-
通过以大晶粒水热ZnO薄膜作为发光层并加以恰当图案化处理的策略,显著抑制了基于ZnO薄膜的金属-绝缘体-半导体(MIS)结构发光器件的电抽运随机激射的随机性。采用激光直写光刻工艺,先将硅衬底上的晶粒大小超过500 nm的水热ZnO薄膜图案化为大量的“小方块”(称为“Block”)和“街道”(称为“Street”),然后制备基于上述图案化ZnO薄膜的MIS结构(Au/SiO2/ZnO)发光器件(light-emitting device, 以下简称LED)。研究表明:在相同的注入电流下,基于图案化ZnO薄膜的发光器件比基于未图案化ZnO薄膜的发光器件具有更少的随机激射模式;且前者随Block边长的减小而具更少的激射模式,同时其最强激射模式的波长在更窄的范围内波动。值得指出的是:在适当的条件(小注入电流和小Block边长)下,基于图案化水热ZnO薄膜的发光器件还可产生单模随机激射。此外,对比研究还表明:基于大晶粒水热ZnO薄膜的LED会比基于小晶粒溅射ZnO薄膜的LED具有更小的激射阈值电流,且在同样的注入电流下具有更少的激射模式和更高的激射光功率。关于上述结果背后的物理机制,分析指出:对基于图案化ZnO薄膜的发光器件而言,一方面由于单个Block内ZnO薄膜中的晶粒和晶界数量有限,光多重散射被严重削弱,那些能够通过光多重散射获得净光增益而产生随机激射的路径与ZnO薄膜未经图案化处理的情形相比要少得多。另外一方面,由于单个Block空间有限,不同激射模式之间的增益竞争使得空间上重叠较大的激射模式不能同时存在。由于上述两方面的原因,随着Block边长的减小,发光器件随机激射的模式会变得更少。此外,Block之间的光学耦合效应会加剧单个Block内部激射模式之间的增益竞争,从而进一步减少发光器件的随机激射模式。We report on the significant suppression of randomness of the electrically pumped random lasing (RL) from ZnO-based metal-insulator-semiconductor (MIS) structured light-emitting devices (LEDs), by means of adopting the appropriately patterned hydrothermal ZnO films featuring large crystal grains as the light-emitting layer. The hydrothermal ZnO films on silicon substrates, with the crystal grains sized over 500 nm, were firstly patterned into a number of square blocks separated by streets by using laser direct writing photolithography. Based on such patterned ZnO films, the MIS (Au/SiO2/ZnO) structured LEDs on silicon were prepared. Under the same injection current, the LED with the patterned ZnO film exhibited much fewer RL modes than the counterpart with the non-patterned ZnO film and, moreover, the former exhibited ever-fewer RL modes with the decreasing block size. Besides, the wavelength of the strongest RL modes from the LED with the patterned ZnO film fluctuated in a much narrower range with respect to that from the LED with the non-patterned ZnO film. It is worth mentioning that the LED with the patterned hydrothermal ZnO film can even be pumped into the single-mode RL under the desirable conditions such as low injection current and small patterned blocks. Moreover, the comparative investigation indicated that the LED with the large-grain hydrothermal ZnO film exhibited the smaller RL threshold current than the counterpart with the small-grain sputtered ZnO film, and, the former had fewer RL modes and a higher output lasing power than the latter under the same injection current. As for the physical mechanism underlying the aforementioned results, it is analyzed as follows. Regarding the LED with the patterned ZnO film, on one hand, due to limited numbers of crystal grains and grain boundaries within a single block, the multiple optical scattering is remarkably suppressed. Then, the paths through which the net optical gain and therefore the lasing action can be achieved via the multiple optical scattering are much fewer than those in the case of the non-patterned ZnO film. On the other hand, due to optical gain competition among different RL modes occurring within the limited space of a single block, the RL modes with significant spatial overlap could not lase simultaneously. For the two-fold reasons as mentioned above, the LED exhibits ever-fewer RL modes with decreasing size of blocks. Moreover, the inter-block optical coupling enables the optical gain competition among different RL modes to be more violent within a single block, leading to further reduction of RL modes.
-
Keywords:
- hydrothermal ZnO film /
- light-emitting device /
- random lasing /
- patterning /
- suppression of randomness
-
[1] Cao H, Zhao Y G, Ong H C, Ho S T, Dai J Y, Wu J Y, Chang R P H 1998 Appl. Phys. Lett. 73 3656
[2] Yu S F, Leong E S P 2004 Ieee J. Quantum Electron. 40 1186
[3] Cao H, Zhao Y G, Ong H C, Chang R P H 1999 Phys. Rev. B 59 15107
[4] Thareja R K, Mitra A 2000 Appl. Phys. B: Lasers Opt. 71 181
[5] Lau S P, Yang H Y, Yu S F, Li H D, Tanemura M, Okita T, Hatano H, Hng H H 2005 Appl. Phys. Lett. 87 013104
[6] Ursaki V V, Burlacu A, Rusu E V, Postolake V, Tiginyanu I M 2009 J. Opt. A: Pure Appl. Opt. 11 075001
[7] Yu S F, Yuen C, Lau S P, Park W I, Yi G C 2004 Appl. Phys. Lett. 84 3241
[8] Ma X Y, Chen P L, Li D S, Zhang Y Y, Yang D R 2007 Appl. Phys. Lett. 91 251109
[9] Chu S, Olmedo M, Yang Z, Kong J Y, Liu J L 2008 Appl. Phys. Lett. 93 181106
[10] Long H, Fang G J, Huang H H, Mo X M, Xia W, Dong B Z, Meng X Q, Zhao X Z 2009 Appl. Phys. Lett. 95 013509
[11] Zhu H, Shan C X, Zhang J Y, Zhang Z Z, Li B H, Zhao D X, Yao B, Shen D Z, Fan X W, Tang Z K, Hou X H, Choy K L 2010 Adv. Mater. 22 1877
[12] Chen P L, Ma X Y, Li D S, Zhang Y Y, Yang D R 2009 Opt. Express 17 4712
[13] Wang C X, Jiang H T, Li Y P, Ma X Y, Yang D R 2013 J. Appl. Phys. 114 133105
[14] Wang C X, Zhu C, Lv C Y, Li D S, Ma X Y, Yang D R 2015 Appl. Surf. Sci. 332 620
[15] Jiang S M, Xia C T, Ji R, Pang H W, Li D S, Yang D R, Ma X Y 2024 Acs Appl. Mater. Interfaces. 16 3719
[16] Ma X Y, Pan J W, Chen P L, Li D S, Zhang H, Yang Y, Yang D R 2009 Opt. Express 17 14426
[17] Ryglowski L, Cyprych K, Mysliwiec J 2022 Opt. Commun. 510 127939
[18] Li Y P, Wang C X, Jin L, Ma X Y, Yang D R 2013 Appl. Phys. Lett. 102 161112
[19] Xu Y, Li Y P, Jin L, Ma X Y, Yang D R 2013 Acta Phys. Sin. 62 084207(in Chinese) [徐韵, 李云鹏, 金璐, 马向阳, 杨德仁2013物理学报 62084207]
[20] Jiang X Y, Soukoulis C M 2000 Phys. Rev. Lett. 85 70
[21] Sebbah P, Vanneste C 2002 Phys. Rev. B 66 144202
[22] Du W B, Leng J Y, Zhu J J, Zhou P, Xu X J, Shu B H 2012 Acta Phys. Sin. 61 114203(in Chinese) [杜文博, 冷进勇, 朱家健, 周朴, 许晓军, 舒柏宏2012物理学报 61114203]
[23] Zhu G Y, Tian M F, Almokhtar M, Qin F F, Li B H, Zhou M Y, Gao F, Yang Y, Ji X, He S Q, Wang Y J 2022 Chin. Phys. Lett. 39 123401(in Chinese) [朱刚毅, 田沐霏, 秦飞飞, 李炳辉, 周梦谣, 高菲, 杨颖, 纪鑫, 何丝情, 王永进2022中国物理快报 39123401]
[24] Liu H, Li S J, You Y Q, Wang J W, Sun J, Zhang L, Xiong L L 2023 Optik 281 170853
[25] Wang Y Y, Xu C X, Jiang M M, Li J T, Dai J, Lu J F, Li P L 2016 Nanoscale 8 16631
[26] Wei W H, Li M T, Liu M N 2018 Acta Phys. Sin. 67 064203(in Chinese) [魏伟华, 李木天, 刘墨南2018物理学报 67064203]
[27] Ma G H, Zhang J B, Zhang H, Jin L, Wang G X, Xu Y T 2019 Chin. Opt. 12 649(in Chinese) [马光辉, 张家斌, 张贺, 金亮, 王灌鑫, 徐英添2019中国光学 12649]
计量
- 文章访问数: 114
- PDF下载量: 2
- 被引次数: 0