
    [9] 刘瑞兰, 王徐亮, 唐超. 基于粒子群算法的有机半导体NPB传输特性辨识. 物理学报, 2014, 63(2): 028105. doi: 10.7498/aps.63.028105
    [10] 蹇磊, 谭英雄, 李权, 赵可清. 吐昔烯衍生物分子的电荷传输性质. 物理学报, 2013, 62(18): 183101. doi: 10.7498/aps.62.183101
    [11] 张勇, 刘亚莉, 焦威, 陈林, 熊祖洪. 有机发光器件的磁电导效应. 物理学报, 2012, 61(11): 117106. doi: 10.7498/aps.61.117106
    [12] 汪津, 姜文龙, 华杰, 王广德, 韩强, 常喜, 张刚. 磁场对基于Co铁磁薄膜的有机发光器件效率和电流的影响. 物理学报, 2010, 59(11): 8212-8217. doi: 10.7498/aps.59.8212
    [13] 刘荣, 张勇, 雷衍连, 陈平, 张巧明, 熊祖洪. LiF插层对有机发光二极管磁场效应的调控. 物理学报, 2010, 59(6): 4283-4289. doi: 10.7498/aps.59.4283
    [14] 汪润生, 孟卫民, 彭应全, 马朝柱, 李荣华, 谢宏伟, 王颖, 赵明, 袁建挺. 有机半导体的物理掺杂理论. 物理学报, 2009, 58(11): 7897-7903. doi: 10.7498/aps.58.7897
    [15] 雷衍连, 刘荣, 张勇, 谭兴文, 熊祖洪. 磁场对聚合物光电池中电流的影响. 物理学报, 2009, 58(2): 1269-1275. doi: 10.7498/aps.58.1269
    [16] 胡 玥, 饶海波, 李君飞. ITO/有机半导体/金属结构OLED器件的数值模拟. 物理学报, 2008, 57(9): 5928-5932. doi: 10.7498/aps.57.5928
    [17] 李训栓, 彭应全, 杨青森, 刑宏伟, 路飞平. 有机半导体异质界面电荷传输解析模型研究. 物理学报, 2007, 56(9): 5441-5445. doi: 10.7498/aps.56.5441
    [18] 任俊峰, 张玉滨, 解士杰. 铁磁/有机半导体/铁磁系统的电流自旋极化性质研究. 物理学报, 2007, 56(8): 4785-4790. doi: 10.7498/aps.56.4785
    [19] 王 振, 何正红, 谭兴文, 陶敏龙, 李国庆, 熊祖洪. 磁场对有机电致发光的影响. 物理学报, 2007, 56(5): 2979-2985. doi: 10.7498/aps.56.2979
    [20] 吕 明, 徐少辉, 张松涛, 何 钧, 熊祖洪, 邓振波, 丁训民. 基于多孔硅分布Bragg反射镜的有机微腔的光学性质. 物理学报, 2000, 49(10): 2083-2088. doi: 10.7498/aps.49.2083
计量
  • 文章访问数:  8169
  • PDF下载量:  190
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-08
  • 修回日期:  2021-11-08
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-03-20

/

返回文章
返回