搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高迁移率Ge沟道器件研究进展

安霞 黄如 李志强 云全新 林猛 郭岳 刘朋强 黎明 张兴

引用本文:
Citation:

高迁移率Ge沟道器件研究进展

安霞, 黄如, 李志强, 云全新, 林猛, 郭岳, 刘朋强, 黎明, 张兴

Research progress of high mobility germanium based metal oxide semiconductor devices

An Xia, Huang Ru, Li Zhi-Qiang, Yun Quan-Xin, Lin Meng, Guo Yue, Liu Peng-Qiang, Li Ming, Zhang Xing
PDF
导出引用
  • 高迁移率Ge沟道器件由于其较高而且更对称的载流子迁移率, 成为未来互补型金属-氧化物-半导体(CMOS) 器件极有潜力的候选材料. 然而, 对于Ge基MOS器件, 其栅、源漏方面面临的挑战严重影响了Ge基MOS 器件性能的提升, 尤其是Ge NMOS器件. 本文重点分析了Ge基器件在栅、源漏方面面临的问题, 综述了国内外研究者们提出的不同解决方案, 在此基础上提出了新的技术方案. 研究结果为Ge基MOS 器件性能的进一步提升奠定了基础.
    Germanium based metal oxide semiconductor (MOS) device has been a research hotspot and considered as a potential candidate for future complementary MOS (CMOS) technology due to its high and symmetric carrier mobility. However, the poor quality of gate dielectric/channel interface significantly restricts the performances of germanium based MOS devices. Besides, the solid-solubility and activation concentration of dopants in Ge are both quite low, and the dopants diffuse fast in Ge, which makes it difficult to achieve ultra-shallow junction with high dopant concentration, especially for Ge NMOS devices.To solve these problems, different techniques are proposed and overviewed. The proposed nitrogen-plasma-passivation method can effectively suppress the regrowth of germanium sub-oxide and reduce the interface state density. Thus the performance of the fabricated Ge NMOS device is significantly improved. To enhance the n-type dopant activation in Ge, the multiple implantation technique and the multiple annealing technique are proposed. High electrical activation over 1 1020 cm-3 is achieved, and the corresponding contact resistivity is reduced to 3.8 10-7 cm2. Besides, the implantation after germanide (IAG) technique is first proposed to modulate the Schottky barrier height (SBH). The record-low electron SBH of 0.10 eV is obtained by IAG technique, and the optimized process window is given. In addition, the poor thermal stability of NiGe restricts the further improvement in performance of Ge MOS device. P and Sb co-implantation technique and novel ammonium fluoride pretreatment method are proposed to improve the thermal stability of NiGe. The electrical characteristic of NiGe/Ge diode is also improved simultaneously. The results provide the guidelines for further enhancing the performances of germanium-based MOS devices.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CBA00601)、国家自然科学基金(批准号: 61421005, 61434007, 60806033, 61474004) 和国家科技重大专项(02专项)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CBA00601), the National Natural Science Foundation of China (Grant Nos. 61421005, 61434007, 60806033, 61474004), and the National Science and Technology Major Project of the Ministry of Science and Technology of China.
    [1]

    Ghani T, Armstrong M, Auth C, et al. 2003 International Electron Devices Meeting Washington, DC, America, December 8-10, 2003 p978

    [2]

    Oishi A, Fujii O, Yokoyama T, et al. 2005 International Electron Devices Meeting Washington, DC, America, December 5-7, 2005 p229

    [3]

    Kim S D, Jain S, Rhee H, et al. 2010 International Conference on Simulation of Semiconductor Processes and Devices Bologna, Italy, Sept. 6-8, 2010 p79

    [4]

    Yang B, Nummy K, Waite A, et al. 2007 Symposium on VLSI Technology Kyoto, Japan, June 12-14, 2007 p126

    [5]

    Claeys C, Simoen E 2007 Germanium-Based Technologies: From Materials to Devices (Amsterdam: Elsevier)

    [6]

    Mitard J, De Jaeger B, Leys F E, et al. 2008 International Electron Devices Meeting San Francisco, America, December 15-17, 2008 p873

    [7]

    Heyns M, Alian A, Brammertz G, et al. 2011 International Electron Devices Meeting Washington, DC, America, December 5-7, 2011 p299

    [8]

    Duriez B, Vellianitis G, van Dal M J H, et al. 2013 International Electron Devices Meeting Washington, DC, America, December 9-11, 2013 p522

    [9]

    Mitard J, Witters L, Loo R, et al. 2014 Symposium on VLSI Technology Honolulu, Hawaii, America, June 9-12, 2014 p138

    [10]

    Witters L, Mitard J, Loo R, et al. 2015 Symposium on VLSI Technology Kyoto, Japan, June 16-18, 2015 p56

    [11]

    Wu H, Luo W, Zhou H, Si M W, Zhang J Y, Ye P D 2015 Symposium on VLSI Technology Kyoto, Japan, June 16-18, 2015 p58

    [12]

    Bernstein R B, Cubicciotti D 1951 J. Amer. Chem. Soc. 73 4112

    [13]

    Wang S K, Kita K, Nishimura T, Nagashio K, Toriumi A 2011 Jpn. J. Appl. Phys. 50 10PE04

    [14]

    Kita K, Wang S K, Yoshida M, Lee C, Nagashio K, Nishimura T, Toriumi A 2009 International Electron Devices Meeting Baltimore, America, December 7-9, 2009 p693

    [15]

    Wang S K, Kita K, Nishimura T, Nagashio K, Toriumi A 2011 Jpn. J. Appl. Phys. 50 04DA01

    [16]

    Wang S K, Kita K, Lee C, Tabata T, Nishimura T, Nagashio K, Toriumi A 2010 J. Appl. Phys. 108 054104

    [17]

    Lee D, Lee H, Kanashima T, Okuyama M 2010 Appl. Surf. Sci 257 917

    [18]

    Xie R, Yu M, Lai M, Chan L, Zhu C 2008 Appl. Phys. Lett. 92 163505

    [19]

    Kamata Y, Ino T, Koyama M, Nishiyama A 2008 Appl. Phys. Lett. 92 063512

    [20]

    Dei K, Kawase T, Yoneda K, Uchikoshi J, Morita M, Arima K 2011 J. Nanosci. Nanotech. 11 2968

    [21]

    Frank M M, Koester S J, Copel M, Ott J A, Paruchuri V K, Shang H, Loesing R 2006 Appl. Phys. Lett. 89 112905

    [22]

    Kaczer B, Jaeger B D, Nicholas G, Martens K, Degraeve R, Houssa M, Pourtois G, Leys F, Meuris M, Groesenken G 2007 Microelectron. Eng. 84 2067

    [23]

    Wu N, Zhang Q, Zhu C, Chan D S H, Du A, Balasubramanian N, Li M F, Chin A, Sin J K O, Kwong D L 2004 IEEE Electron Device Lett. 25 631

    [24]

    Bai W P, Lu N, Kwong D L 2005 IEEE Electron Device Lett. 26 378

    [25]

    Crisman E E, Lee J I, Stiles P J, Gregory O J 1987 Electron. Lett. 23 8

    [26]

    Lee C H, Nishimura T, Saido N, Nagashio K, Kita K, Toriumi A 2009 International Electron Devices Meeting Baltimore, MD, America, December 7-9, 2009 p457

    [27]

    Lee C H, Nishimura T, Tabata T, Wang S K, Nagashio K, Kita K, Toriumi A 2010 International Electron Devices Meeting San Francisco, CA, America, December 6-8, 2010 p416

    [28]

    Lee C H, Tabata T, Nishimura T, Nagashio K, Kita K, Toriumi A 2009 Appl. Phys. Expr. 2 071404,

    [29]

    Lee C H, Nishimura T, Nagashio K, Kita K, Toriumi A 2011 IEEE Trans. Electron Devices 58 1295

    [30]

    Kuzum D, Krishnamohan T, Pethe A J, Okyay A K, Oshima Y, Sun Y 2008 IEEE Electron Device Lett. 29 328

    [31]

    Deng S R, Xie Q, Deduytsche D, Schaekers M, Lin D, Caymax M, Delabie A, van den Berghe S, Qu X P, Detavernier C 2011 Appl. Phys. Lett. 99 052906

    [32]

    Fukuda Y, Yazaki Y, Otani Y, Sato T, Toyota H, Ono T 2010 IEEE Trans. Electron Devices 57 282

    [33]

    Lin M, An X, Li M, Yun Q X, Li M, Li Z Q, Liu P Q, Zhang X, Huang R 2014 Chin. Phys. B 23 067701

    [34]

    Lau W S, Qian P W, Sandler N P, McKinley K A, Chu P K 1997 Jpn. J. Appl. Phys. 36 661

    [35]

    Chui C O, Kim H, McIntyre P C, Saraswat K C 2004 IEEE Electron Device Lett. 25 274

    [36]

    Hymes D J, Rosenberg J J 1988 J. Electrochem. Soc. 135 961

    [37]

    Yun Q X, Li M, An X, Lin M, Liu P Q, Li Z Q, Zhang B X, Xia Y X, Zhang H, Zhang X, Huang R, Wang Y Y 2014 Chin. Phys. B 23 118504

    [38]

    Lin M, Li M, An X, Yun Q X, Li M, Li Z Q, Liu P Q, Zhang X, Huang R 2013 Semicond. Sci. Tech. 28 085010

    [39]

    Lu C, Lee C H, Nishimura T, Toriumi A 2015 Symposium on VLSI Technology Kyoto, Japan, June 16-18, 2015 p18

    [40]

    Trumbore F A 1960 Bell Syst. Tech. J. 39 205

    [41]

    Chui C O, Kulig L, Moran J, Tsai W, Saraswat K C 2005 Appl. Phys. Lett. 87 091909

    [42]

    Chui C O, Gopalakrishnan K, Griffin P B, Plummer J D, Saraswat K C 2003 Appl. Phys. Lett. 83 3275

    [43]

    Kim J, Bedell S W, Sadana D K 2011 Appl. Phys. Lett. 98 082112

    [44]

    Dimoulas A, Tsipas P, Sotiropoulos A, Evangelou E K 2006 Appl. Phys. Lett. 89 252110

    [45]

    Nishimura T, Kita K, Toriumi A 2007 Appl. Phys. Lett. 91 123123

    [46]

    Martens K, Firrincieli A, Rooyackers R, et al. 2010 International Electron Devices Meeting San Francisco, CA, America, December 6-8, 2010 p428

    [47]

    Brotzmann S, Bracht H 2008 J. Appl. Phys. 103 033508

    [48]

    Thareja G, Chopra S, Adams B, et al. 2010 Device Research Conference South Bend, Indiana, America, June 21-23, 2010 p23

    [49]

    Thareja G, Liang J, Chopra S, et al. 2010 International Electron Devices Meeting San Francisco, CA, America, December 6-8, 2010 p245

    [50]

    Wndisch C, Posselt M, Schmidt B, et al. 2009 Appl. Phys. Lett. 95 252107

    [51]

    Kim J, Bedell S W, Sadana D K 2011 Appl. Phys. Lett. 98 082112

    [52]

    Bhatt P, Swarnkar P, Misra A, Biswas J, Hatem C, Nainani A, Lodha S 2015 IEEE Trans. Electron Devices 62 69

    [53]

    Park J H, Kuzum D, Tada M, Krishna C S 2008 Appl. Phys. Lett. 93 193507

    [54]

    Jamil M, Mantey J, Onyegam E U, Carpenter G D, Tutuc E, Banerjee S K 2011 IEEE Electron Device Lett. 32 1203

    [55]

    Li Z Q, An X, Yun Q X, Lin M, Li M, Li M, Zhang X, Huang R 2013 IEEE Electron Device Lett. 34 1097

    [56]

    Raghunathan S, Krishnamohan T, Saraswat K C 2010 ECS Trans. 33 871

    [57]

    Thareja G, Cheng S L, Kamins T, Saraswat K, Nishi Y 2011 IEEE Electron Device Lett. 32 608

    [58]

    Lin J Y, Roy A M, Saraswat K C 2012 IEEE Electron Device Lett. 33 1541

    [59]

    Manik P P, Mishra R K, Kishore V P, Ray P, Nainani A, Huang Y C, Abraham M C, Ganguly U, Lodha S 2012 Appl. Phys. Lett. 101 182105

    [60]

    Liu P Q, Li M, An X, Lin M, Zhao Y, Zhang B X, Xia X X, Huang R 2015 Silicon Nanoelectronics Workshop Kyoto, Japan, June 14-15, 2015

    [61]

    Claeys C, Firrincieli A, Martens K, Kittl J A, Simoen E 2012 8th International Caribbean Conference on Devices, Circuits and Systems Playa del Carmen, Mexico, March 14-17, 2012 p1

    [62]

    Nishimura T, Kita K, Toriumi A 2007 Appl. Phys. Lett. 91 123123

    [63]

    Brillson L J 2007 J. Vac. Sci. Techn. A 25 943

    [64]

    Heine V 1965 Phys. Rev. A 138 1689

    [65]

    Nishimura T, Kita K, Toriumi A 2008 Appl. Phys. Express 1 051406

    [66]

    Zhou Y, Ogawa M, Han X, Wang K L 2008 Appl. Phys. Lett. 93 202105

    [67]

    Lin J Y J, Roy A M, Nainani A, Sun Y, Saraswat K C 2011 Appl. Phys. Lett. 98 092113

    [68]

    Lieten R, Degroote S, Kuijk M, Borghs G 2008 Appl. Phys. Lett. 92 022106

    [69]

    Kobayashi M, Kinoshita A, Saraswat K, Wong H S P, Nishi Y 2009 J. Appl. Phys. 105 023702

    [70]

    Li Z Q, An X, Yun Q X, Lin M, Zhang X, Huang R 2012 ECS Solid State Lett. 1 Q33

    [71]

    Thathachary A V, Bhat K N, Bhat N, Hegde M S 2010 Appl. Phys. Lett. 96 152108

    [72]

    Tong Y, Liu B, Lim P S Y, Yeo Y C 2012 IEEE Electron Device Lett. 33 773

    [73]

    Ikeda K, Yamashita Y, Sugiyama N, Taoka N, Takagi S 2006 Appl. Phys. Lett. 88 152115

    [74]

    Thornton R 1981 Electron. Lett. 17 485

    [75]

    Yamauchi T, Nishi Y, Tsuchiya Y, Kinoshita A, Koga J, Kato K 2007 International Electron Devices Meeting Washington, DC, America, December 10-12, 2007 p963

    [76]

    Zhen Z, Qiu Z, Ran L, Ostling M, Zhang S L 2007 IEEE Electron Device Lett. 28 565

    [77]

    Mueller M, Zhao Q T, Urban C, Sandow C, Buca D, Lenk S, Estevez S, Mantl S 2008 Mater. Sci. Eng. B 154 168

    [78]

    Li Z Q, An X, Li M, Yun Q X, Lin M, Li M, Zhang X, Huang R 2012 IEEE Electron Device Lett. 33 1687

    [79]

    Guo Y, An X, Huang R, Fan C H, Zhang X 2010 Appl. Phys. Lett. 96 143502

    [80]

    Li Z Q, An X, Li M, Yun Q X, Lin M, Li M, Zhang X, Huang R 2013 IEEE Electron Device Lett. 34 596

    [81]

    Lee K, Liew S, Chua S, Chi D, Sun H, Pan X 2004 Materials Research Society Spring Meeting San Francisco, CA, America, April 12-16, 2004 pC2.4

    [82]

    Ashburn S P, Öztrk M C, Harris G, Maher D M 1993 J. Appl. Phys. 74 4455

    [83]

    Zhang Y Y, Oh J, Li S G, Jung S Y, Park K Y, Lee G W, Majhi P, Tseng H H, Jammy R, Lee H D 2010 IEEE Trans. Nanotechnol. 9 258

    [84]

    Nakatsuka O, Suzuki A, Sakai A, Ogawa M, Zaima S 2007 International Workshop on Junction Technology Kyoto, Japan, June 8-9, 2007 p87

    [85]

    Zhu S, Yu M, Lo G, Kwong D 2007 Appl. Phys. Lett. 91 051905

    [86]

    Zhang Y Y, Oh J, Li S G, Jung S Y, Park K Y, Shin H S, Lee G W, Wang J S, Majhi P, Tseng H H, Jammy R, Bae T S, Lee H D 2009 Electrochem. Solid-State Lett. 12 H18

    [87]

    Zhang Y Y, Oh J, Han I S, Zhong Z, Li S G, Jung S Y, Park K Y, Shin H S, Choi W H, Kwon H M, Loh W Y, Majhi P, Jammy R, Lee H D 2009 IEEE Trans. Electron Devices 56 348

    [88]

    Guo Y, An X, Wang R S, Zhang X, Huang R 2011 IEEE Electron Device Lett. 32 554

  • [1]

    Ghani T, Armstrong M, Auth C, et al. 2003 International Electron Devices Meeting Washington, DC, America, December 8-10, 2003 p978

    [2]

    Oishi A, Fujii O, Yokoyama T, et al. 2005 International Electron Devices Meeting Washington, DC, America, December 5-7, 2005 p229

    [3]

    Kim S D, Jain S, Rhee H, et al. 2010 International Conference on Simulation of Semiconductor Processes and Devices Bologna, Italy, Sept. 6-8, 2010 p79

    [4]

    Yang B, Nummy K, Waite A, et al. 2007 Symposium on VLSI Technology Kyoto, Japan, June 12-14, 2007 p126

    [5]

    Claeys C, Simoen E 2007 Germanium-Based Technologies: From Materials to Devices (Amsterdam: Elsevier)

    [6]

    Mitard J, De Jaeger B, Leys F E, et al. 2008 International Electron Devices Meeting San Francisco, America, December 15-17, 2008 p873

    [7]

    Heyns M, Alian A, Brammertz G, et al. 2011 International Electron Devices Meeting Washington, DC, America, December 5-7, 2011 p299

    [8]

    Duriez B, Vellianitis G, van Dal M J H, et al. 2013 International Electron Devices Meeting Washington, DC, America, December 9-11, 2013 p522

    [9]

    Mitard J, Witters L, Loo R, et al. 2014 Symposium on VLSI Technology Honolulu, Hawaii, America, June 9-12, 2014 p138

    [10]

    Witters L, Mitard J, Loo R, et al. 2015 Symposium on VLSI Technology Kyoto, Japan, June 16-18, 2015 p56

    [11]

    Wu H, Luo W, Zhou H, Si M W, Zhang J Y, Ye P D 2015 Symposium on VLSI Technology Kyoto, Japan, June 16-18, 2015 p58

    [12]

    Bernstein R B, Cubicciotti D 1951 J. Amer. Chem. Soc. 73 4112

    [13]

    Wang S K, Kita K, Nishimura T, Nagashio K, Toriumi A 2011 Jpn. J. Appl. Phys. 50 10PE04

    [14]

    Kita K, Wang S K, Yoshida M, Lee C, Nagashio K, Nishimura T, Toriumi A 2009 International Electron Devices Meeting Baltimore, America, December 7-9, 2009 p693

    [15]

    Wang S K, Kita K, Nishimura T, Nagashio K, Toriumi A 2011 Jpn. J. Appl. Phys. 50 04DA01

    [16]

    Wang S K, Kita K, Lee C, Tabata T, Nishimura T, Nagashio K, Toriumi A 2010 J. Appl. Phys. 108 054104

    [17]

    Lee D, Lee H, Kanashima T, Okuyama M 2010 Appl. Surf. Sci 257 917

    [18]

    Xie R, Yu M, Lai M, Chan L, Zhu C 2008 Appl. Phys. Lett. 92 163505

    [19]

    Kamata Y, Ino T, Koyama M, Nishiyama A 2008 Appl. Phys. Lett. 92 063512

    [20]

    Dei K, Kawase T, Yoneda K, Uchikoshi J, Morita M, Arima K 2011 J. Nanosci. Nanotech. 11 2968

    [21]

    Frank M M, Koester S J, Copel M, Ott J A, Paruchuri V K, Shang H, Loesing R 2006 Appl. Phys. Lett. 89 112905

    [22]

    Kaczer B, Jaeger B D, Nicholas G, Martens K, Degraeve R, Houssa M, Pourtois G, Leys F, Meuris M, Groesenken G 2007 Microelectron. Eng. 84 2067

    [23]

    Wu N, Zhang Q, Zhu C, Chan D S H, Du A, Balasubramanian N, Li M F, Chin A, Sin J K O, Kwong D L 2004 IEEE Electron Device Lett. 25 631

    [24]

    Bai W P, Lu N, Kwong D L 2005 IEEE Electron Device Lett. 26 378

    [25]

    Crisman E E, Lee J I, Stiles P J, Gregory O J 1987 Electron. Lett. 23 8

    [26]

    Lee C H, Nishimura T, Saido N, Nagashio K, Kita K, Toriumi A 2009 International Electron Devices Meeting Baltimore, MD, America, December 7-9, 2009 p457

    [27]

    Lee C H, Nishimura T, Tabata T, Wang S K, Nagashio K, Kita K, Toriumi A 2010 International Electron Devices Meeting San Francisco, CA, America, December 6-8, 2010 p416

    [28]

    Lee C H, Tabata T, Nishimura T, Nagashio K, Kita K, Toriumi A 2009 Appl. Phys. Expr. 2 071404,

    [29]

    Lee C H, Nishimura T, Nagashio K, Kita K, Toriumi A 2011 IEEE Trans. Electron Devices 58 1295

    [30]

    Kuzum D, Krishnamohan T, Pethe A J, Okyay A K, Oshima Y, Sun Y 2008 IEEE Electron Device Lett. 29 328

    [31]

    Deng S R, Xie Q, Deduytsche D, Schaekers M, Lin D, Caymax M, Delabie A, van den Berghe S, Qu X P, Detavernier C 2011 Appl. Phys. Lett. 99 052906

    [32]

    Fukuda Y, Yazaki Y, Otani Y, Sato T, Toyota H, Ono T 2010 IEEE Trans. Electron Devices 57 282

    [33]

    Lin M, An X, Li M, Yun Q X, Li M, Li Z Q, Liu P Q, Zhang X, Huang R 2014 Chin. Phys. B 23 067701

    [34]

    Lau W S, Qian P W, Sandler N P, McKinley K A, Chu P K 1997 Jpn. J. Appl. Phys. 36 661

    [35]

    Chui C O, Kim H, McIntyre P C, Saraswat K C 2004 IEEE Electron Device Lett. 25 274

    [36]

    Hymes D J, Rosenberg J J 1988 J. Electrochem. Soc. 135 961

    [37]

    Yun Q X, Li M, An X, Lin M, Liu P Q, Li Z Q, Zhang B X, Xia Y X, Zhang H, Zhang X, Huang R, Wang Y Y 2014 Chin. Phys. B 23 118504

    [38]

    Lin M, Li M, An X, Yun Q X, Li M, Li Z Q, Liu P Q, Zhang X, Huang R 2013 Semicond. Sci. Tech. 28 085010

    [39]

    Lu C, Lee C H, Nishimura T, Toriumi A 2015 Symposium on VLSI Technology Kyoto, Japan, June 16-18, 2015 p18

    [40]

    Trumbore F A 1960 Bell Syst. Tech. J. 39 205

    [41]

    Chui C O, Kulig L, Moran J, Tsai W, Saraswat K C 2005 Appl. Phys. Lett. 87 091909

    [42]

    Chui C O, Gopalakrishnan K, Griffin P B, Plummer J D, Saraswat K C 2003 Appl. Phys. Lett. 83 3275

    [43]

    Kim J, Bedell S W, Sadana D K 2011 Appl. Phys. Lett. 98 082112

    [44]

    Dimoulas A, Tsipas P, Sotiropoulos A, Evangelou E K 2006 Appl. Phys. Lett. 89 252110

    [45]

    Nishimura T, Kita K, Toriumi A 2007 Appl. Phys. Lett. 91 123123

    [46]

    Martens K, Firrincieli A, Rooyackers R, et al. 2010 International Electron Devices Meeting San Francisco, CA, America, December 6-8, 2010 p428

    [47]

    Brotzmann S, Bracht H 2008 J. Appl. Phys. 103 033508

    [48]

    Thareja G, Chopra S, Adams B, et al. 2010 Device Research Conference South Bend, Indiana, America, June 21-23, 2010 p23

    [49]

    Thareja G, Liang J, Chopra S, et al. 2010 International Electron Devices Meeting San Francisco, CA, America, December 6-8, 2010 p245

    [50]

    Wndisch C, Posselt M, Schmidt B, et al. 2009 Appl. Phys. Lett. 95 252107

    [51]

    Kim J, Bedell S W, Sadana D K 2011 Appl. Phys. Lett. 98 082112

    [52]

    Bhatt P, Swarnkar P, Misra A, Biswas J, Hatem C, Nainani A, Lodha S 2015 IEEE Trans. Electron Devices 62 69

    [53]

    Park J H, Kuzum D, Tada M, Krishna C S 2008 Appl. Phys. Lett. 93 193507

    [54]

    Jamil M, Mantey J, Onyegam E U, Carpenter G D, Tutuc E, Banerjee S K 2011 IEEE Electron Device Lett. 32 1203

    [55]

    Li Z Q, An X, Yun Q X, Lin M, Li M, Li M, Zhang X, Huang R 2013 IEEE Electron Device Lett. 34 1097

    [56]

    Raghunathan S, Krishnamohan T, Saraswat K C 2010 ECS Trans. 33 871

    [57]

    Thareja G, Cheng S L, Kamins T, Saraswat K, Nishi Y 2011 IEEE Electron Device Lett. 32 608

    [58]

    Lin J Y, Roy A M, Saraswat K C 2012 IEEE Electron Device Lett. 33 1541

    [59]

    Manik P P, Mishra R K, Kishore V P, Ray P, Nainani A, Huang Y C, Abraham M C, Ganguly U, Lodha S 2012 Appl. Phys. Lett. 101 182105

    [60]

    Liu P Q, Li M, An X, Lin M, Zhao Y, Zhang B X, Xia X X, Huang R 2015 Silicon Nanoelectronics Workshop Kyoto, Japan, June 14-15, 2015

    [61]

    Claeys C, Firrincieli A, Martens K, Kittl J A, Simoen E 2012 8th International Caribbean Conference on Devices, Circuits and Systems Playa del Carmen, Mexico, March 14-17, 2012 p1

    [62]

    Nishimura T, Kita K, Toriumi A 2007 Appl. Phys. Lett. 91 123123

    [63]

    Brillson L J 2007 J. Vac. Sci. Techn. A 25 943

    [64]

    Heine V 1965 Phys. Rev. A 138 1689

    [65]

    Nishimura T, Kita K, Toriumi A 2008 Appl. Phys. Express 1 051406

    [66]

    Zhou Y, Ogawa M, Han X, Wang K L 2008 Appl. Phys. Lett. 93 202105

    [67]

    Lin J Y J, Roy A M, Nainani A, Sun Y, Saraswat K C 2011 Appl. Phys. Lett. 98 092113

    [68]

    Lieten R, Degroote S, Kuijk M, Borghs G 2008 Appl. Phys. Lett. 92 022106

    [69]

    Kobayashi M, Kinoshita A, Saraswat K, Wong H S P, Nishi Y 2009 J. Appl. Phys. 105 023702

    [70]

    Li Z Q, An X, Yun Q X, Lin M, Zhang X, Huang R 2012 ECS Solid State Lett. 1 Q33

    [71]

    Thathachary A V, Bhat K N, Bhat N, Hegde M S 2010 Appl. Phys. Lett. 96 152108

    [72]

    Tong Y, Liu B, Lim P S Y, Yeo Y C 2012 IEEE Electron Device Lett. 33 773

    [73]

    Ikeda K, Yamashita Y, Sugiyama N, Taoka N, Takagi S 2006 Appl. Phys. Lett. 88 152115

    [74]

    Thornton R 1981 Electron. Lett. 17 485

    [75]

    Yamauchi T, Nishi Y, Tsuchiya Y, Kinoshita A, Koga J, Kato K 2007 International Electron Devices Meeting Washington, DC, America, December 10-12, 2007 p963

    [76]

    Zhen Z, Qiu Z, Ran L, Ostling M, Zhang S L 2007 IEEE Electron Device Lett. 28 565

    [77]

    Mueller M, Zhao Q T, Urban C, Sandow C, Buca D, Lenk S, Estevez S, Mantl S 2008 Mater. Sci. Eng. B 154 168

    [78]

    Li Z Q, An X, Li M, Yun Q X, Lin M, Li M, Zhang X, Huang R 2012 IEEE Electron Device Lett. 33 1687

    [79]

    Guo Y, An X, Huang R, Fan C H, Zhang X 2010 Appl. Phys. Lett. 96 143502

    [80]

    Li Z Q, An X, Li M, Yun Q X, Lin M, Li M, Zhang X, Huang R 2013 IEEE Electron Device Lett. 34 596

    [81]

    Lee K, Liew S, Chua S, Chi D, Sun H, Pan X 2004 Materials Research Society Spring Meeting San Francisco, CA, America, April 12-16, 2004 pC2.4

    [82]

    Ashburn S P, Öztrk M C, Harris G, Maher D M 1993 J. Appl. Phys. 74 4455

    [83]

    Zhang Y Y, Oh J, Li S G, Jung S Y, Park K Y, Lee G W, Majhi P, Tseng H H, Jammy R, Lee H D 2010 IEEE Trans. Nanotechnol. 9 258

    [84]

    Nakatsuka O, Suzuki A, Sakai A, Ogawa M, Zaima S 2007 International Workshop on Junction Technology Kyoto, Japan, June 8-9, 2007 p87

    [85]

    Zhu S, Yu M, Lo G, Kwong D 2007 Appl. Phys. Lett. 91 051905

    [86]

    Zhang Y Y, Oh J, Li S G, Jung S Y, Park K Y, Shin H S, Lee G W, Wang J S, Majhi P, Tseng H H, Jammy R, Bae T S, Lee H D 2009 Electrochem. Solid-State Lett. 12 H18

    [87]

    Zhang Y Y, Oh J, Han I S, Zhong Z, Li S G, Jung S Y, Park K Y, Shin H S, Choi W H, Kwon H M, Loh W Y, Majhi P, Jammy R, Lee H D 2009 IEEE Trans. Electron Devices 56 348

    [88]

    Guo Y, An X, Wang R S, Zhang X, Huang R 2011 IEEE Electron Device Lett. 32 554

  • [1] 张梦, 姚若河, 刘玉荣, 耿魁伟. 短沟道金属-氧化物半导体场效应晶体管的散粒噪声模型. 物理学报, 2020, 69(17): 177102. doi: 10.7498/aps.69.20200497
    [2] 张梦, 姚若河, 刘玉荣. 纳米尺度金属-氧化物半导体场效应晶体管沟道热噪声模型. 物理学报, 2020, 69(5): 057101. doi: 10.7498/aps.69.20191512
    [3] 郑齐文, 崔江维, 王汉宁, 周航, 余徳昭, 魏莹, 苏丹丹. 超深亚微米互补金属氧化物半导体器件的剂量率效应. 物理学报, 2016, 65(7): 076102. doi: 10.7498/aps.65.076102
    [4] 辛艳辉, 刘红侠, 王树龙, 范小娇. 堆叠栅介质对称双栅单Halo应变Si金属氧化物半导体场效应管二维模型. 物理学报, 2014, 63(24): 248502. doi: 10.7498/aps.63.248502
    [5] 白玉蓉, 徐静平, 刘璐, 范敏敏, 黄勇, 程智翔. 高k栅介质小尺寸全耗尽绝缘体上锗p型金属氧化物半导体场效应晶体管漏源电流模型. 物理学报, 2014, 63(23): 237304. doi: 10.7498/aps.63.237304
    [6] 卓青青, 刘红侠, 彭里, 杨兆年, 蔡惠民. 总剂量辐照条件下部分耗尽半导体氧化物绝缘层N沟道金属氧化物半导体器件的三种kink效应. 物理学报, 2013, 62(3): 036105. doi: 10.7498/aps.62.036105
    [7] 李帅帅, 梁朝旭, 王雪霞, 李延辉, 宋淑梅, 辛艳青, 杨田林. 高迁移率非晶铟镓锌氧化物薄膜晶体管的制备与特性研究. 物理学报, 2013, 62(7): 077302. doi: 10.7498/aps.62.077302
    [8] 王斌, 张鹤鸣, 胡辉勇, 张玉明, 宋建军, 周春宇, 李妤晨. 应变SiGe p 型金属氧化物半导体场效应管栅电容特性研究. 物理学报, 2013, 62(12): 127102. doi: 10.7498/aps.62.127102
    [9] 陈海峰. 反向衬底偏压下纳米N沟道金属氧化物半导体场效应晶体管中栅调制界面产生电流特性研究. 物理学报, 2013, 62(18): 188503. doi: 10.7498/aps.62.188503
    [10] 许立军, 张鹤鸣. 环栅肖特基势垒金属氧化物半导体场效应管漏致势垒降低效应研究. 物理学报, 2013, 62(10): 108502. doi: 10.7498/aps.62.108502
    [11] 胡辉勇, 雷帅, 张鹤鸣, 宋建军, 宣荣喜, 舒斌, 王斌. Poly-Si1-xGex栅应变SiN型金属-氧化物-半导体场效应管栅耗尽模型研究. 物理学报, 2012, 61(10): 107301. doi: 10.7498/aps.61.107301
    [12] 曹磊, 刘红侠, 王冠宇. 异质栅全耗尽应变硅金属氧化物半导体模型化研究. 物理学报, 2012, 61(1): 017105. doi: 10.7498/aps.61.017105
    [13] 范雪, 李威, 李平, 张斌, 谢小东, 王刚, 胡滨, 翟亚红. 基于环形栅和半环形栅N沟道金属氧化物半导体晶体管的总剂量辐射效应研究. 物理学报, 2012, 61(1): 016106. doi: 10.7498/aps.61.016106
    [14] 李斌, 刘红侠, 袁博, 李劲, 卢凤铭. 应变Si/Si1-xGex n型金属氧化物半导体场效应晶体管反型层中的电子迁移率模型. 物理学报, 2011, 60(1): 017202. doi: 10.7498/aps.60.017202
    [15] 王晓艳, 张鹤鸣, 王冠宇, 宋建军, 秦珊珊, 屈江涛. 漏致势垒降低效应对短沟道应变硅金属氧化物半导体场效应管阈值电压的影响. 物理学报, 2011, 60(2): 027102. doi: 10.7498/aps.60.027102
    [16] 周海亮, 张民选, 方粮. 一种基于双栅材料的单极性类金属氧化物半导体碳纳米管场效应管设计方法. 物理学报, 2010, 59(7): 5010-5017. doi: 10.7498/aps.59.5010
    [17] 何宝平, 姚志斌. 互补金属氧化物半导体器件空间低剂量率辐射效应预估模型研究. 物理学报, 2010, 59(3): 1985-1990. doi: 10.7498/aps.59.1985
    [18] 毕志伟, 冯倩, 郝跃, 岳远征, 张忠芬, 毛维, 杨丽媛, 胡贵州. Al2O3介质层厚度对AlGaN/GaN金属氧化物半导体-高电子迁移率晶体管性能的影响. 物理学报, 2009, 58(10): 7211-7215. doi: 10.7498/aps.58.7211
    [19] 刘玉荣, 王智欣, 虞佳乐, 徐海红. 高迁移率聚合物薄膜晶体管. 物理学报, 2009, 58(12): 8566-8570. doi: 10.7498/aps.58.8566
    [20] 张廷庆, 刘传洋, 刘家璐, 王剑屏, 黄智, 徐娜军, 何宝平, 彭宏论, 姚育娟. 低温低剂量率下金属-氧化物-半导体器件的辐照效应. 物理学报, 2001, 50(12): 2434-2438. doi: 10.7498/aps.50.2434
计量
  • 文章访问数:  5059
  • PDF下载量:  370
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-14
  • 修回日期:  2015-08-28
  • 刊出日期:  2015-10-05

/

返回文章
返回