-
采用时域有限差分方法从理论和数值上提出了一种基于临界耦合和导模共振的单层二硫化钼的四波段完美吸收器, 通过阻抗匹配和耦合模理论可以更好地分析其物理机理. 单层二硫化钼被放置在二氧化硅与具有周期性长方体空气槽结构的二维聚甲基丙烯酸甲酯层中间. 利用导向共振的临界耦合原理得到了单层二硫化钼的高效光吸收, 即在共振波长(λ1 = 510.0 nm, λ2 = 518.8 nm, λ3 = 565.9 nm, λ4 = 600.3 nm)获得了4个共振完美吸收峰, 吸收率分别为99.03%, 98.10%, 97.30%和95.41%, 同时平均吸收率在可见光光谱范围高达97.46%, 是裸单层二硫化钼的12倍以上. 从模拟结果来看, 调节结构的几何参数可以来控制单层二硫化钼的共振波长的范围, 这对提高单层二硫化钼的吸收强度和选择性具有重要的现实意义. 利用临界耦合来增强光-二氧化硅相互作用的新思想也可以应用于其他原子级薄材料. 同时, 本文也讨论了吸收器的传感性能, 发现传感器的最高品质因子、灵敏度与品质因数最高分别为1294.1, 155.1 nm/RIU和436. 这些结果表明, 所设计的结构可能为改善二维过渡金属二元化合物中的光-物质相互作用开辟有前景的技术, 并在波长选择性光致发光和光电探测中有着极好的应用前景.
Transition-metal dichalcogenides with exceptional electrical and optical properties have emerged as a new platform for atomic-scale optoelectronic devices. However, the poor optical absorption resists their potential applications. In this paper, monolayer molybdenum disulfide four-band perfect absorber based on critical coupling and guided mode resonance is proposed theoretically and numerically by the finite difference time domain method. Meanwhile, the physical mechanism can be better analyzed through impedance matching and coupled mode theory. Monolayer molybdenum disulfide is placed between the silicon dioxide and a two-dimensional polymethyl methacrylate layer with a periodic square-shaped air groove structure. The three form a sandwich-like stacked structure similar to a rectangle. The bottom of the absorber uses a silver layer as the back reflection layer. Using the critical coupling principle of guided resonance, the high-efficiency light absorption of the monolayer molybdenum disulfide is obtained, that is, four perfect resonances are obtained at the resonance wavelengths (λ1 = 510.0 nm, λ2 = 518.8 nm, λ3 = 565.9 nm, and λ4 = 600.3 nm), the absorption rates are 99.03%, 98.10%, 97.30%, and 95.41%, and the average absorption rate is as high as 97.46% in the visible light spectrum range, which is over 12 times more than that of a bare monolayer MoS2. The simulation results show that the adjusting of the geometric parameters of the structure can control the range of the resonance wavelength of the monolayer molybdenum disulfide, the system experiences three states, i.e. under-coupling, critical coupling, and over-coupling because of the leakage rate of resonance, thereby exhibiting advantageous tunability of operating wavelength in monolayer MoS2, which has important practical significance for improving the absorption intensity and selectivity of the monolayer molybdenum disulfide. The novel idea of using critical coupling to enhance the light-MoS2 interaction can also be adopted in other atomically thin materials. At the same time, in this article the sensing performance of the absorber is discussed, and it is found that the highest quality factor, sensitivity and figure of merit of the sensor are 1294.1, 155.1 nm/RIU, and 436, respectively. The proposed structure is simple and the program is versatile. And these results indicate that the designed structure may offer a promising technology for improving the light-matter interaction in two-dimensional transition metal binary compounds, and has excellent application prospects in wavelength selective photoluminescence and photodetection. -
Keywords:
- critical coupling /
- molybdenum disulfide /
- perfect absorption /
- visible light spectrum range
[1] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184Google Scholar
[2] Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E. 71 036617Google Scholar
[3] Smith D R, Pendry J B, Wiltshire M C K 2004 Science 305 788Google Scholar
[4] Pendry J B 2000 Phys. Rev. Lett. 85 3966Google Scholar
[5] Pendry J B, Schurig D, Smith D R 2006 Science 312 1780Google Scholar
[6] Cai W, Chettiar U K, Kildishev A V, Shalaev V M 2007 Nat. Photonics 1 224Google Scholar
[7] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar
[8] Wang X X, Zhu J K, Xu Y Q, Qi Y P, Zhang L P, Yang H, Yi Z 2021 Chin. Phys. B 30 024207Google Scholar
[9] Lee K, Choi H J, Son J, Park H S, Ahn J, Min B 2015 Sci. Rep. 5 14403Google Scholar
[10] Liu Z M, Zhang X, Zhang Z B, Gao E D, Zhou F Q, Li H J, Luo X 2020 New J. Phys. 22 083006Google Scholar
[11] Song S C, Chen Q, Jin L, Sun F H 2013 Nanoscale 5 9615Google Scholar
[12] Yi Z, Li J K, Lin J C, Qin F, Chen X F, Yao W T, Liu Z M, Cheng S B, Wu P H, Li H L 2020 Nanoscale 12 23077Google Scholar
[13] 徐依全, 王聪 2020 物理学报 69 184216Google Scholar
Xu Y Q, Wang C 2020 Acta Phys. Sin. 69 184216Google Scholar
[14] Sun Z, Chang H 2014 ACS Nano 8 4133Google Scholar
[15] 许杰, 周丽, 黄志祥, 吴先良 2015 物理学报 64 238103Google Scholar
Xu J, Zhou L, Huang Z X, Wu X L 2015 Acta Phys. Sin. 64 238103Google Scholar
[16] 谢剑锋, 曹觉先 2013 物理学报 62 017302Google Scholar
Xie J F, Cao J X 2013 Acta Phys. Sin. 62 017302Google Scholar
[17] Mak K F, Shan J 2016 Nat. Photonics 10 216Google Scholar
[18] Zhang Y, Shi Y, Liang C 2016 Opt. Mater. Express 6 3036Google Scholar
[19] Li J S, Sun J Z 2019 Appl. Phys. B 125 183Google Scholar
[20] Li J K, Chen X F, Yi Z, Yang H, Tang Y J, Yi Y, Yao W T, Wang J Q, Yi Y G 2020 Mater. Today Energy 16 100390Google Scholar
[21] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar
[22] Li J K, Chen Z Q, Yang H, Yi Z, Chen X F, Yao W T, Duan T, Wu P H, Li G F, Yi Y G 2020 Nanomaterials 10 257Google Scholar
[23] Bahauddin S M, Robatjazi H, Thomann I 2016 ACS Photonics 3 853Google Scholar
[24] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8 497Google Scholar
[25] Sobhani A, Lauchner A, Najmaei S, Ayala-Orozco C, Wen F, Lou J, Halas N J 2014 Appl. Phys. Lett. 104 031112Google Scholar
[26] Late D J, Liu B, Matte H S, Dravid V P, Rao C N R 2012 ACS Nano 6 5635Google Scholar
[27] Bernardi M, Palummo M, Grossman J C 2013 Nano Lett. 13 3664Google Scholar
[28] Janisch C, Song H, Zhou C, Lin Z, Elías A L, Ji D, Liu Z 2016 2D Mater. 3 025017Google Scholar
[29] Liu J T, Wang T B, Li X J, Liu N H 2014 J. Appl. Phys. 115 193511Google Scholar
[30] Lu H, Gan X, Mao D, Fan Y, Yang D, Zhao J 2017 Opt. Express 25 21630Google Scholar
[31] Cao J, Wang J, Yang G, Lu Y, Sun R, Yan P, Gao S 2017 Superlattices Microstruct. 110 26Google Scholar
[32] Zheng J B, Barton R A, Englund D 2014 ACS Photonics 1 768Google Scholar
[33] Piper J R, Fan S H 2016 ACS Photonics 3 3571Google Scholar
[34] Li Y, Chernikov A, Zhang X, Rigosi A, Hill H M, Van der Zande A M, Chenet D A, Shih E M, Hone J, Heinz T F 2014 Phys. Rev. B 90 205422Google Scholar
[35] Bade W 1957 Chem. Phys. 27 1280Google Scholar
[36] Cheng L, Wang T, Jiang X, Yan X, Xiao S 2015 J. Phys. D 50 435104Google Scholar
[37] Qin F, Chen X F, Yi Z, Yao W T, Yang H, Tang Y J, Yi Y, Li H L, Yi Y G 2020 Sol. Energy Mater. Sol. Cells 211 110535Google Scholar
[38] He Z H, Li L Q, Ma H Q, Pu L H, Xu H, Yi Z, Cao X L, Cui W 2021 Results Phys. 21 103795Google Scholar
[39] Haus H A, Huang W 1991 Proc. IEEE 79 1505Google Scholar
[40] Li Q, Wang T, Su Y, Yan M, Qiu M 2010 Opt. Express 18 8367Google Scholar
[41] An S, Lv J, Yi Z, Liu C, Yang L, Wang F, Liu Q, Su W, Li X, Sun T, Chu P 2021 Optik 226 165779Google Scholar
[42] Qing Y M, Ma H F, Cui T J 2018 Opt. Express 26 32442Google Scholar
[43] El-Aasser M A, Mahmoud S A 2017 Optoelectron. Adv. Mater. Rapid Commun. 118 398
[44] Li J Y, Wang S F, Sun G G, Gao H J, Yu X L, Tang S N, Zhao X X, Yi Z, Wang Y, Wei Y 2021 Mater. Today Chem. 19 100390Google Scholar
[45] Wang S, Magnusson R 1993 Appl. Opt. 32 2606Google Scholar
[46] Pan M, Su Z, Yu Z, Wu P, Jile H, Yi Z, Chen Z 2020 Result. Phys. 19 103415Google Scholar
[47] Zhang X, Liu Z, Zhang Z, Gao E, Luo X, Zhou F, Li H, Yi Z 2020 Opt. Express 28 36771Google Scholar
[48] Chu P X, Chen J X, Xiong Z G, Yi Z 2020 Opt. Commun. 476 126338Google Scholar
[49] Zhang Y B, Yi Z, Wang X Y, Chu P X, Yao W T, Zhou Z G, Cheng S B, Liu Z M, Wu P H, Pan M, Yi Y G 2021 Physica E 127 114526Google Scholar
[50] Guo C, Zhu Z, Yuan X, Ye W, Liu K, Zhang J, Xu Wei, Qin S 2016 Adv. Opt. Mater. 4 1955Google Scholar
[51] Li H, Qin M, Wang L, Zhai X, Ren R, Hu J 2017 Opt. Express 25 31612Google Scholar
[52] Cao J T, Yang J F, Gu Y, Fang X D, Lu N Y, Hua B, Yan.X M 2019 Mater. Res. Express. 6 15050Google Scholar
[53] Piper J. R, Liu V, Fan S 2014 Appl. Phys. Lett. 104 251110Google Scholar
[54] Sourav A, Li Z W, Huang Z H, Botcha V D, Hu C, YAO J P, Peng F, Kuo H C, Wu J, Liu X K, Ang K W, Transparent L S 2018 Adv. Opt. Mater. 6 1800461Google Scholar
[55] Qi Y, Zhang B, Liu C, Deng X 2020 IEEE Access 8 116675Google Scholar
[56] Jiang L Y, Yuan C, Li Z Y, Su J, Yi Z, Yao W T, Wu P, Liu Z M, Cheng S B, Pan M 2021 Diamond Relat. Mater. 111 108227Google Scholar
[57] Yu P Q, Yang H, Chen X F, Yi Z, Yao W T, Chen J F, Yi Y G, Wu P H 2020 Renewable Energy 158 227Google Scholar
[58] Deng Y H, Yang Z J, He J 2018 Opt. Express 26 31116Google Scholar
[59] Maurer T, Nicolas R, Lévêque G, Subramanian P, Proust J, Béal J, Schuermans S, Vilcot J P, Herro Z, Kazan M, Plain J, Boukherroub R, Akjouj A, Djafari-Rouhani B, Adam P M, Szunerits S 2014 Plasmonics 9 507Google Scholar
[60] Lu X, Zhang L, Zhang T 2015 Opt. Express 23 20715Google Scholar
[61] Lin L H, Zheng Y B 2015 Sci. Rep. 5 14788Google Scholar
[62] Ye J, Dorpe P V 2011 Plasmonics 6 665Google Scholar
[63] Ameling R, Langguth L, Hentschel M, Mesch M, Braun P V, Giessen H 2010 Appl. Phys. Lett. 97 253116Google Scholar
[64] Huang C, Ye J, Wang S, Stakenborg T, Lagae L 2012 Appl. Phys. Lett. 100 173114Google Scholar
-
图 2 (a) 在D1 = 220 nm, D2 = 175 nm, D3 = 0.615 nm, D4 = 380 nm, Px = 1010 nm, Py = 890 nm, W1 = 89 nm, W2 = 170 nm, A = 832 nm, B = 712 nm时完美吸收器中的MoS2单层(蓝线)的吸收光谱, 为了进行比较, 示出了无MoS2整个吸收器(红线)和裸MoS2单层(黑线)的光吸收光谱(图中Mode A对应吸收峰1, Mode B对应吸收峰2, Mode C对应吸收峰3, Mode D对应吸收峰4); (b)理想吸收峰的有效阻抗的实部(蓝线Re(Z))和虚部(绿线Im(Z))
Fig. 2. (a) Absorption spectrum of MoS2 monolayer (blue line) in the perfect absorber at D1 = 220 nm, D2 = 175 nm, D3 = 0.615 nm, D4 = 380 nm, Px = 1010 nm, Py = 890 nm, W1 = 89 nm, W2 = 170 nm, A = 832 nm, B = 712 nm. For comparison, the light absorption spectra of the entire absorber without MoS2 (red line) and bare MoS2 monolayer (black line) are shown (Mode A corresponds to absorption peak 1, Mode B corresponds to absorption peak 2, Mode C corresponds to absorption peak 3, Mode D corresponds to absorption peak 4); (b) the real part (blue line Re(Z)) and imaginary part (green line Im(Z)) of the effective impedance showing the ideal absorption peak.
图 3 正常TM偏振光下含(a) 和不含 (b) 银反射层结构的吸收、反射和透射光谱的数值计算, 其中A代表吸收, R代表反射, T代表透射
Fig. 3. Numerical calculation of the absorption, reflection and transmission spectra of the structure with (a) and without (b) silver layer under normal TM polarized light, where A represents absorption, R represents reflection, and T represents transmission.
图 4 在D1 = 220 nm, D2 = 175 nm, D3 = 0.615 nm, D4 = 380 nm, Px = 1010 nm, Py = 890 nm, A = 832 nm, B = 712 nm条件下, 空气槽为(a) 长方体、(b) 交叉椭圆盘与 (c) 三棱柱时的吸收光谱
Fig. 4. Absorption spectra when the air groove is (a) cuboid, (b) cross-elliptic disk, (c) triangular prism. D1 = 220 nm, D2 = 175 nm, D3 = 0.615 nm, D4 = 380 nm, Px = 1010 nm, Py = 890 nm, A = 832 nm, B = 712 nm,
图 5 MoS2吸收器在(a)−(c) 共振模式B (共振波长为518.8 nm)下x -y, y -z和x -z截面的电场(|E|)分布的模拟结果; 在垂直入射下, (d)−(f) 非共振模式(非共振波长542.0 nm)时其x -y, y -z和x -z截面的电场(|E|)分布的模拟结果
Fig. 5. Simulated electric field (|E|) distributions of (a)−(c) resonance mode B (resonant wavelength of 518.8 nm) in x -y, y -z and x -z based on the MoS2 absorber; (d)−(f) simulated electric field (|E|) distributions of non-resonant mode (non-resonant wavelength 542.0 nm) in x -y, y -z and x -z under normal incidence.
图 6 (a)−(d) x -y截面的电场图; (e)−(h) y -z截面的电场图; (i)−(l) x -z截面的电场图 (图中Mode A对应吸收峰1, Mode B对应吸收峰2, Mode C对应吸收峰3, Mode D对应吸收峰4, λ1 = 510.0 nm, λ2 = 518.8 nm, λ3 = 565.9 nm, λ4 = 600.3 nm)
Fig. 6. (a)−(d) Electric field diagrams of the x -y cross section; (e)−(h) the electric field diagrams of the y -z cross section; (i)−(l) the electric field diagrams of the x -z cross section. Mode A corresponds to absorption peak 1, Mode B corresponds to absorption peak 2, Mode C corresponds to absorption peak 3, Mode D corresponds to absorption peak 4. λ1 = 510.0 nm, λ2 = 518.8 nm, λ3 = 565.9 nm, λ4 = 600.3 nm.
图 8 (a) D4与吸收率的关系图; (b) D4与对应共振波长范围的关系图; (c) W2与吸收率的关系图; (d) W2与对应共振波长范围的关系图; 图中Mode A对应吸收峰1, Mode B对应吸收峰2, Mode C对应吸收峰3, Mode D对应吸收峰4
Fig. 8. (a) Relationship diagram between D4 and the absorption rate; (b) the relationship diagram between D4 and the corresponding resonance wavelength range; (c) the relationship diagram between W2 and the absorption rate; (d) the relationship diagram between W2 and the corresponding resonance wavelength range. Mode A corresponds to absorption peak 1, Mode B corresponds to absorption peak 2, Mode C corresponds to absorption peak 3, Mode D corresponds to absorption peak 4.
图 9 (a)−(d) 保持其他参数不变, 周期与吸收峰波长和品质因子的函数关系(图中Mode A对应吸收峰1, Mode B对应吸收峰2, Mode C对应吸收峰3, Mode D对应吸收峰4)
Fig. 9. (a)−(d) Relationship among the period, the absorption peak wavelength, and Q-factor (quality factor) when other parameters are kept constant (Mode A corresponds to absorption peak 1, Mode B corresponds to absorption peak 2, Mode C corresponds to absorption peak 3, Mode D corresponds to absorption peak 4).
图 10 (a) 四个共振峰的吸收光谱随周围介质折射率的变化而移动; (b)−(e)当周围传感介质的折射率发生变化时(折射率从1.0到1.08, 间隔为0.02), 四个峰值的FOM与FWHM和波长的关系图 (图中Mode A对应吸收峰1, Mode B对应吸收峰2, Mode C对应吸收峰3, Mode D对应吸收峰4)
Fig. 10. (a) Absorption spectra of the four resonance peaks move with the change in the refractive index of the surrounding medium; (b)−(e) when the refractive index of the surrounding sensing medium changes (the refractive index is from 1.0 to 1.08, the interval is 0.02), the relationships of FOM value of the four peaks and FWHM to wavelength (Mode A corresponds to absorption peak 1, Mode B corresponds to absorption peak 2, Mode C corresponds to absorption peak 3, Mode D corresponds to absorption peak 4).
表 1 所提出的吸收器与其他类似吸收器的比较
Table 1. Comparisons of the proposed absorber with other similar absorbers.
-
[1] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184Google Scholar
[2] Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E. 71 036617Google Scholar
[3] Smith D R, Pendry J B, Wiltshire M C K 2004 Science 305 788Google Scholar
[4] Pendry J B 2000 Phys. Rev. Lett. 85 3966Google Scholar
[5] Pendry J B, Schurig D, Smith D R 2006 Science 312 1780Google Scholar
[6] Cai W, Chettiar U K, Kildishev A V, Shalaev V M 2007 Nat. Photonics 1 224Google Scholar
[7] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar
[8] Wang X X, Zhu J K, Xu Y Q, Qi Y P, Zhang L P, Yang H, Yi Z 2021 Chin. Phys. B 30 024207Google Scholar
[9] Lee K, Choi H J, Son J, Park H S, Ahn J, Min B 2015 Sci. Rep. 5 14403Google Scholar
[10] Liu Z M, Zhang X, Zhang Z B, Gao E D, Zhou F Q, Li H J, Luo X 2020 New J. Phys. 22 083006Google Scholar
[11] Song S C, Chen Q, Jin L, Sun F H 2013 Nanoscale 5 9615Google Scholar
[12] Yi Z, Li J K, Lin J C, Qin F, Chen X F, Yao W T, Liu Z M, Cheng S B, Wu P H, Li H L 2020 Nanoscale 12 23077Google Scholar
[13] 徐依全, 王聪 2020 物理学报 69 184216Google Scholar
Xu Y Q, Wang C 2020 Acta Phys. Sin. 69 184216Google Scholar
[14] Sun Z, Chang H 2014 ACS Nano 8 4133Google Scholar
[15] 许杰, 周丽, 黄志祥, 吴先良 2015 物理学报 64 238103Google Scholar
Xu J, Zhou L, Huang Z X, Wu X L 2015 Acta Phys. Sin. 64 238103Google Scholar
[16] 谢剑锋, 曹觉先 2013 物理学报 62 017302Google Scholar
Xie J F, Cao J X 2013 Acta Phys. Sin. 62 017302Google Scholar
[17] Mak K F, Shan J 2016 Nat. Photonics 10 216Google Scholar
[18] Zhang Y, Shi Y, Liang C 2016 Opt. Mater. Express 6 3036Google Scholar
[19] Li J S, Sun J Z 2019 Appl. Phys. B 125 183Google Scholar
[20] Li J K, Chen X F, Yi Z, Yang H, Tang Y J, Yi Y, Yao W T, Wang J Q, Yi Y G 2020 Mater. Today Energy 16 100390Google Scholar
[21] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar
[22] Li J K, Chen Z Q, Yang H, Yi Z, Chen X F, Yao W T, Duan T, Wu P H, Li G F, Yi Y G 2020 Nanomaterials 10 257Google Scholar
[23] Bahauddin S M, Robatjazi H, Thomann I 2016 ACS Photonics 3 853Google Scholar
[24] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8 497Google Scholar
[25] Sobhani A, Lauchner A, Najmaei S, Ayala-Orozco C, Wen F, Lou J, Halas N J 2014 Appl. Phys. Lett. 104 031112Google Scholar
[26] Late D J, Liu B, Matte H S, Dravid V P, Rao C N R 2012 ACS Nano 6 5635Google Scholar
[27] Bernardi M, Palummo M, Grossman J C 2013 Nano Lett. 13 3664Google Scholar
[28] Janisch C, Song H, Zhou C, Lin Z, Elías A L, Ji D, Liu Z 2016 2D Mater. 3 025017Google Scholar
[29] Liu J T, Wang T B, Li X J, Liu N H 2014 J. Appl. Phys. 115 193511Google Scholar
[30] Lu H, Gan X, Mao D, Fan Y, Yang D, Zhao J 2017 Opt. Express 25 21630Google Scholar
[31] Cao J, Wang J, Yang G, Lu Y, Sun R, Yan P, Gao S 2017 Superlattices Microstruct. 110 26Google Scholar
[32] Zheng J B, Barton R A, Englund D 2014 ACS Photonics 1 768Google Scholar
[33] Piper J R, Fan S H 2016 ACS Photonics 3 3571Google Scholar
[34] Li Y, Chernikov A, Zhang X, Rigosi A, Hill H M, Van der Zande A M, Chenet D A, Shih E M, Hone J, Heinz T F 2014 Phys. Rev. B 90 205422Google Scholar
[35] Bade W 1957 Chem. Phys. 27 1280Google Scholar
[36] Cheng L, Wang T, Jiang X, Yan X, Xiao S 2015 J. Phys. D 50 435104Google Scholar
[37] Qin F, Chen X F, Yi Z, Yao W T, Yang H, Tang Y J, Yi Y, Li H L, Yi Y G 2020 Sol. Energy Mater. Sol. Cells 211 110535Google Scholar
[38] He Z H, Li L Q, Ma H Q, Pu L H, Xu H, Yi Z, Cao X L, Cui W 2021 Results Phys. 21 103795Google Scholar
[39] Haus H A, Huang W 1991 Proc. IEEE 79 1505Google Scholar
[40] Li Q, Wang T, Su Y, Yan M, Qiu M 2010 Opt. Express 18 8367Google Scholar
[41] An S, Lv J, Yi Z, Liu C, Yang L, Wang F, Liu Q, Su W, Li X, Sun T, Chu P 2021 Optik 226 165779Google Scholar
[42] Qing Y M, Ma H F, Cui T J 2018 Opt. Express 26 32442Google Scholar
[43] El-Aasser M A, Mahmoud S A 2017 Optoelectron. Adv. Mater. Rapid Commun. 118 398
[44] Li J Y, Wang S F, Sun G G, Gao H J, Yu X L, Tang S N, Zhao X X, Yi Z, Wang Y, Wei Y 2021 Mater. Today Chem. 19 100390Google Scholar
[45] Wang S, Magnusson R 1993 Appl. Opt. 32 2606Google Scholar
[46] Pan M, Su Z, Yu Z, Wu P, Jile H, Yi Z, Chen Z 2020 Result. Phys. 19 103415Google Scholar
[47] Zhang X, Liu Z, Zhang Z, Gao E, Luo X, Zhou F, Li H, Yi Z 2020 Opt. Express 28 36771Google Scholar
[48] Chu P X, Chen J X, Xiong Z G, Yi Z 2020 Opt. Commun. 476 126338Google Scholar
[49] Zhang Y B, Yi Z, Wang X Y, Chu P X, Yao W T, Zhou Z G, Cheng S B, Liu Z M, Wu P H, Pan M, Yi Y G 2021 Physica E 127 114526Google Scholar
[50] Guo C, Zhu Z, Yuan X, Ye W, Liu K, Zhang J, Xu Wei, Qin S 2016 Adv. Opt. Mater. 4 1955Google Scholar
[51] Li H, Qin M, Wang L, Zhai X, Ren R, Hu J 2017 Opt. Express 25 31612Google Scholar
[52] Cao J T, Yang J F, Gu Y, Fang X D, Lu N Y, Hua B, Yan.X M 2019 Mater. Res. Express. 6 15050Google Scholar
[53] Piper J. R, Liu V, Fan S 2014 Appl. Phys. Lett. 104 251110Google Scholar
[54] Sourav A, Li Z W, Huang Z H, Botcha V D, Hu C, YAO J P, Peng F, Kuo H C, Wu J, Liu X K, Ang K W, Transparent L S 2018 Adv. Opt. Mater. 6 1800461Google Scholar
[55] Qi Y, Zhang B, Liu C, Deng X 2020 IEEE Access 8 116675Google Scholar
[56] Jiang L Y, Yuan C, Li Z Y, Su J, Yi Z, Yao W T, Wu P, Liu Z M, Cheng S B, Pan M 2021 Diamond Relat. Mater. 111 108227Google Scholar
[57] Yu P Q, Yang H, Chen X F, Yi Z, Yao W T, Chen J F, Yi Y G, Wu P H 2020 Renewable Energy 158 227Google Scholar
[58] Deng Y H, Yang Z J, He J 2018 Opt. Express 26 31116Google Scholar
[59] Maurer T, Nicolas R, Lévêque G, Subramanian P, Proust J, Béal J, Schuermans S, Vilcot J P, Herro Z, Kazan M, Plain J, Boukherroub R, Akjouj A, Djafari-Rouhani B, Adam P M, Szunerits S 2014 Plasmonics 9 507Google Scholar
[60] Lu X, Zhang L, Zhang T 2015 Opt. Express 23 20715Google Scholar
[61] Lin L H, Zheng Y B 2015 Sci. Rep. 5 14788Google Scholar
[62] Ye J, Dorpe P V 2011 Plasmonics 6 665Google Scholar
[63] Ameling R, Langguth L, Hentschel M, Mesch M, Braun P V, Giessen H 2010 Appl. Phys. Lett. 97 253116Google Scholar
[64] Huang C, Ye J, Wang S, Stakenborg T, Lagae L 2012 Appl. Phys. Lett. 100 173114Google Scholar
计量
- 文章访问数: 7431
- PDF下载量: 162
- 被引次数: 0