搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

薄膜微盘激射性质

徐宇轩 姚泰宇 邓莉 陈诗枚 徐辰尧 唐文轩

引用本文:
Citation:

薄膜微盘激射性质

徐宇轩, 姚泰宇, 邓莉, 陈诗枚, 徐辰尧, 唐文轩

Directional emission properties of thin film microdisk

Xu Yu-Xuan, Yao Tai-Yu, Deng Li, Chen Shi-Mei, Xu Chen-Yao, Tang Wen-Xuan
PDF
HTML
导出引用
  • 基于半导体变形微腔的定向激射效应, 在各向同性薄膜中制备变形微腔, 将为多功能、高集成光子有源芯片提供新的解决方案. 利用二维波动光学理论, 以Z切向掺饵铌酸锂薄膜蚶线形微盘中的TE20,1模式为例, 分析了不同变形因子$\varepsilon $微盘的模式分布、品质因子Q、定向激射效果D以及庞加莱截面图. 理论模拟结果显示, 微盘变形过程中微盘周长与谐振波长的比值近似为一定值. 当$\varepsilon $大于0.24时, 微盘具有较好的单向激射性, Q值大于105; 当$\varepsilon $变形因子大于0.4时, 庞加莱截面图几乎被混沌海区域占据, Q值低于103. 因此, 薄膜蚶线形微盘变形因子$\varepsilon $在0.24—0.4之间时, 微盘不仅具有高的品质因子(Q值为103—105), 激射方向性也较高(D值为6.45—8.32).
    Based on the directional emission effect of semiconductor deformed microcavities, the fabrication of deformed microcavities in isotropic thin films will provide a new solution for multifunctional and highly integrated photonic active chips. Because the Limacon shaped microcavity has become one of the important configurations of single-mode, low threshold on-chip lasers, the directional emission properties of microdisks fabricated in thin film are investigated. Taking the TE20,1 mode existing in the Z-cut lithium niobate thin film microdisk for example, according to two-dimensional wave optics theory, the mode distribution, quality factor Q, and directional emission factor D of microdisk variations with deformation factor $\varepsilon $ are respectively analyzed through using the wave optics module of COMSOL. Adopting classical scattering theory, Poincaré surfaces of sections under different deformation factors are simulated by optimizing the Dynamical Billards.jl library in Julia. In the simulation realized by Julia, 200 particle collisions are used 200 times to simulate 200 reflections of rays and finally PSOS images are obtained. Simulation results reveal that when the azimuthal quantum number of the light wave mode remains unchanged, although the shape of the microdisk varies, the ratio of the resonant wavelength inside the microdisk to the circumference of the microdisk is approximately a constant, which can predict the microdisk size and resonant wavelength estimation of microcavities. The corresponding PSOS shows that when $\varepsilon > 0.45$, the entire region is covered by chaotic sea area, therefore $\varepsilon $ values of 0, 0.16, 0.24, 0.28, 0.45 are selected to simulate the TE20,1 mode distribution, far-field radiation flux angle distribution, and PSOS. Theoretical simulation results show that when the deformation factor is greater than 0.24, the microdisk has good unidirectional lasing property, with a Q factor greater than 105. When the deformation factor is greater than 0.4, the PSOS is almost occupied by the chaotic sea area, with a Q factor below 103. Therefore, when the deformation factor of the limacon microdisk in the thin film can be chosen between 0.24 and 0.4, under which circumstance the microdisk not only carries high quality factor (about 103–105), but also forms high laser directionality (about 6.45–8.32). The theoretical simulation results will provide a certain theoretical reference for conducting the experimental research of thin film deformation microcavities.
      通信作者: 邓莉, ldeng@phy.ecnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12174113)资助的课题.
      Corresponding author: Deng Li, ldeng@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12174113).
    [1]

    Baaske M D, Foreman M R, Vollmer F 2014 Nat. Nanotechnol. 9 933Google Scholar

    [2]

    Kippenberg T J, Holzwarth R, Diddams S A 2011 Science 332 555Google Scholar

    [3]

    Kippenberg T J, Vahala K J 2008 Science 321 1172Google Scholar

    [4]

    Michael C P, Srinivasan K, Johnson T J, Painter O, Lee K H, Hennessy K, Kim H, Hu E 2007 Appl. Phys. Lett. 90 051108Google Scholar

    [5]

    Redding B, Ge L, Song Q H, Wiersig J, Solomon G S, Cao H 2012 Phys. Rev. Lett. 108 253902Google Scholar

    [6]

    Fang W, Cao H, Solomon G S 2007 Appl. Phys. Lett. 90 081108Google Scholar

    [7]

    Unterhinninghofen J, Wiersig J, Hentschel M 2008 Phys. Rev. E 78 016201Google Scholar

    [8]

    Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L, Hu E, Imamoglu A 2000 Science 290 2282Google Scholar

    [9]

    Jiang X F, Zou C L, Wang L, Gong Q H, Xiao Y F 2016 Laser Photonics Rev. 10 40Google Scholar

    [10]

    Chern G D, Tureci H E, Stone A D, Chang R K, Kneissl M, Johnson N M 2003 Appl. Phys. Lett. 83 1710Google Scholar

    [11]

    Kurdoglyan M S, Lee S Y, Rim S, Kim C M 2004 Opt. Lett. 29 2758Google Scholar

    [12]

    Baryshnikov Y, Heider P, Parz W, Zharnitsky V 2004 Phys. Rev. Lett. 93 133902Google Scholar

    [13]

    Gao J, Heider P, Chen C J, Yang X D, Husko C A, Wong C W 2007 Appl. Phys. Lett. 91 181101Google Scholar

    [14]

    Wiersig J, Hentschel M 2006 Phys. Rev. A 73 031802Google Scholar

    [15]

    Fang W, Yamilov A, Cao H 2005 Phys. Rev. A 72 023815Google Scholar

    [16]

    Lee S Y, Kurdoglyan M S, Rim S, Kim C M 2004 Phys. Rev. A 70 023809Google Scholar

    [17]

    Lebental M, Lauret J S, Hierle R, Zyss J 2006 Appl. Phys. Lett. 88 031108Google Scholar

    [18]

    Wiersig J, Hentschel M 2008 Phys. Rev. Lett. 100 033901Google Scholar

    [19]

    Yi C H, Kim M W, Kim C M 2009 Appl. Phys. Lett. 95 141107Google Scholar

    [20]

    Song Q H, Fang W, Liu B Y, Ho S T, Solomon G S, Cao H 2009 Phys. Rev. A 80 041807Google Scholar

    [21]

    Kim K, Bittner S, Jin Y H, Zeng Y Q, Wang Q J, Cao H 2023 Opt. Lett. 48 574Google Scholar

    [22]

    Yan C L, Shi J W, Li P, Li H, Zhang J J 2014 Opt. Laser Technol. 56 285Google Scholar

    [23]

    Fang Z W, Haque S, Farajollahi S, Luo H P, Lin J, Wu R B, Zhang J H, Wang Z, Wang M, Cheng Y, Lu T 2020 Phys. Rev. Lett. 125 173901Google Scholar

    [24]

    Lin J T, Farajollahi S, Fang Z W, Yao N, Gao R H, Guan J L, Deng L, Lu T, Wang M, Zhang H S, Fang W, Qiao L L, Cheng Y 2022 Adv. Photonics 4 036001Google Scholar

    [25]

    Foreman M R, Vollmer F 2013 New J. Phys. 15 083006Google Scholar

    [26]

    Swaim J D, Knittel J, Bowen W P 2011 Appl. Phys. Lett. 99 243109Google Scholar

    [27]

    Lee J, Rim S, Cho J, Kim C M 2008 Phys. Rev. Lett. 101 064101Google Scholar

    [28]

    Farajollahi S, Fang Z W, Lin J T, Honari S, Cheng Y, Lu T 2023 Phys. Rev. A 108 033520Google Scholar

    [29]

    Cao H, Wiersig J 2015 Rev. Mod. Phys. 87 61Google Scholar

    [30]

    Ryu J W, Rim S, Park Y J, Kim C M, Lee S Y 2008 Phys. Lett. A 372 3531Google Scholar

    [31]

    邹长铃, 董春华, 崔金明, 孙方稳, 杨勇, 吴晓伟, 韩正甫,郭光灿 2012 中国科学: 物理学 力学 天文学 42 1155

    Zou C L, Dong C H, Cui J M, Sun F W, Yang Y, Wu X W, Han Z F, Guo G C 2012 Sci. Sin. Phys. Mech. Astron. 42 1155

    [32]

    Qi J W, Yan C L, Diehl L, Hentschel M, Wiersig J, Yu N F, Pflügl C, Belkin M A, Edamura T, Yamanishi M, Kan H, Capasso F 2009 New J. Phys. 11 125018Google Scholar

    [33]

    Li J C, Huang Y T, Hao Y Z, Yang Y D, Xiao J L 2022 Single-mode Lasing Deformed Square Microcavity Lasers (USA: SPIE) p125011I

    [34]

    Wu R, Zhang J, Yao N, Fang W, Qiao L, Chai Z, Lin J, Cheng Y 2018 Opt. Lett. 43 4116Google Scholar

    [35]

    Ilchenko V S, Savchenkov A A, Matsko A B, Maleki L 2004 Phys. Rev. Lett. 92 043903Google Scholar

    [36]

    Pan Y, Lin G, Diallo S, Zhang X, Chembo Y K 2017 IEEE Photonics J. 9 1Google Scholar

    [37]

    Wang L, Wang C, Wang J, Bo F, Zhang M, Gong Q, Loncar M, Xiao Y F 2018 Opt. Lett. 43 2917Google Scholar

    [38]

    Gao A, Yang C, Chen L K, Zhang R, Luo Q, Wang W, Cao Q T, Hao Z Z, Bo F, Zhang G Q, Xu J J 2022 Photonics Res. 10 401Google Scholar

    [39]

    Zhu D, Shao L B, Yu M J, Cheng R, Desiatov B, Xin C J, Hu Y W, Holzgrafe J, Ghosh S, Shams-Ansari A, Puma E, Sinclair N, Reimer C, Zhang M, Lončar M 2021 Adv. Opt. Photonics 13 242Google Scholar

    [40]

    Gopalan V, Dierolf V, Scrymgeour D A 2007 Annu. Rev. Mater. Res. 37 449Google Scholar

    [41]

    Sanna S, Schmidt W G 2010 Phys. Rev. B 81 214116Google Scholar

    [42]

    Xiao Y F, Zou C L, Li Y, Dong C H, Han Z F, Gong Q H 2010 Front. Optoelectron. 3 109Google Scholar

    [43]

    Yang Q F, Jiang X F, Cui Y L, Shao L B, Xiao Y F 2013 Phys. Rev. A 88 023810Google Scholar

    [44]

    Jiang X F, Shao L B, Zhang S X, Yi X, Wiersig J, Wang L, Gong Q H, Loncar M, Yang L, Xiao Y F 2017 Science 358 344Google Scholar

    [45]

    Xiao Y F, Jiang X F, Yang Q F, Wang L, Shi K B, Li Y, Gong Q H 2013 Laser Photonics Rev. 7 L51Google Scholar

    [46]

    Boriskina S V, Benson T M, Sewell P, Nosich A I 2006 IEEE J. Sel. Top. Quantum Electron. 12 52Google Scholar

    [47]

    Boriskina S V, Sewell P, Benson T M, Nosich A I 2004 J. Opt. Soc. Am. A 21 393Google Scholar

    [48]

    Zelmon D E, Small D L, Jundt D 1997 J. Opt. Soc. Am. B 14 3319Google Scholar

  • 图 1  Z切向铌酸锂XOY面结构的示意图

    Fig. 1.  Structure diagram of Z-cut LN XOY plane.

    图 2  PSOS图像, 图中散点区域为混沌海区域, 椭圆形区域为“岛屿”, 虚线为KAM曲线

    Fig. 2.  PSOS image. The scattered area in the figure is a chaotic area; the elliptical area is called an “island”, the dashed line represents the KAM curve.

    图 3  (4)式的实部与虚部在$y = 0$附近的图像

    Fig. 3.  Illustration of the real part and imaginary part of Eq. (4) near $y = 0$.

    图 4  变形因子$\varepsilon $取 (a) 0, (b) 0.16, (c) 0.24, (d) 0.28, (e) 0.45时的TE20, 1模式分布图, 远场辐射通量$S\left( \varphi \right)$角分布图以及PSOS

    Fig. 4.  The distribution diagram of TE20, 1 mode, far-field radiation flux angle and PSOS with deformations $\varepsilon $ of (a) 0, (b) 0.16, (c) 0.24, (d) 0.28, (e) 0.45.

    图 5  TE20, 1模式分布 (a) 微盘周长${L_\varepsilon }$与变形因子$\varepsilon $间的关系; (b) 谐振波长${\lambda _\varepsilon }$与变形因子$\varepsilon $间的关系; (c) 谐振波长${\lambda _\varepsilon }$与微盘周长${L_\varepsilon }$间存在线性变化关系

    Fig. 5.  Under the TE20, 1 mode: (a) resonant wavelength $ {\lambda }_{\varepsilon } $ variation with $\varepsilon $; (b) microdisk’s perimeter ${L_\varepsilon }$ variation with $\varepsilon $; (c) resonant wavelength $ {\lambda }_{\varepsilon } $ variation with perimeter ${L_\varepsilon }$ and linear fitting.

    图 6  $Q$值与变形因子$\varepsilon $间的变化关系

    Fig. 6.  $Q$ variation with $\varepsilon $.

    图 7  方向性$D$与$\varepsilon $间的关系, $\varepsilon $间隔取为0.01

    Fig. 7.  Directivity $D$ variation with $\varepsilon $, $\varepsilon $ increasing at intervals of 0.01.

    图 8  $\varepsilon $分别为0.16, 0.18, 0.20, 0.22, 0.24时, 以$S{\left( \varphi \right)_{{\text{max}}}}$归一化的 (a)全局远场辐射通量$S\left( \varphi \right)$角分布图, (b)角度在$90^\circ $—$270^\circ $之间的远场辐射通量$S\left( \varphi \right)$的角分布图

    Fig. 8.  (a) Global far-field radiation flux angular distribution diagram; (b) the angular distribution of far-field radiation flux at angles between $90^\circ $ and $270^\circ $, with the deformation factor $\varepsilon $ taken as 0.16, 0.18, 0.20, 0.22, 0.24, according to the normalization of $S{\left( \varphi \right)_{{\text{max}}}}$.

    表 1  不同$\varepsilon $的最大远场辐射通量密度$S{\left( \varphi \right)_{{\text{max}}}}$对应的定向角$\varphi $

    Table 1.  $S{\left( \varphi \right)_{{\text{max}}}}$ and $\varphi $ with different $\varepsilon $.

    变形因子$\varepsilon $ 最大远场辐射通量密度$S{\left( \varphi \right)_{{\text{max}}}}/({\text{W}}{\cdot} {{\text{m}}^{ - 2}})$ 定向角$\varphi /(^\circ )$
    0 $6.06 \times {10^1}$ 17.98
    0.04 $6.18 \times {10^1}$ 179.75
    0.08 $8.20 \times {10^1}$ 180.25
    0.12 $1.71 \times {10^2}$ 0
    0.16 $6.06 \times {10^2}$ 0
    0.20 $3.13 \times {10^3}$ 0
    0.24 $1.93 \times {10^4}$ 0
    0.28 $1.17 \times {10^5}$ 0.50
    0.32 $6.24 \times {10^5}$ 0
    0.36 $2.63 \times {10^6}$ 359.00
    0.40 $8.30 \times {10^6}$ 0
    0.45 $2.27 \times {10^7}$ 0
    下载: 导出CSV
  • [1]

    Baaske M D, Foreman M R, Vollmer F 2014 Nat. Nanotechnol. 9 933Google Scholar

    [2]

    Kippenberg T J, Holzwarth R, Diddams S A 2011 Science 332 555Google Scholar

    [3]

    Kippenberg T J, Vahala K J 2008 Science 321 1172Google Scholar

    [4]

    Michael C P, Srinivasan K, Johnson T J, Painter O, Lee K H, Hennessy K, Kim H, Hu E 2007 Appl. Phys. Lett. 90 051108Google Scholar

    [5]

    Redding B, Ge L, Song Q H, Wiersig J, Solomon G S, Cao H 2012 Phys. Rev. Lett. 108 253902Google Scholar

    [6]

    Fang W, Cao H, Solomon G S 2007 Appl. Phys. Lett. 90 081108Google Scholar

    [7]

    Unterhinninghofen J, Wiersig J, Hentschel M 2008 Phys. Rev. E 78 016201Google Scholar

    [8]

    Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L, Hu E, Imamoglu A 2000 Science 290 2282Google Scholar

    [9]

    Jiang X F, Zou C L, Wang L, Gong Q H, Xiao Y F 2016 Laser Photonics Rev. 10 40Google Scholar

    [10]

    Chern G D, Tureci H E, Stone A D, Chang R K, Kneissl M, Johnson N M 2003 Appl. Phys. Lett. 83 1710Google Scholar

    [11]

    Kurdoglyan M S, Lee S Y, Rim S, Kim C M 2004 Opt. Lett. 29 2758Google Scholar

    [12]

    Baryshnikov Y, Heider P, Parz W, Zharnitsky V 2004 Phys. Rev. Lett. 93 133902Google Scholar

    [13]

    Gao J, Heider P, Chen C J, Yang X D, Husko C A, Wong C W 2007 Appl. Phys. Lett. 91 181101Google Scholar

    [14]

    Wiersig J, Hentschel M 2006 Phys. Rev. A 73 031802Google Scholar

    [15]

    Fang W, Yamilov A, Cao H 2005 Phys. Rev. A 72 023815Google Scholar

    [16]

    Lee S Y, Kurdoglyan M S, Rim S, Kim C M 2004 Phys. Rev. A 70 023809Google Scholar

    [17]

    Lebental M, Lauret J S, Hierle R, Zyss J 2006 Appl. Phys. Lett. 88 031108Google Scholar

    [18]

    Wiersig J, Hentschel M 2008 Phys. Rev. Lett. 100 033901Google Scholar

    [19]

    Yi C H, Kim M W, Kim C M 2009 Appl. Phys. Lett. 95 141107Google Scholar

    [20]

    Song Q H, Fang W, Liu B Y, Ho S T, Solomon G S, Cao H 2009 Phys. Rev. A 80 041807Google Scholar

    [21]

    Kim K, Bittner S, Jin Y H, Zeng Y Q, Wang Q J, Cao H 2023 Opt. Lett. 48 574Google Scholar

    [22]

    Yan C L, Shi J W, Li P, Li H, Zhang J J 2014 Opt. Laser Technol. 56 285Google Scholar

    [23]

    Fang Z W, Haque S, Farajollahi S, Luo H P, Lin J, Wu R B, Zhang J H, Wang Z, Wang M, Cheng Y, Lu T 2020 Phys. Rev. Lett. 125 173901Google Scholar

    [24]

    Lin J T, Farajollahi S, Fang Z W, Yao N, Gao R H, Guan J L, Deng L, Lu T, Wang M, Zhang H S, Fang W, Qiao L L, Cheng Y 2022 Adv. Photonics 4 036001Google Scholar

    [25]

    Foreman M R, Vollmer F 2013 New J. Phys. 15 083006Google Scholar

    [26]

    Swaim J D, Knittel J, Bowen W P 2011 Appl. Phys. Lett. 99 243109Google Scholar

    [27]

    Lee J, Rim S, Cho J, Kim C M 2008 Phys. Rev. Lett. 101 064101Google Scholar

    [28]

    Farajollahi S, Fang Z W, Lin J T, Honari S, Cheng Y, Lu T 2023 Phys. Rev. A 108 033520Google Scholar

    [29]

    Cao H, Wiersig J 2015 Rev. Mod. Phys. 87 61Google Scholar

    [30]

    Ryu J W, Rim S, Park Y J, Kim C M, Lee S Y 2008 Phys. Lett. A 372 3531Google Scholar

    [31]

    邹长铃, 董春华, 崔金明, 孙方稳, 杨勇, 吴晓伟, 韩正甫,郭光灿 2012 中国科学: 物理学 力学 天文学 42 1155

    Zou C L, Dong C H, Cui J M, Sun F W, Yang Y, Wu X W, Han Z F, Guo G C 2012 Sci. Sin. Phys. Mech. Astron. 42 1155

    [32]

    Qi J W, Yan C L, Diehl L, Hentschel M, Wiersig J, Yu N F, Pflügl C, Belkin M A, Edamura T, Yamanishi M, Kan H, Capasso F 2009 New J. Phys. 11 125018Google Scholar

    [33]

    Li J C, Huang Y T, Hao Y Z, Yang Y D, Xiao J L 2022 Single-mode Lasing Deformed Square Microcavity Lasers (USA: SPIE) p125011I

    [34]

    Wu R, Zhang J, Yao N, Fang W, Qiao L, Chai Z, Lin J, Cheng Y 2018 Opt. Lett. 43 4116Google Scholar

    [35]

    Ilchenko V S, Savchenkov A A, Matsko A B, Maleki L 2004 Phys. Rev. Lett. 92 043903Google Scholar

    [36]

    Pan Y, Lin G, Diallo S, Zhang X, Chembo Y K 2017 IEEE Photonics J. 9 1Google Scholar

    [37]

    Wang L, Wang C, Wang J, Bo F, Zhang M, Gong Q, Loncar M, Xiao Y F 2018 Opt. Lett. 43 2917Google Scholar

    [38]

    Gao A, Yang C, Chen L K, Zhang R, Luo Q, Wang W, Cao Q T, Hao Z Z, Bo F, Zhang G Q, Xu J J 2022 Photonics Res. 10 401Google Scholar

    [39]

    Zhu D, Shao L B, Yu M J, Cheng R, Desiatov B, Xin C J, Hu Y W, Holzgrafe J, Ghosh S, Shams-Ansari A, Puma E, Sinclair N, Reimer C, Zhang M, Lončar M 2021 Adv. Opt. Photonics 13 242Google Scholar

    [40]

    Gopalan V, Dierolf V, Scrymgeour D A 2007 Annu. Rev. Mater. Res. 37 449Google Scholar

    [41]

    Sanna S, Schmidt W G 2010 Phys. Rev. B 81 214116Google Scholar

    [42]

    Xiao Y F, Zou C L, Li Y, Dong C H, Han Z F, Gong Q H 2010 Front. Optoelectron. 3 109Google Scholar

    [43]

    Yang Q F, Jiang X F, Cui Y L, Shao L B, Xiao Y F 2013 Phys. Rev. A 88 023810Google Scholar

    [44]

    Jiang X F, Shao L B, Zhang S X, Yi X, Wiersig J, Wang L, Gong Q H, Loncar M, Yang L, Xiao Y F 2017 Science 358 344Google Scholar

    [45]

    Xiao Y F, Jiang X F, Yang Q F, Wang L, Shi K B, Li Y, Gong Q H 2013 Laser Photonics Rev. 7 L51Google Scholar

    [46]

    Boriskina S V, Benson T M, Sewell P, Nosich A I 2006 IEEE J. Sel. Top. Quantum Electron. 12 52Google Scholar

    [47]

    Boriskina S V, Sewell P, Benson T M, Nosich A I 2004 J. Opt. Soc. Am. A 21 393Google Scholar

    [48]

    Zelmon D E, Small D L, Jundt D 1997 J. Opt. Soc. Am. B 14 3319Google Scholar

  • [1] 李雨晴, 王洪广, 翟永贵, 杨文晋, 王玥, 李韵, 李永东. 品质因数对TM02模相对论返波管工作模式影响. 物理学报, 2024, 73(3): 035202. doi: 10.7498/aps.73.20231577
    [2] 夏兆生, 刘宇行, 包正, 王丽华, 吴博, 王刚, 王辉, 任信钢, 黄志祥. 基于准连续域束缚态的强圆二色性超表面. 物理学报, 2024, 73(17): 178102. doi: 10.7498/aps.73.20240834
    [3] 熊磊, 丁洪伟, 李光元. 银纳米粒子阵列中衍射诱导高品质因子的四偶极晶格等离子体模式. 物理学报, 2022, 71(4): 047802. doi: 10.7498/aps.71.20211629
    [4] 蒋黎英, 易颖婷, 易早, 杨华, 李治友, 苏炬, 周自刚, 陈喜芳, 易有根. 基于单层二硫化钼的高品质因子、高品质因数的四波段完美吸收器. 物理学报, 2021, 70(12): 128101. doi: 10.7498/aps.70.20202163
    [5] 熊磊. 银纳米粒子阵列中衍射诱导高品质因子的四偶极晶格等离子体共振. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211629
    [6] 陈恒杰, 薛航, 李邵雄, 王镇. 一种通过约瑟夫森结非线性频率响应确定微波耗散的方法. 物理学报, 2019, 68(11): 118501. doi: 10.7498/aps.68.20190167
    [7] 刘宏, 朱京平, 王凯. 基于随机表面微面元理论的二向反射分布函数几何衰减因子修正. 物理学报, 2015, 64(18): 184213. doi: 10.7498/aps.64.184213
    [8] 郭泽彬, 唐军, 刘俊, 王明焕, 商成龙, 雷龙海, 薛晨阳, 张文栋, 闫树斌. 锥形光纤激发盘腔光学模式互易性研究. 物理学报, 2014, 63(22): 227802. doi: 10.7498/aps.63.227802
    [9] 陈翔, 米贤武. 二能级原子与高品质因子腔的自发辐射特性. 物理学报, 2011, 60(10): 104204. doi: 10.7498/aps.60.104204
    [10] 张婧, 潘炜, 闫连山, 罗斌. 基于光纤自相位调制多波长全光再生的色散管理优化. 物理学报, 2010, 59(10): 7002-7007. doi: 10.7498/aps.59.7002
    [11] 江斌, 刘安金, 陈微, 邢名欣, 周文君, 郑婉华. 立体耦合光子晶体薄板微腔的高Q值特性研究. 物理学报, 2010, 59(12): 8548-8553. doi: 10.7498/aps.59.8548
    [12] 陈微, 邢名欣, 任刚, 王科, 杜晓宇, 张冶金, 郑婉华. 光子晶体微腔中高偏振单偶极模的研究. 物理学报, 2009, 58(6): 3955-3960. doi: 10.7498/aps.58.3955
    [13] 陈雁萍, 王传兵, 周国成. 损失锥-束流分布电子驱动的回旋激射不稳定性. 物理学报, 2005, 54(7): 3221-3227. doi: 10.7498/aps.54.3221
    [14] 程愿应, 王又青, 胡 进, 李家熔. 一种新颖的用于光腔模式及光束传输模拟的特征向量法. 物理学报, 2004, 53(8): 2576-2582. doi: 10.7498/aps.53.2576
    [15] 杜启振, 杨慧珠. 线性黏弹性各向异性介质速度频散和衰减特征研究. 物理学报, 2002, 51(9): 2101-2108. doi: 10.7498/aps.51.2101
    [16] 李福利. 腔损对单原子微激射器中产生稳定四阶与振幅平方压缩态的影响. 物理学报, 1996, 45(4): 563-572. doi: 10.7498/aps.45.563
    [17] 李福利. 利用单光子微激射器产生强压缩腔场的理论研究. 物理学报, 1990, 39(11): 1721-1729. doi: 10.7498/aps.39.1721
    [18] 李铁城, 霍裕平. Raman光激射器. 物理学报, 1965, 21(12): 1933-1950. doi: 10.7498/aps.21.1933
    [19] 方励之, 罗一祖. 关于光激射器的线宽. 物理学报, 1964, 20(11): 1079-1089. doi: 10.7498/aps.20.1079
    [20] 吴全德. 在发射式电子光学系统中,光电子速度分布对像品质的影响(Ⅱ). 物理学报, 1957, 13(1): 78-89. doi: 10.7498/aps.13.78
计量
  • 文章访问数:  1979
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-05
  • 修回日期:  2024-01-22
  • 上网日期:  2024-02-19
  • 刊出日期:  2024-04-20

/

返回文章
返回