搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZnO薄膜发光器件的电抽运随机激射:随机性的抑制

纪然 蒋书明 夏程涛 杨德仁 马向阳

引用本文:
Citation:

ZnO薄膜发光器件的电抽运随机激射:随机性的抑制

纪然, 蒋书明, 夏程涛, 杨德仁, 马向阳

Electrically pumped random lasing from light-emitting devices based on ZnO films: Suppression of randomness

Ji Ran, Jiang Shu-Ming, Xia Cheng-Tao, Yang De-Ren, Ma Xiang-Yang
PDF
导出引用
  • 通过以大晶粒水热ZnO薄膜作为发光层并加以恰当图案化处理的策略,显著抑制了基于ZnO薄膜的金属-绝缘体-半导体(MIS)结构发光器件的电抽运随机激射的随机性。采用激光直写光刻工艺,先将硅衬底上的晶粒大小超过500 nm的水热ZnO薄膜图案化为大量的“小方块”(称为“Block”)和“街道”(称为“Street”),然后制备基于上述图案化ZnO薄膜的MIS结构(Au/SiO2/ZnO)发光器件(light-emitting device, 以下简称LED)。研究表明:在相同的注入电流下,基于图案化ZnO薄膜的发光器件比基于未图案化ZnO薄膜的发光器件具有更少的随机激射模式;且前者随Block边长的减小而具更少的激射模式,同时其最强激射模式的波长在更窄的范围内波动。值得指出的是:在适当的条件(小注入电流和小Block边长)下,基于图案化水热ZnO薄膜的发光器件还可产生单模随机激射。此外,对比研究还表明:基于大晶粒水热ZnO薄膜的LED会比基于小晶粒溅射ZnO薄膜的LED具有更小的激射阈值电流,且在同样的注入电流下具有更少的激射模式和更高的激射光功率。关于上述结果背后的物理机制,分析指出:对基于图案化ZnO薄膜的发光器件而言,一方面由于单个Block内ZnO薄膜中的晶粒和晶界数量有限,光多重散射被严重削弱,那些能够通过光多重散射获得净光增益而产生随机激射的路径与ZnO薄膜未经图案化处理的情形相比要少得多。另外一方面,由于单个Block空间有限,不同激射模式之间的增益竞争使得空间上重叠较大的激射模式不能同时存在。由于上述两方面的原因,随着Block边长的减小,发光器件随机激射的模式会变得更少。此外,Block之间的光学耦合效应会加剧单个Block内部激射模式之间的增益竞争,从而进一步减少发光器件的随机激射模式。
    We report on the significant suppression of randomness of the electrically pumped random lasing (RL) from ZnO-based metal-insulator-semiconductor (MIS) structured light-emitting devices (LEDs), by means of adopting the appropriately patterned hydrothermal ZnO films featuring large crystal grains as the light-emitting layer. The hydrothermal ZnO films on silicon substrates, with the crystal grains sized over 500 nm, were firstly patterned into a number of square blocks separated by streets by using laser direct writing photolithography. Based on such patterned ZnO films, the MIS (Au/SiO2/ZnO) structured LEDs on silicon were prepared. Under the same injection current, the LED with the patterned ZnO film exhibited much fewer RL modes than the counterpart with the non-patterned ZnO film and, moreover, the former exhibited ever-fewer RL modes with the decreasing block size. Besides, the wavelength of the strongest RL modes from the LED with the patterned ZnO film fluctuated in a much narrower range with respect to that from the LED with the non-patterned ZnO film. It is worth mentioning that the LED with the patterned hydrothermal ZnO film can even be pumped into the single-mode RL under the desirable conditions such as low injection current and small patterned blocks. Moreover, the comparative investigation indicated that the LED with the large-grain hydrothermal ZnO film exhibited the smaller RL threshold current than the counterpart with the small-grain sputtered ZnO film, and, the former had fewer RL modes and a higher output lasing power than the latter under the same injection current. As for the physical mechanism underlying the aforementioned results, it is analyzed as follows. Regarding the LED with the patterned ZnO film, on one hand, due to limited numbers of crystal grains and grain boundaries within a single block, the multiple optical scattering is remarkably suppressed. Then, the paths through which the net optical gain and therefore the lasing action can be achieved via the multiple optical scattering are much fewer than those in the case of the non-patterned ZnO film. On the other hand, due to optical gain competition among different RL modes occurring within the limited space of a single block, the RL modes with significant spatial overlap could not lase simultaneously. For the two-fold reasons as mentioned above, the LED exhibits ever-fewer RL modes with decreasing size of blocks. Moreover, the inter-block optical coupling enables the optical gain competition among different RL modes to be more violent within a single block, leading to further reduction of RL modes.
  • [1]

    Cao H, Zhao Y G, Ong H C, Ho S T, Dai J Y, Wu J Y, Chang R P H 1998 Appl. Phys. Lett. 73 3656

    [2]

    Yu S F, Leong E S P 2004 Ieee J. Quantum Electron. 40 1186

    [3]

    Cao H, Zhao Y G, Ong H C, Chang R P H 1999 Phys. Rev. B 59 15107

    [4]

    Thareja R K, Mitra A 2000 Appl. Phys. B: Lasers Opt. 71 181

    [5]

    Lau S P, Yang H Y, Yu S F, Li H D, Tanemura M, Okita T, Hatano H, Hng H H 2005 Appl. Phys. Lett. 87 013104

    [6]

    Ursaki V V, Burlacu A, Rusu E V, Postolake V, Tiginyanu I M 2009 J. Opt. A: Pure Appl. Opt. 11 075001

    [7]

    Yu S F, Yuen C, Lau S P, Park W I, Yi G C 2004 Appl. Phys. Lett. 84 3241

    [8]

    Ma X Y, Chen P L, Li D S, Zhang Y Y, Yang D R 2007 Appl. Phys. Lett. 91 251109

    [9]

    Chu S, Olmedo M, Yang Z, Kong J Y, Liu J L 2008 Appl. Phys. Lett. 93 181106

    [10]

    Long H, Fang G J, Huang H H, Mo X M, Xia W, Dong B Z, Meng X Q, Zhao X Z 2009 Appl. Phys. Lett. 95 013509

    [11]

    Zhu H, Shan C X, Zhang J Y, Zhang Z Z, Li B H, Zhao D X, Yao B, Shen D Z, Fan X W, Tang Z K, Hou X H, Choy K L 2010 Adv. Mater. 22 1877

    [12]

    Chen P L, Ma X Y, Li D S, Zhang Y Y, Yang D R 2009 Opt. Express 17 4712

    [13]

    Wang C X, Jiang H T, Li Y P, Ma X Y, Yang D R 2013 J. Appl. Phys. 114 133105

    [14]

    Wang C X, Zhu C, Lv C Y, Li D S, Ma X Y, Yang D R 2015 Appl. Surf. Sci. 332 620

    [15]

    Jiang S M, Xia C T, Ji R, Pang H W, Li D S, Yang D R, Ma X Y 2024 Acs Appl. Mater. Interfaces. 16 3719

    [16]

    Ma X Y, Pan J W, Chen P L, Li D S, Zhang H, Yang Y, Yang D R 2009 Opt. Express 17 14426

    [17]

    Ryglowski L, Cyprych K, Mysliwiec J 2022 Opt. Commun. 510 127939

    [18]

    Li Y P, Wang C X, Jin L, Ma X Y, Yang D R 2013 Appl. Phys. Lett. 102 161112

    [19]

    Xu Y, Li Y P, Jin L, Ma X Y, Yang D R 2013 Acta Phys. Sin. 62 084207(in Chinese) [徐韵, 李云鹏, 金璐, 马向阳, 杨德仁2013物理学报 62084207]

    [20]

    Jiang X Y, Soukoulis C M 2000 Phys. Rev. Lett. 85 70

    [21]

    Sebbah P, Vanneste C 2002 Phys. Rev. B 66 144202

    [22]

    Du W B, Leng J Y, Zhu J J, Zhou P, Xu X J, Shu B H 2012 Acta Phys. Sin. 61 114203(in Chinese) [杜文博, 冷进勇, 朱家健, 周朴, 许晓军, 舒柏宏2012物理学报 61114203]

    [23]

    Zhu G Y, Tian M F, Almokhtar M, Qin F F, Li B H, Zhou M Y, Gao F, Yang Y, Ji X, He S Q, Wang Y J 2022 Chin. Phys. Lett. 39 123401(in Chinese) [朱刚毅, 田沐霏, 秦飞飞, 李炳辉, 周梦谣, 高菲, 杨颖, 纪鑫, 何丝情, 王永进2022中国物理快报 39123401]

    [24]

    Liu H, Li S J, You Y Q, Wang J W, Sun J, Zhang L, Xiong L L 2023 Optik 281 170853

    [25]

    Wang Y Y, Xu C X, Jiang M M, Li J T, Dai J, Lu J F, Li P L 2016 Nanoscale 8 16631

    [26]

    Wei W H, Li M T, Liu M N 2018 Acta Phys. Sin. 67 064203(in Chinese) [魏伟华, 李木天, 刘墨南2018物理学报 67064203]

    [27]

    Ma G H, Zhang J B, Zhang H, Jin L, Wang G X, Xu Y T 2019 Chin. Opt. 12 649(in Chinese) [马光辉, 张家斌, 张贺, 金亮, 王灌鑫, 徐英添2019中国光学 12649]

  • [1] 邹文静, 赵玉康, 吴有智, 张材荣. 磷光敏化荧光白色有机电致发光器件. 物理学报, doi: 10.7498/aps.74.20241294
    [2] 徐宇轩, 姚泰宇, 邓莉, 陈诗枚, 徐辰尧, 唐文轩. 薄膜微盘激射性质. 物理学报, doi: 10.7498/aps.73.20231754
    [3] 陶聪, 王敬民, 牛美玲, 朱琳, 彭其明, 王建浦. 非磁性发光材料的磁场效应: 从有机半导体到卤化物钙钛矿. 物理学报, doi: 10.7498/aps.71.20211872
    [4] 李明华, 袁振洲, 许琰, 田钧方. 基于改进格子气模型的对向行人流分层现象的随机性研究. 物理学报, doi: 10.7498/aps.64.018903
    [5] 何超, 张旭, 刘智, 成步文. Si基IV族异质结构发光器件的研究进展. 物理学报, doi: 10.7498/aps.64.206102
    [6] 张然, 肖鑫泽, 吕超, 骆杨, 徐颖. 金纳米棒的飞秒激光组装研究. 物理学报, doi: 10.7498/aps.63.014206
    [7] 徐韵, 李云鹏, 金璐, 马向阳, 杨德仁. 脉冲激光沉积法制备的ZnO薄膜的低阈值电抽运紫外随机激射. 物理学报, doi: 10.7498/aps.62.084207
    [8] 谭红芳, 金涛, 屈世显. 一个全局耦合不连续映像格子中的冻结化随机图案模式. 物理学报, doi: 10.7498/aps.61.040507
    [9] 常艳玲, 张琦锋, 孙 晖, 吴锦雷. ZnO纳米线双绝缘层结构电致发光器件制备及特性研究. 物理学报, doi: 10.7498/aps.56.2399
    [10] 王 宏, 欧阳征标, 韩艳玲, 孟庆生, 罗贤达, 刘劲松. 随机性对部分随机介质激光器阈值的影响. 物理学报, doi: 10.7498/aps.56.2616
    [11] 和青芳, 徐 征, 刘德昂, 徐叙瑢. 蒙特卡罗方法模拟薄膜电致发光器件中碰撞离化的作用. 物理学报, doi: 10.7498/aps.55.1997
    [12] 李国辉, 徐得名, 周世平. 随机性参数自适应的混沌同步. 物理学报, doi: 10.7498/aps.53.379
    [13] 孙 涛, 黄锦圣, 张伟力, 柴 路, 王清月, 王克伦. ZnO粉末中无序激射现象时间分辨的研究. 物理学报, doi: 10.7498/aps.52.2127
    [14] 邓朝勇, 赵辉, 王永生. 薄膜电致发光器件电子能量的空间分布. 物理学报, doi: 10.7498/aps.50.1385
    [15] 曲凯阳, 江 亿. 均质形核结冰随机性及形核率的研究. 物理学报, doi: 10.7498/aps.49.2214
    [16] 刘祖黎, 魏合林, 王汉文, 王均震. 薄膜生长的随机模型. 物理学报, doi: 10.7498/aps.48.1302
    [17] 邢永忠, 徐躬耦. 经典混沌系统在相应于初始相干态的量子子空间中的随机性. 物理学报, doi: 10.7498/aps.48.769
    [18] 郑兴武, 凌兆芬, 吕静, 韩溥. Orion KL超水微波激射辐射的“宁静相”物理特征. 物理学报, doi: 10.7498/aps.45.1418
    [19] 徐云, 张建峡, 杜世培. 动力学系统中非线性项的跳跃随机性. 物理学报, doi: 10.7498/aps.40.33
    [20] 傅盘铭, 叶佩弦. 激光场的随机性对简并四波混频的影响. 物理学报, doi: 10.7498/aps.34.737
计量
  • 文章访问数:  114
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-01-06

/

返回文章
返回