搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Si基IV族异质结构发光器件的研究进展

何超 张旭 刘智 成步文

引用本文:
Citation:

Si基IV族异质结构发光器件的研究进展

何超, 张旭, 刘智, 成步文

Recent progress in Ge and GeSn light emission on Si

He Chao, Zhang Xu, Liu Zhi, Cheng Bu-Wen
PDF
导出引用
  • Si基光互连具有高速度、高带宽、低功耗、可集成等特点, 有望解决集成电路的集成度在日益提高时电互连带来的问题. 在Si基光互连的关键器件中, 除了Si基光源尚未得到解决, 其他器件都已经实现, 因此Si基可集成高效光源具有十分重要的研究意义. 同为IV族元素的Ge 和GeSn因其与Si的可集成性及其独特的能带结构有望成为Si基光电集成回路中的光源. 虽然Ge是间接带隙材料, 但通过引入张应变、n型重掺杂, 或者引入Sn形成GeSn合金等能带工程手段来提高发光效率. 近年来, Si 基IV族发光材料和发光器件有许多重要进展, 本文就Si基Ge, GeSn材料发光研究中的几个关键技术节点应变工程、掺杂技术、理论模型和器件研究回顾了近几年国际和国内的研究进展, 并展望了Si基IV族激光器的发展趋势.
    Si-based optical interconnection is expected to solve the problems caused by electric interconnection with increasing the density of integrated circuits, due to its merits of high speed, high bandwidth, and low consumption. So far, all of the key components except light source of Si-based optical interconnection have been demonstrated. Therefore, the light source has been considered as one of the most important components. Ge and GeSn based on Si have emerged as very promising candidates because of their high compatibility with Si CMOS processing, and the pseudo direct-bandgap characteristic. The energy difference between the direct and indirect bandgap of Ge is only 136 meV at room temperature. Under tensile strain or incorporation with Sn, the energy difference becomes smaller, and even less than zero, which means that Ge or GeSn changes into direct bandgap material. What is more, using large n-type doping to increase the fraction of electrons in valley, we can further increase the luminous efficiency of Ge or GeSn. In this paper, we briefly overview the recent progress that has been reported in the study of Ge and GeSn light emitters for silicon photonics, including theoretical models for calculating the optical gain and loss, several common methods of introducing tensile strain into Ge, methods of increasing the n-type doping density, and the method of fabricating luminescent devices of Ge and GeSn. Finally, we discuss the challenges facing us and the development prospects, in order to have a further understanding of Ge and GeSn light sources. Several breakthroughs have been made in past years, especially in the realizing of lasing from GeSn by optically pumping and Ge by optically and electrically pumping, which makes it possible to fabricate a practical laser used in silicon photonics and CMOS technology.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2013CB632103)和国家自然基金(批准号: 61176013, 61036003) 资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB632103) and the National Natural Science Foundation of China (Grant Nos. 61176013, 61036003).
    [1]

    Moore G E 1998 Proc. IEEE 86 82

    [2]

    Smit M, van der Tol J, Hill M 2012 Laser Photon Rev. 6 1

    [3]

    Paniccia M 2010 Nature Photon. 4 498

    [4]

    Ng W L, Lourenco M A, Gwilliam R M, Ledain S, Shao G, Homewood K P 2001 Nature 410 192

    [5]

    Rong H, Liu A, Jones R, Cohen O, Hak D, Nicolaescu R, Fang A, Paniccia M 2005 Nature 433 292

    [6]

    Rong H, Jones R, Liu A, Cohen O, Hak D, Fang A, Paniccia M 2005 Nature 433 725

    [7]

    Fujii M, Yoshida M, Kanzawa Y, Hayashi S, Yamamoto K 1997 Appl. Phys. Lett. 71 1198

    [8]

    Fang A W, Park H, Cohen O, Jones R, Paniccia M J, Bowers J E 2006 Opt. Express 14 9203

    [9]

    Wang T, Liu H, Lee A, Pozzi F, Seeds A 2011 Opt. Express 19 11381

    [10]

    Liu H, Wang T, Jiang Q, Hogg R, Tutu F, Pozzi F, Seeds A 2011 Nat. Photon. 5 416

    [11]

    Liu J, Sun X, Pan D, Wang X, Kimerling L C, Koch T L, Michel J 2007 Opt. Express 15 11272

    [12]

    Dutt B, Sukhdeo D S, Nam D, Vulovic B M, Ze Y, Saraswat K C 2012 IEEE Photon. J. 4 2002

    [13]

    El Kurdi M, Fishman G, Sauvage S b, Boucaud P 2010 J. Appl. Phys. 107 013710

    [14]

    Tahini H, Chroneos A, Grimes R W, Schwingenschlögl U 2011 Appl. Phys. Lett. 99 162103

    [15]

    Tahini H, Chroneos A, Grimes R W, Schwingenschlögl U, Dimoulas A 2012 J. Phys.: Condens. Matter 24 1614

    [16]

    Yang C H, Yu Z Y, Liu Y M, Lu P F, Gao T, Li M, Manzoor S 2013 Physica B: Condens. Matter 427 62

    [17]

    Liu L, Zhang M, Hu L, Di Z 2014 J. Appl. Phys. 116 113105

    [18]

    Liu J, Cannon D D, Wada K, Ishikawa Y, Danielson D T, Jongthammanurak S, Michel J, Kimerling L C 2004 Phys. Rev. B 70 155309

    [19]

    Liu Z, Cheng B W, Li Y M, Li C B, Xue C L, Wang Q M 2013 Chin. Phys. B 22 116804

    [20]

    Fang Y Y, Tolle J, Roucka R, Chizmeshya A V G, Kouvetakis J, D'Costa V R, Menéndez J 2007 Appl. Phys. Lett. 90 061915

    [21]

    Huo Y, Lin H, Chen R, Makarova M, Rong Y, Li M, Kamins T I, Vuckovic J, Harris J S 2011 Appl. Phys. Lett. 98 011111

    [22]

    Lim P H, Park S, Ishikawa Y, Wada K 2009 Opt. Express 17 16358

    [23]

    Sanchez-Perez J R, Boztug C, Chen F, Sudradjat F F, Paskiewicz D M, Jacobson R B, Lagally M G, Paiella R 2011 PNAS 108 18893

    [24]

    Jain J R, Hryciw A, Baer T M, Miller D A, Brongersma M L, Howe R T 2012 Nature Photon. 6 398

    [25]

    Capellini G, Reich C, Guha S, Yamamoto Y, Lisker M, Virgilio M, Ghrib A, El Kurdi M, Boucaud P, Tillack B, Schroeder T 2014 Opt. Express 22 399

    [26]

    Sun X, Liu J, Kimerling L C, Michel J 2009 Appl. Phys. Lett. 95 011911

    [27]

    El Kurdi M, Kociniewski T, Ngo T P, Boulmer J, Débarre D, Boucaud P, Damlencourt J F, Kermarrec O, Bensahel D 2009 Appl. Phys. Lett. 94 191107

    [28]

    Pankove J I, Aigrain P 1962 Phys. Rev. 126 956

    [29]

    Haas C 1962 Phys. Rev. 125 1965

    [30]

    Spitzer W G, Trumbore F A, Logan R A 1961 J. Appl. Phys. 32 1822

    [31]

    Newman R, Tyler W W 1957 Phys. Rev. 105 885

    [32]

    Carroll L, Friedli P, Neuenschwander S, Sigg H, Cecchi S, Isa F, Chrastina D, Isella G, Fedoryshyn Y, Faist J 2012 Phys. Rev. Lett. 109 057402

    [33]

    Sun X C, Liu J F, Kimerling L C, Michel J 2008 Sige, Ge, and Related Compounds 3 : Materials, Processing, and Devices 16 881

    [34]

    Brotzmann S, Bracht H 2008 J. Appl. Phys. 103 033508

    [35]

    Camacho-Aguilera R E, Cai Y, Bessette J T, Kimerling L C, Michel J 2012 Opt. Mat. Express 2 1462

    [36]

    Xu C, Senaratne C L, Kouvetakis J, Menéndez J 2014 Appl. Phys. Lett. 105 232103

    [37]

    Hu W X, Cheng B W, Xue C L, Xue H Y, Su S J, Bai A Q, Luo L P, Yu Y D, Wang Q M 2009 Appl. Phys. Lett. 95 092102

    [38]

    Cheng S L, Lu J, Shambat G, Yu H Y, Saraswat K, Vuckovic J, Nishi Y 2009 Opt. Express 17 10019

    [39]

    Sun X, Liu J, Kimerling L C, Michel J 2009 Opt. Lett. 34 1198

    [40]

    Liu J, Sun X, Camacho-Aguilera R, Kimerling L C, Michel J 2010 Opt. Lett. 35 679

    [41]

    Camacho-Aguilera R E, Cai Y, Patel N, Bessette J T, Romagnoli M, Kimerling L C, Michel J 2012 Opt. Express 20 11316

    [42]

    Koerner R, Oehme M, Gollhofer M, Schmid M, Kostecki K, Bechler S, Widmann D, Kasper E, Schulze J 2015 Opt. Express 23 14815

    [43]

    Boucaud P, Kurdi M E, Sauvage S, de Kersauson M, Ghrib A, Checoury X 2013 Nat. Photon. 7 162

    [44]

    Jenkins D W, Dow J D 1987 Phys. Rev. B 36 7994

    [45]

    D'Costa V R, Cook C S, Birdwell A G, Littler C L, Canonico M, Zollner S, Kouvetakis J, Menéndez J 2006 Phys. Rev. B 73 125207

    [46]

    Yin W J, Gong X G, Wei S H 2008 Phys. Rev. B: Condens. Matter 78 161203

    [47]

    Mathews J, Beeler R T, Tolle J, Xu C, Roucka R, Kouvetakis J, Menéndez J 2010 Appl. Phys. Lett. 97 221912

    [48]

    Grzybowski G, Jiang L, Mathews J, Roucka R, Xu C, Beeler R T, Kouvetakis J, Menéndez J 2011 Appl. Phys. Lett. 99 171910

    [49]

    Roucka R, Mathews J, Beeler R T, Tolle J, Kouvetakis J, Menéndez J 2011 Appl. Phys. Lett. 98 061109

    [50]

    Chen R, Lin H, Huo Y, Hitzman C, Kamins T I, Harris J S 2011 Appl. Phys. Lett. 99 181125

    [51]

    Oehme M, Werner J, Gollhofer M, Schmid M, Kaschel M, Kasper E, Schulze J 2011 IEEE Photon. Tech. L. 23 1751

    [52]

    Oehme M, Kostecki K, Arguirov T, Mussler G, Kaiheng Y, Gollhofer M, Schmid M, Kaschel M, Korner R A, Kittler M, Buca D, Kasper E, Schulze J 2014 IEEE Photon. Tech. L. 26 187

    [53]

    Wirths S, Geiger R, von den Driesch N, Mussler G, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D, Grtzmacher D 2015 Nature Photon. 9 88

  • [1]

    Moore G E 1998 Proc. IEEE 86 82

    [2]

    Smit M, van der Tol J, Hill M 2012 Laser Photon Rev. 6 1

    [3]

    Paniccia M 2010 Nature Photon. 4 498

    [4]

    Ng W L, Lourenco M A, Gwilliam R M, Ledain S, Shao G, Homewood K P 2001 Nature 410 192

    [5]

    Rong H, Liu A, Jones R, Cohen O, Hak D, Nicolaescu R, Fang A, Paniccia M 2005 Nature 433 292

    [6]

    Rong H, Jones R, Liu A, Cohen O, Hak D, Fang A, Paniccia M 2005 Nature 433 725

    [7]

    Fujii M, Yoshida M, Kanzawa Y, Hayashi S, Yamamoto K 1997 Appl. Phys. Lett. 71 1198

    [8]

    Fang A W, Park H, Cohen O, Jones R, Paniccia M J, Bowers J E 2006 Opt. Express 14 9203

    [9]

    Wang T, Liu H, Lee A, Pozzi F, Seeds A 2011 Opt. Express 19 11381

    [10]

    Liu H, Wang T, Jiang Q, Hogg R, Tutu F, Pozzi F, Seeds A 2011 Nat. Photon. 5 416

    [11]

    Liu J, Sun X, Pan D, Wang X, Kimerling L C, Koch T L, Michel J 2007 Opt. Express 15 11272

    [12]

    Dutt B, Sukhdeo D S, Nam D, Vulovic B M, Ze Y, Saraswat K C 2012 IEEE Photon. J. 4 2002

    [13]

    El Kurdi M, Fishman G, Sauvage S b, Boucaud P 2010 J. Appl. Phys. 107 013710

    [14]

    Tahini H, Chroneos A, Grimes R W, Schwingenschlögl U 2011 Appl. Phys. Lett. 99 162103

    [15]

    Tahini H, Chroneos A, Grimes R W, Schwingenschlögl U, Dimoulas A 2012 J. Phys.: Condens. Matter 24 1614

    [16]

    Yang C H, Yu Z Y, Liu Y M, Lu P F, Gao T, Li M, Manzoor S 2013 Physica B: Condens. Matter 427 62

    [17]

    Liu L, Zhang M, Hu L, Di Z 2014 J. Appl. Phys. 116 113105

    [18]

    Liu J, Cannon D D, Wada K, Ishikawa Y, Danielson D T, Jongthammanurak S, Michel J, Kimerling L C 2004 Phys. Rev. B 70 155309

    [19]

    Liu Z, Cheng B W, Li Y M, Li C B, Xue C L, Wang Q M 2013 Chin. Phys. B 22 116804

    [20]

    Fang Y Y, Tolle J, Roucka R, Chizmeshya A V G, Kouvetakis J, D'Costa V R, Menéndez J 2007 Appl. Phys. Lett. 90 061915

    [21]

    Huo Y, Lin H, Chen R, Makarova M, Rong Y, Li M, Kamins T I, Vuckovic J, Harris J S 2011 Appl. Phys. Lett. 98 011111

    [22]

    Lim P H, Park S, Ishikawa Y, Wada K 2009 Opt. Express 17 16358

    [23]

    Sanchez-Perez J R, Boztug C, Chen F, Sudradjat F F, Paskiewicz D M, Jacobson R B, Lagally M G, Paiella R 2011 PNAS 108 18893

    [24]

    Jain J R, Hryciw A, Baer T M, Miller D A, Brongersma M L, Howe R T 2012 Nature Photon. 6 398

    [25]

    Capellini G, Reich C, Guha S, Yamamoto Y, Lisker M, Virgilio M, Ghrib A, El Kurdi M, Boucaud P, Tillack B, Schroeder T 2014 Opt. Express 22 399

    [26]

    Sun X, Liu J, Kimerling L C, Michel J 2009 Appl. Phys. Lett. 95 011911

    [27]

    El Kurdi M, Kociniewski T, Ngo T P, Boulmer J, Débarre D, Boucaud P, Damlencourt J F, Kermarrec O, Bensahel D 2009 Appl. Phys. Lett. 94 191107

    [28]

    Pankove J I, Aigrain P 1962 Phys. Rev. 126 956

    [29]

    Haas C 1962 Phys. Rev. 125 1965

    [30]

    Spitzer W G, Trumbore F A, Logan R A 1961 J. Appl. Phys. 32 1822

    [31]

    Newman R, Tyler W W 1957 Phys. Rev. 105 885

    [32]

    Carroll L, Friedli P, Neuenschwander S, Sigg H, Cecchi S, Isa F, Chrastina D, Isella G, Fedoryshyn Y, Faist J 2012 Phys. Rev. Lett. 109 057402

    [33]

    Sun X C, Liu J F, Kimerling L C, Michel J 2008 Sige, Ge, and Related Compounds 3 : Materials, Processing, and Devices 16 881

    [34]

    Brotzmann S, Bracht H 2008 J. Appl. Phys. 103 033508

    [35]

    Camacho-Aguilera R E, Cai Y, Bessette J T, Kimerling L C, Michel J 2012 Opt. Mat. Express 2 1462

    [36]

    Xu C, Senaratne C L, Kouvetakis J, Menéndez J 2014 Appl. Phys. Lett. 105 232103

    [37]

    Hu W X, Cheng B W, Xue C L, Xue H Y, Su S J, Bai A Q, Luo L P, Yu Y D, Wang Q M 2009 Appl. Phys. Lett. 95 092102

    [38]

    Cheng S L, Lu J, Shambat G, Yu H Y, Saraswat K, Vuckovic J, Nishi Y 2009 Opt. Express 17 10019

    [39]

    Sun X, Liu J, Kimerling L C, Michel J 2009 Opt. Lett. 34 1198

    [40]

    Liu J, Sun X, Camacho-Aguilera R, Kimerling L C, Michel J 2010 Opt. Lett. 35 679

    [41]

    Camacho-Aguilera R E, Cai Y, Patel N, Bessette J T, Romagnoli M, Kimerling L C, Michel J 2012 Opt. Express 20 11316

    [42]

    Koerner R, Oehme M, Gollhofer M, Schmid M, Kostecki K, Bechler S, Widmann D, Kasper E, Schulze J 2015 Opt. Express 23 14815

    [43]

    Boucaud P, Kurdi M E, Sauvage S, de Kersauson M, Ghrib A, Checoury X 2013 Nat. Photon. 7 162

    [44]

    Jenkins D W, Dow J D 1987 Phys. Rev. B 36 7994

    [45]

    D'Costa V R, Cook C S, Birdwell A G, Littler C L, Canonico M, Zollner S, Kouvetakis J, Menéndez J 2006 Phys. Rev. B 73 125207

    [46]

    Yin W J, Gong X G, Wei S H 2008 Phys. Rev. B: Condens. Matter 78 161203

    [47]

    Mathews J, Beeler R T, Tolle J, Xu C, Roucka R, Kouvetakis J, Menéndez J 2010 Appl. Phys. Lett. 97 221912

    [48]

    Grzybowski G, Jiang L, Mathews J, Roucka R, Xu C, Beeler R T, Kouvetakis J, Menéndez J 2011 Appl. Phys. Lett. 99 171910

    [49]

    Roucka R, Mathews J, Beeler R T, Tolle J, Kouvetakis J, Menéndez J 2011 Appl. Phys. Lett. 98 061109

    [50]

    Chen R, Lin H, Huo Y, Hitzman C, Kamins T I, Harris J S 2011 Appl. Phys. Lett. 99 181125

    [51]

    Oehme M, Werner J, Gollhofer M, Schmid M, Kaschel M, Kasper E, Schulze J 2011 IEEE Photon. Tech. L. 23 1751

    [52]

    Oehme M, Kostecki K, Arguirov T, Mussler G, Kaiheng Y, Gollhofer M, Schmid M, Kaschel M, Korner R A, Kittler M, Buca D, Kasper E, Schulze J 2014 IEEE Photon. Tech. L. 26 187

    [53]

    Wirths S, Geiger R, von den Driesch N, Mussler G, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D, Grtzmacher D 2015 Nature Photon. 9 88

  • [1] 陶聪, 王敬民, 牛美玲, 朱琳, 彭其明, 王建浦. 非磁性发光材料的磁场效应: 从有机半导体到卤化物钙钛矿. 物理学报, 2022, 71(6): 068502. doi: 10.7498/aps.71.20211872
    [2] 杨雯, 宋建军, 任远, 张鹤鸣. 光器件应用改性Ge的能带结构模型. 物理学报, 2018, 67(19): 198502. doi: 10.7498/aps.67.20181155
    [3] 黄诗浩, 谢文明, 汪涵聪, 林光杨, 王佳琪, 黄巍, 李成. 双能谷效应对N型掺杂Si基Ge材料载流子晶格散射的影响. 物理学报, 2018, 67(4): 040501. doi: 10.7498/aps.67.20171413
    [4] 史文俊, 易迎彦, 黎敏. 锗在吸收边附近的压力-折射率系数. 物理学报, 2016, 65(16): 167801. doi: 10.7498/aps.65.167801
    [5] 安霞, 黄如, 李志强, 云全新, 林猛, 郭岳, 刘朋强, 黎明, 张兴. 高迁移率Ge沟道器件研究进展. 物理学报, 2015, 64(20): 208501. doi: 10.7498/aps.64.208501
    [6] 白敏, 宣荣喜, 宋建军, 张鹤鸣, 胡辉勇, 舒斌. 压应变Ge/(001)Si1-xGex空穴散射与迁移率模型. 物理学报, 2015, 64(3): 038501. doi: 10.7498/aps.64.038501
    [7] 林圳旭, 林泽文, 张毅, 宋超, 郭艳青, 王祥, 黄新堂, 黄锐. 基于纳米硅结构的氮化硅基发光器件电致发光特性研究. 物理学报, 2014, 63(3): 037801. doi: 10.7498/aps.63.037801
    [8] 刘智, 李亚明, 薛春来, 成步文, 王启明. 掺杂对多层Ge/Si(001)量子点光致发光的影响. 物理学报, 2013, 62(7): 076108. doi: 10.7498/aps.62.076108
    [9] 苏少坚, 成步文, 薛春来, 张东亮, 张广泽, 王启明. GeSn合金的晶格常数对Vegard定律的偏离. 物理学报, 2012, 61(17): 176104. doi: 10.7498/aps.61.176104
    [10] 黄诗浩, 李成, 陈城钊, 郑元宇, 赖虹凯, 陈松岩. N型掺杂应变Ge发光性质. 物理学报, 2012, 61(3): 036202. doi: 10.7498/aps.61.036202
    [11] 吴政, 王尘, 严光明, 刘冠洲, 李成, 黄巍, 赖虹凯, 陈松岩. 采用Al/TaN叠层电极提高Si基Ge PIN光电探测器的性能. 物理学报, 2012, 61(18): 186105. doi: 10.7498/aps.61.186105
    [12] 陈城钊, 郑元宇, 黄诗浩, 李成, 赖虹凯, 陈松岩. 硅基低位错密度厚锗外延层的UHV/CVD法生长. 物理学报, 2012, 61(7): 078104. doi: 10.7498/aps.61.078104
    [13] 苏少坚, 汪巍, 张广泽, 胡炜玄, 白安琪, 薛春来, 左玉华, 成步文, 王启明. Si(001)衬底上分子束外延生长Ge0.975Sn0.025合金薄膜. 物理学报, 2011, 60(2): 028101. doi: 10.7498/aps.60.028101
    [14] 胡昉, 张寒洁, 吕 斌, 陶永升, 李海洋, 鲍世宁, 何丕模, 王学森. Ge在Ru(0001)表面上生长及其性质研究. 物理学报, 2005, 54(3): 1330-1333. doi: 10.7498/aps.54.1330
    [15] 涂修文, 盖峥. Ge(112)-(4×1)-In表面重构的原子结构. 物理学报, 2001, 50(12): 2439-2445. doi: 10.7498/aps.50.2439
    [16] 乔皓, 资剑, 徐至中, 张开明. 形变超晶格Si/Ge的能带结构. 物理学报, 1993, 42(8): 1317-1323. doi: 10.7498/aps.42.1317
    [17] 乔皓, 徐至中, 张开明. 形变Si,Ge中的深能级. 物理学报, 1993, 42(11): 1830-1835. doi: 10.7498/aps.42.1830
    [18] 资剑, 张开明. (Si)n/(Ge)n超晶格几何结构. 物理学报, 1990, 39(10): 1640-1646. doi: 10.7498/aps.39.1640
    [19] 陈可明, 周国良, 盛篪, 蒋维栋, 张翔九. Ge/Si(111)与Si/Ge(111)体系的生长特性与表面再构研究. 物理学报, 1990, 39(4): 599-606. doi: 10.7498/aps.39.599
    [20] 张开明, 叶令. CI在Si和Ge(111)面上的化学吸附. 物理学报, 1980, 29(12): 1596-1603. doi: 10.7498/aps.29.1596
计量
  • 文章访问数:  4702
  • PDF下载量:  467
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-19
  • 修回日期:  2015-09-20
  • 刊出日期:  2015-10-05

/

返回文章
返回