搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拉伸应变对单层二硫化钼光电特性的影响

刘凯龙 彭冬生

引用本文:
Citation:

拉伸应变对单层二硫化钼光电特性的影响

刘凯龙, 彭冬生

Effects of photoelectric properties of monolayer MoS2 under tensile strain

Liu Kai-Long, Peng Dong-Sheng
PDF
HTML
导出引用
  • 单层二硫化钼是制作各种微纳元器件及柔性电子器件较为理想的材料. 然而在实践和应用中, 材料受到环境所导致的应变是一个无法避免的关键问题, 材料的电子结构也会随应变而发生改变. 本文基于第一性原理并结合湿法转移后的拉伸实验, 研究了拉伸应变对单层二硫化钼光电特性的影响. 结果表明: 1)本征单层二硫化钼为直接带隙半导体, 禁带宽度为1.68 eV; 吸收系数曲线最强峰位于10.92 eV附近, 最大吸收系数为1.66 × 105 cm–1. 2)开始施加拉应变(1%)时, 其能带结构从直接带隙转变为间接带隙; 随着应变的增大, 能带仍然保持间接带隙的特征, 且禁带宽度呈现线性下降的趋势; 当拉应变为10%时, 禁带宽度降为0 eV. 吸收系数曲线随应变施加而发生红移. 3)通过对湿法转移后的单层二硫化钼进行拉伸实验, 拉曼光谱中的面内模式$ {\mathrm{E}}_{2\mathrm{g}}^{1} $和面外模式A1g峰都会随拉伸而发生红移, 且两峰的峰值频率差保持在18.6 cm–1左右; 在光致发光谱1.83 eV处观察到单层二硫化钼的A激子的强发射峰. 随着拉应变的变大, 峰值相对强度降低并且线性红移, 代表带隙的线性减小, 与理论计算结果相符.
    Monolayer molybdenum disulfide is an ideal material for making various micro/nano components and flexible electronic devices. However, the strain of material caused by the environment is a key problem that cannot be avoided in practical applications, and the electronic structure of material will also change with the strain. In this paper, the effect of tensile strain on the photoelectric properties of monolayer MoS2 is studied based on first principles and tensile tests after wet transfer. The results are obtained as follows. 1) Intrinsic monolayer MoS2 is a direct bandgap semiconductor with a band gap of 1.68 eV, the highest peak of the absorption coefficient curve is nearly 10.92 eV, and a maximum absorption coefficient is 1.66 × 105 cm–1. 2) A small tensile strain (1%) will result in the transition from direct to indirect gap for monolayer MoS2. With the increase of strain, the feature of the indirect gap can be preserved but the gap decreases linearly. The gap will decrease to 0 eV when the tensile strain is 10%, and the absorption coefficient curve is red-shifted as a whole with strain. 3) The in-plane mode peak and the out-of-plane mode A1g peak in Raman spectra are re-dshifted with stretching by tensile test of wet-transferred monolayer MoS2, and the difference in peak frequency between the two peaks is maintained at about 18.6 cm–1. The strong emission peak of an exciton of monolayer MoS2 is observed at 1.83 eV of the photoluminescenc spectrum. With the increase of tensile strain, the relative strength of the peak decreases and is linearly re-dshifted, which means that the band gap decreases linearly. It is consistent with the theoretical calculation result.
      通信作者: 彭冬生, sbpengds@szu.edu.cn
    • 基金项目: 深圳市基础研究项目(批准号: JCYJ20180305124822272)
      Corresponding author: Peng Dong-Sheng, sbpengds@szu.edu.cn
    • Funds: Project supported by the Shenzhen Basic Research Foundation, China (Grant No. JCYJ20180305124822272).
    [1]

    Lin J, Zhong J, Zhong S, Li H, Zhang H, Chen W 2013 Appl. Phys. Lett. 103 063109Google Scholar

    [2]

    Yin Z, Zhang X, Cai Y, Chen J, Wong J I, Tay Y Y 2014 Angew. Chem. Int. Ed. 53 12560Google Scholar

    [3]

    Que H F, Jiang H N, Wang X G, Zhai P B, Meng L J, Zhang P, Gong Y J 2021 Acta Phys-Chim Sin. 37 2010051Google Scholar

    [4]

    Kumar S, Sharma A, Tomar M, Gupta V 2021 Mater. Sci. Eng. B 266 11Google Scholar

    [5]

    Tetsuka H, Nagoya A, Tamura S I 2016 Nanoscale 8 19677Google Scholar

    [6]

    Singh E, Kim K S, Yeom G Y, Nalwa H S 2017 RSC Advan. 7 28234Google Scholar

    [7]

    Pak S, Jang A R, Lee J, Hong J, Giraud P, Lee S 2019 Nanoscale 11 4726Google Scholar

    [8]

    Liu Y, Weiss N O, Duan X D, Cheng H C, Huang Y, Duan X F 2016 Nat. Rev. Mater. 1 17Google Scholar

    [9]

    Wu W, Wang L, Yu R, Liu Y, Wei S H, Hone J 2016 Advan. Mater. 28 8463Google Scholar

    [10]

    Liu Z, Amani M, Najmaei S, Xu Q, Zou X, Zhou W 2014 Nat. Commun. 5 5246Google Scholar

    [11]

    Pak S, Lee J, Jang A, Kim S, Park K, Sohn J I, Cha S 2020 Adv. Funct. Mater. 30 2002023Google Scholar

    [12]

    Conley H J, Wang B, Ziegler J I, Haglund R F, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626Google Scholar

    [13]

    Dadgar A M, Scullion D, Kang K, Esposito D, Yang E H, Herman I P 2018 Chem. Mat. 30 5148Google Scholar

    [14]

    李明林, 万亚玲, 胡建玥, 王卫东 2016 物理学报 65 176201Google Scholar

    Li M L, Wan Y L, Hu J Y, Wang W D 2016 Acta Phys. Sin. 65 176201Google Scholar

    [15]

    Kuc A, Zibouch N E, Heine T 2011 Phys. Rev. B 83 245213Google Scholar

    [16]

    吴木生, 徐波, 刘刚, 欧阳楚英 2012 物理学报 61 227102Google Scholar

    Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102Google Scholar

    [17]

    Wu J Y, Cao P Q, Zhang Z S, Ning F L, Zheng S S, He J Y, Zhang Z L 2018 Nano Lett. 18 1543Google Scholar

    [18]

    Zhang R, Koutsos V, Cheung R 2016 Appl. Phys. Lett. 108 042104Google Scholar

    [19]

    Hao S, Yang B, Gao Y 2017 Appl. Phys. Lett. 110 153105Google Scholar

    [20]

    Yang Y, Li X, Wen M, Hacopian E, Chen W, Gong Y, Zhang J, Li B, Zhou W, Ajayan P M, Chen Q, Zhu T, Lou J 2017 Adv. Mater. 29 1604201Google Scholar

    [21]

    Yun W S, Han S W, Hong S C, Kim I G, Lee J D 2012 Phys. Rev. B 85 033305Google Scholar

    [22]

    Hu T, Li R, Dong J M 2013 J. Chem. Phys. 139 174702Google Scholar

    [23]

    徐波, 潘必才 2008 物理学报 57 6526Google Scholar

    Xu B, Pan B C 2008 Acta Phys. Sin. 57 6526Google Scholar

    [24]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [25]

    Ramakrishna M, Gomathi A, Manna A K 2010 Angew. Chem. Int. Ed. 122 4153Google Scholar

    [26]

    Kam K K, Parkinson B A 1982 J. Phys. Chem. 86 463Google Scholar

    [27]

    Gajdos M, Hummer K, Kresse G 2006 Phys. Rev. B 73 045112Google Scholar

    [28]

    Kadantsev E S, Hawrylak P 2012 Solid State Commun. 152 909Google Scholar

    [29]

    Wang W D, Yang C G, Bai L W, Li M L, Li W B 2018 Nanomaterials 8 74Google Scholar

    [30]

    Mak K F, He K, Lee C, Lee G H, Hone J, Heinz T F 2013 Nat. Mater. 12 207Google Scholar

  • 图 1  单层MoS2晶体结构示意图 (a)顶视图; (b)侧视图

    Fig. 1.  Structure diagram of monolayer MoS2: (a) Top view; (b) side view.

    图 2  单层MoS2湿法转移流程图

    Fig. 2.  Flow chart of wet transfer of monolayer MoS2.

    图 3  本征MoS2的(a)能带结构图和(b)介电函数虚部

    Fig. 3.  (a) Energy band structure of intrinsic MoS2; (b) imaginary part of the intrinsic monolayer MoS2 dielectric function.

    图 4  不同拉应变下(1.0%−10%)单层MoS2的能带结构图

    Fig. 4.  Band structure diagram of monolayer molybdenum disulfide under different tensile strains (1.0%−10%).

    图 5  (a)最高价带(VBM) 上Γ点与K 点的能量随应力增大的变化情况; (b)单层MoS2的禁带宽度随拉应变的变化曲线

    Fig. 5.  (a) Variation of energy of point Γ and point K on the maximum price band (VBM) with the increase of stress; (b) variation curve of band gap width of monolayer MoS2 with tensile strain.

    图 6  单层MoS2在(a)无应变和(b)拉应变5%下的态密度图

    Fig. 6.  Electron density of states of monolayer MoS2 for (a) zero strain and (b) 5% tensile strain.

    图 7  不同拉应变下的单层MoS2吸收系数图

    Fig. 7.  Monolayer MoS2 absorption coefficients under different tensile and compressive strains.

    图 8  单层MoS2连续膜通过湿法转移后, (a)转移到Si衬底上的OM图像, (b)转移到Si衬底上的PL光谱, (c)转移到PDMS衬底上的OM图像, (d)转移到PDMS衬底上的实物图

    Fig. 8.  (a) OM images transferred to Si substrates, (b) PL spectra transferred to Si substrates, (c) OM images transferred to PDMS substrates, (d) real figures transferred to PDMS substrates when monolayer MoS2 continuous film is transferred by wet method.

    图 9  对单层MoS2/PDMS进行0%−1.8%拉伸应变时的(a)拉曼光谱, (b)拉曼峰的改变, (c) PL光谱, (d) PL峰的改变

    Fig. 9.  (a) Raman spectroscopy, (b) change of Raman peak position, (c) PL spectroscopy, (d) change of PL peak position when monolayer MoS2/PDMS is stretched by 0%−1.8%.

  • [1]

    Lin J, Zhong J, Zhong S, Li H, Zhang H, Chen W 2013 Appl. Phys. Lett. 103 063109Google Scholar

    [2]

    Yin Z, Zhang X, Cai Y, Chen J, Wong J I, Tay Y Y 2014 Angew. Chem. Int. Ed. 53 12560Google Scholar

    [3]

    Que H F, Jiang H N, Wang X G, Zhai P B, Meng L J, Zhang P, Gong Y J 2021 Acta Phys-Chim Sin. 37 2010051Google Scholar

    [4]

    Kumar S, Sharma A, Tomar M, Gupta V 2021 Mater. Sci. Eng. B 266 11Google Scholar

    [5]

    Tetsuka H, Nagoya A, Tamura S I 2016 Nanoscale 8 19677Google Scholar

    [6]

    Singh E, Kim K S, Yeom G Y, Nalwa H S 2017 RSC Advan. 7 28234Google Scholar

    [7]

    Pak S, Jang A R, Lee J, Hong J, Giraud P, Lee S 2019 Nanoscale 11 4726Google Scholar

    [8]

    Liu Y, Weiss N O, Duan X D, Cheng H C, Huang Y, Duan X F 2016 Nat. Rev. Mater. 1 17Google Scholar

    [9]

    Wu W, Wang L, Yu R, Liu Y, Wei S H, Hone J 2016 Advan. Mater. 28 8463Google Scholar

    [10]

    Liu Z, Amani M, Najmaei S, Xu Q, Zou X, Zhou W 2014 Nat. Commun. 5 5246Google Scholar

    [11]

    Pak S, Lee J, Jang A, Kim S, Park K, Sohn J I, Cha S 2020 Adv. Funct. Mater. 30 2002023Google Scholar

    [12]

    Conley H J, Wang B, Ziegler J I, Haglund R F, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626Google Scholar

    [13]

    Dadgar A M, Scullion D, Kang K, Esposito D, Yang E H, Herman I P 2018 Chem. Mat. 30 5148Google Scholar

    [14]

    李明林, 万亚玲, 胡建玥, 王卫东 2016 物理学报 65 176201Google Scholar

    Li M L, Wan Y L, Hu J Y, Wang W D 2016 Acta Phys. Sin. 65 176201Google Scholar

    [15]

    Kuc A, Zibouch N E, Heine T 2011 Phys. Rev. B 83 245213Google Scholar

    [16]

    吴木生, 徐波, 刘刚, 欧阳楚英 2012 物理学报 61 227102Google Scholar

    Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102Google Scholar

    [17]

    Wu J Y, Cao P Q, Zhang Z S, Ning F L, Zheng S S, He J Y, Zhang Z L 2018 Nano Lett. 18 1543Google Scholar

    [18]

    Zhang R, Koutsos V, Cheung R 2016 Appl. Phys. Lett. 108 042104Google Scholar

    [19]

    Hao S, Yang B, Gao Y 2017 Appl. Phys. Lett. 110 153105Google Scholar

    [20]

    Yang Y, Li X, Wen M, Hacopian E, Chen W, Gong Y, Zhang J, Li B, Zhou W, Ajayan P M, Chen Q, Zhu T, Lou J 2017 Adv. Mater. 29 1604201Google Scholar

    [21]

    Yun W S, Han S W, Hong S C, Kim I G, Lee J D 2012 Phys. Rev. B 85 033305Google Scholar

    [22]

    Hu T, Li R, Dong J M 2013 J. Chem. Phys. 139 174702Google Scholar

    [23]

    徐波, 潘必才 2008 物理学报 57 6526Google Scholar

    Xu B, Pan B C 2008 Acta Phys. Sin. 57 6526Google Scholar

    [24]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [25]

    Ramakrishna M, Gomathi A, Manna A K 2010 Angew. Chem. Int. Ed. 122 4153Google Scholar

    [26]

    Kam K K, Parkinson B A 1982 J. Phys. Chem. 86 463Google Scholar

    [27]

    Gajdos M, Hummer K, Kresse G 2006 Phys. Rev. B 73 045112Google Scholar

    [28]

    Kadantsev E S, Hawrylak P 2012 Solid State Commun. 152 909Google Scholar

    [29]

    Wang W D, Yang C G, Bai L W, Li M L, Li W B 2018 Nanomaterials 8 74Google Scholar

    [30]

    Mak K F, He K, Lee C, Lee G H, Hone J, Heinz T F 2013 Nat. Mater. 12 207Google Scholar

  • [1] 张江林, 王仲民, 王殿辉, 胡朝浩, 王凤, 甘伟江, 林振琨. V/Pd界面氢吸附扩散行为的第一性原理研究. 物理学报, 2023, 72(16): 168801. doi: 10.7498/aps.72.20230132
    [2] 田金朋, 王硕培, 时东霞, 张广宇. 垂直短沟道二硫化钼场效应晶体管. 物理学报, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [3] 吴帆帆, 季怡汝, 杨威, 张广宇. 二硫化钼的电子能带结构和低温输运实验进展. 物理学报, 2022, 71(12): 127306. doi: 10.7498/aps.71.20220015
    [4] 蒋黎英, 易颖婷, 易早, 杨华, 李治友, 苏炬, 周自刚, 陈喜芳, 易有根. 基于单层二硫化钼的高品质因子、高品质因数的四波段完美吸收器. 物理学报, 2021, 70(12): 128101. doi: 10.7498/aps.70.20202163
    [5] 侯璐, 童鑫, 欧阳钢. 一维carbyne链原子键性质应变调控的第一性原理研究. 物理学报, 2020, 69(24): 246802. doi: 10.7498/aps.69.20201231
    [6] 孟凡, 胡劲华, 王辉, 邹戈胤, 崔建功, 赵乐. 等离子体谐振腔对二硫化钼的荧光增强效应. 物理学报, 2019, 68(23): 237801. doi: 10.7498/aps.68.20191121
    [7] 刘乐, 汤建, 王琴琴, 时东霞, 张广宇. 石墨烯封装单层二硫化钼的热稳定性研究. 物理学报, 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [8] 危阳, 马新国, 祝林, 贺华, 黄楚云. 二硫化钼/石墨烯异质结的界面结合作用及其对带边电位影响的理论研究. 物理学报, 2017, 66(8): 087101. doi: 10.7498/aps.66.087101
    [9] 李明林, 万亚玲, 胡建玥, 王卫东. 单层二硫化钼力学性能温度和手性效应的分子动力学模拟. 物理学报, 2016, 65(17): 176201. doi: 10.7498/aps.65.176201
    [10] 张理勇, 方粮, 彭向阳. 单层二硫化钼多相性质及相变的第一性原理研究. 物理学报, 2016, 65(12): 127101. doi: 10.7498/aps.65.127101
    [11] 张理勇, 方粮, 彭向阳. 金衬底调控单层二硫化钼电子性能的第一性原理研究. 物理学报, 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [12] 魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅. Au的金属颗粒对二硫化钼发光增强. 物理学报, 2014, 63(21): 217802. doi: 10.7498/aps.63.217802
    [13] 雷天民, 吴胜宝, 张玉明, 郭辉, 陈德林, 张志勇. La, Ce, Nd掺杂对单层MoS2电子结构的影响. 物理学报, 2014, 63(6): 067301. doi: 10.7498/aps.63.067301
    [14] 董海明. 低温下二硫化钼电子迁移率研究. 物理学报, 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [15] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [16] 吴木生, 徐波, 刘刚, 欧阳楚英. 应变对单层二硫化钼能带影响的第一性原理研究. 物理学报, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [17] 顾牡, 林玲, 刘波, 刘小林, 黄世明, 倪晨. M’型GdTaO4电子结构的第一性原理研究. 物理学报, 2010, 59(4): 2836-2842. doi: 10.7498/aps.59.2836
    [18] 钟兰花, 吴福根. 水波在周期性钻孔底部结构中的传播及其能带. 物理学报, 2009, 58(9): 6363-6368. doi: 10.7498/aps.58.6363
    [19] 宋建军, 张鹤鸣, 戴显英, 胡辉勇, 宣荣喜. 第一性原理研究应变Si/(111)Si1-xGex能带结构. 物理学报, 2008, 57(9): 5918-5922. doi: 10.7498/aps.57.5918
    [20] 王同标, 刘念华. 正负折射率材料组成的一维光子晶体的能带及电场. 物理学报, 2007, 56(10): 5878-5882. doi: 10.7498/aps.56.5878
计量
  • 文章访问数:  7365
  • PDF下载量:  213
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-28
  • 修回日期:  2021-06-14
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-05

/

返回文章
返回